
applied  
sciences

Article

On Sharing Spatial Data with Uncertainty Integration
Amongst Multiple Robots Having Different Maps

Abhijeet Ravankar 1,*,† , Ankit A. Ravankar 2,† , Yohei Hoshino 1 and Yukinori Kobayashi 2

1 School of Regional Innovation and Social Design Engineering, Faculty of Engineering, Kitami Institute of
Technology, Kitami, Hokkaido 090-8507, Japan

2 Division of Human Mechanical Systems and Design, Faculty of Engineering, Hokkaido University, Sapporo,
Hokkaido 060-8628, Japan

* Correspondence: aravankar@mail.kitami-it.ac.jp
† These authors contributed equally to this work.

Received: 30 May 2019; Accepted: 4 July 2019; Published: 8 July 2019
����������
�������

Abstract: Information sharing is a powerful feature of multi-robot systems. Sharing information
precisely and accurately is important and has many benefits. Particularly, smart information sharing
can improve robot path planning. If a robot finds a new obstacle or blocked path, it can share
this information with other remote robots allowing them to plan better paths. However, there are
two problems with such information sharing. First, the maps of the robots may be different in
nature (e.g., 2D grid-map, 3D semantic map, feature map etc.) as the sensors used by the robots
for mapping and localization may be different. Even the maps generated using the same sensor
(e.g., Lidar) can vary in scale or rotation and the sensors used might have different specifications like
resolution or range. In such scenarios, the ‘correspondence problem’ in different maps is a critical
bottleneck in information sharing. Second, the transience of the obstacles has to be considered while
also considering the positional uncertainty of the new obstacles while sharing information. In our
previous work, we proposed a ‘node-map’ with a confidence decay mechanism to solve this problem.
However, the previous work had many limitations due to the decoupling of new obstacle’s positional
uncertainty and confidence decay. Moreover, the previous work applied only to homogeneous maps.
In addition, the previous model worked only with static obstacles in the environment. The current
work extends our previous work in three main ways: (1) we extend the previous work by integrating
positional uncertainty in the confidence decay mechanism and mathematically model the transience
of newly added or removed obstacles and discuss its merits; (2) we extend the previous work by
considering information sharing in heterogeneous maps build using different sensors; and (3) we
consider dynamic obstacles like moving people in the environment and test the proposed method in
complex scenarios. All the experiments are performed in real environments and with actual robots
and results are discussed.

Keywords: information sharing; multi-robot systems; positional uncertainty; path planning; mapping

1. Introduction

Mobile robots are increasingly being used to automate many tasks; tasks which are mostly dull,
dangerous, or demanding are a good fit for autonomous robots. The industrial sector has already
benefited a lot from ‘factory robots’. Recently, a new class of robots called ‘service robots’ have been
increasing. These robots are used to provide several common services like cleaning and delivering,
dispatching and moving items. These service robots are also used for specific tasks like patrolling
and escorting people. Generally, multiple robots are used for such tasks in large service areas as there
are several advantages. One of the major advantages of using multiple robots is wide area coverage.
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Multiple robots can cover a large area and perform several tasks simultaneously. Task parallelism is
possible as different robots can perform different tasks at the same time. Some robots may be cleaning,
some patrolling, while others may be delivering items to specific locations. Fault tolerance is another
advantage of multi-robot systems. Even if one of the robots goes out of service the entire service does
not stop as other robots can finish the task. Moreover, with task coordination, multiple robots can
perform the task efficiently and quickly.

However, with the introduction of multiple robots in a system, there are several challenges which
need to be addressed. Among these problems, effective communication between the multiple robots
is a major challenge. Communication forms the basis of other major modules like task coordination,
task distribution and collective execution. Accurate and content rich information is important for the
successful execution of many tasks.

Although there are many benefits of sharing spatial information in a multi-robot system, in this
paper, we consider the case of sharing obstacle information in a multi-robot system. The environments
at many service places, like hospitals and warehouses, are very dynamic with moving entities and new
obstacles. To navigate autonomously in such environments, robots need a map of the environment
and need to localize themselves within it. This is generally achieved through a SLAM (Simultaneous
Localization and Mapping) [1] module. Generally, if one robot finds a new obstacle in the environment,
it only updates its own map. The other robots do not benefit from this knowledge. However, if the
robot shares this knowledge with other robots along with updating its map, other robots can update
their maps and plan better paths with the real-time information. This is shown in Figure 1, in which,
Robot R1 finds a new obstacle and blocked path at the center passage of the service area and shares
the spatial coordinates of the obstacle with other robots R2, · · · , R5 which can use this information in
generating optimal trajectories. The extension of use-case scenarios other than obstacle information
sharing is straightforward.

R2

R3

R5

R4

R1

new
obstacle

Figure 1. Robot R1 finds a new obstacle blocking the path and shares this information with other
robots (R1, · · · , R5). The blue and red ellipses represents the robot’s and obstacle’s positional
uncertainty, respectively.

Related Works

There is a plethora of previous works related to sharing information in multi-robot systems.
Sharing corresponding matches of an object by two robots to calculate an accurate relative localization
over time is proposed in Reference [2]. Work in Reference [3] proposes sharing visual information.
In Reference [4], task negotiation between multiple robots by sharing information is proposed to decide
the sequence in which the tasks should be performed by different robots. Work in Reference [5,6]
proposes a protocol to share the region of interest between robots for efficient task cooperation. In-fact,
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multi-robot sport activities like Robo-soccer [7,8] heavily relies on meaningful information sharing
between robots to achieve a common goal. Virtual pheromones have been proposed to be used
for coordinating master-slave robots in References [9,10]. Path planning of multiple robots using
information from external security cameras is proposed in Reference [11]. In addition, a direct obstacle
coordinate information sharing was proposed in our previous work [12] without considering the
uncertainty. However, this is a limitation as in practical systems there is always some uncertainty
associated with robot’s localized information and mapped obstacle’s position due to sensor errors.
RoboEarth [13–15] is another platform which heavily uses information exchange through cloud.

Such information sharing has huge merits in robot path planning. Path planning is an active area
of research and in the context of multi-robot systems path-planning has shown promising advantages
through information sharing between robots. Multi-robot collision avoidance has been discussed
in Reference [16]. Work in Reference [17] presents a mechanism in which robots share information
about their remaining battery power and accordingly avoid collision by giving priority to a robot
with less battery power over the shortest path. An interesting approach of collaborative navigation
through visual-servoing is presented in Reference [18,19] which heavily relies on reliable and efficient
inter-robot communication to share information. The proposed work focuses on multiple robots
sharing information about the dynamic changes in the remote area of the environment. This enables
the robots to use updated and timely information to efficiently plan their paths. Information sharing
among multiple robots for efficient path planning usually involves a decentralized approach [20] in
which each robot calculates its path individually and decisions to change paths or avoid obstacles
is done later based on the received messages from other robots. This is unlike centralized path
planners [21] in which all the paths of all the robots are calculated simultaneously. In Reference [22],
a motion planner is proposed for multiple robots with limited ranges of sensing and communication
to reach the goal in dynamic environments. In Reference [23], a navigational technique for multiple
service robots in a robotic wireless network (RWN) is presented in which robots download map
information from map servers for safe navigation. Semantic information is used among multiple
robots for efficient task coorindation in Reference [24].

In Reference [25], a practical case of multi-robot navigation in warehouse has been discussed.
The proposed work also deals with the positional uncertainty of robots and obstacles. In this context,
a decentralized approach for collaboration between multiple robots in presence of uncertainty are
considered for robot action in Reference [26]. A review of multi-robot navigation strategies can be
found in References [27–29].

The proposed work is an extension of our previous work [12]. Our previous work proposed
the idea of a ‘Node-Map’ and obstacle’s confidence decay mechanism. However, there were many
limitations which are addressed in this extended work. The new major contributions are:

1. Uncertainty Integration in the Improved Confidence Decay Mechanism: The previous work [12]
did not consider the amount of estimated positional uncertainty of obstacles in the confidence
decay. Both were decoupled entities. However, this was a serious drawback in the previous
work because irrespective of the amount of positional uncertainty, confidence of all the obstacles
decayed at the same rate. This caused several false map updates corresponding to dynamic
obstacles which generally have large uncertainty associated. In the extended work, we have
mathematically modeled the integration of positional uncertainty in the confidence decay
mechanism. This is discussed in ‘Section 4.1 Integrating Uncertainty in Confidence Decay
Mechanism’.

2. New Experiments with Heterogeneous Maps with Different Sensors: Another shortcoming
of the previous work was that it only worked with the same type of 2D grid-maps made with
the same type of sensors. However, in the extended work, we include new experiments with
heterogeneous maps (3 dimensional RGBD map and 2D grid-map) made from different sensors.
In this regard, the merits of using the ‘node-map’ as a means of smoothly sharing information
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coherently between heterogeneous maps are also discussed. This is discussed in ‘Section 6.1
Experiments with Heterogeneous Maps’.

3. New Experiments in Dynamic Environment with Moving People and Testing Under Pressure:
The previous work only worked with static obstacles. In the extended work, new experiments
have been performed to test the method when people are randomly moving in the vicinity of
the robot and obstructing its navigation. In this regard, the tight coupling of new obstacle’s
uncertainty in the confidence decay mechanism plays a vital role to avoid false map-updates
corresponding to the dynamic obstacles. This is discussed in ‘Section 6.2. Results with Dynamic
Entities (Moving Obstacle)’.

The comparison of the previous work with the extended work is summarized in Table 1.
In addition, the proposed work discusses the algorithm to generate the T-node map.

Table 1. Comparison of this extended work with the previous work [12].

Feature Previous Work [12] Extended Work

Sharing New Obstacle’s Position Information Yes Yes
Consideration of Positional Uncertainty of Obstacles No Yes
Confidence Decay Mechanism Yes Yes
Uncertainty Influence Over Confidence Decay No Yes
Experiments in Very Dynamic Environment (e.g., Moving People) No Yes
Robots have Different Types of Sensors No Yes
Tests with Heterogeneous Maps No Yes

The paper starts by first explaining the correspondence problem in different maps in Section 2.
The node-map representation is explained in Section 3. Section 4 briefly explains obstacle removal
and update in the nodemap and Section 4.1 explains the integration of positional uncertainty in the
confidence decay mechanism. Further, using this coupling with Extended Kalman Filter is explained
in Section 5 with detailed algorithm. The experimental results are discussed in Section 6. Section 6.1
explains about the experiments with heterogeneous maps and Section 6.2 discusses the results with
dynamic entities (moving people). Finally, Section 7 concludes the paper.

2. Correspondence Problem in Different Maps

In dynamic environments, the new objects in the environment could be the temporary or new
permanent obstacles. Both needs to be estimated in the map for correct path planning. A robot
estimates the absolute position (xobs, yobs) of an obstacle in its map through its SLAM module.
This estimation also has an uncertainty (Σobs) associated with it which arises mainly from sensor
errors. This information about the new obstacle (xobs, yobs, Σobs) is difficult to be directly shared with
other robots.

A common problem occurring in multi-robot systems is information sharing in different types of
maps (e.g., 2D grid-map, 3D semantic map, feature map etc.) made from different sensors used by
the robots for mapping and localization. Even the maps generated using the same sensor (e.g., Lidar)
can vary in scale or rotation and the sensors used might have different specifications like resolution
or range. In such scenarios, the ‘correspondence problem’ in different maps is a critical bottleneck in
information sharing. Moreover, the uncertainty of localization also adversely affects the information
sharing. In other words, it is important to consider how to easily correspond local spatial information
in one map to spatial information in a separate map of different type or scale while considering
the uncertainty.

This is graphically explained in Figure 2. There is a scale difference between Map1 and Map2.
Whereas, Map2 and Map3 differ by a rotation factor. A spatial obstacle information, for example,
position (x1, y1) will correspond to different spatial coordinates in Map2 and Map3. In most real world
scenarios, these scale and rotation differences are generally not known. Some previously proposed
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techniques [30] to find the necessary translation and rotation can be applied to transform the spatial
information in one map to another. However, the computation costs are expensive and could introduce
undesired delays.

Although the example in Figure 2 is simplified for illustration, in actual scenarios different maps
may have different levels of noise and even feature dimensions. Moreover, some robots may only have
a partial map information. Similarly, Figure 3 discusses the problem of robots having different types of
maps [31]. Figure 3a is a map in the form of a graph, Figure 3b is a dense 3D map, while Figure 3c is
the gridmap of the same environment. It is difficult to for the robots to correlate spatial information in
such different types of maps.

Figure 2. Correspondence problem due to the scale and rotational differences between maps.

(a) Graph Map. (b) Dense 3D Map. (c) Grid Map.

Figure 3. Correspondence problem due to the different types of maps [31] of the same environment.
(a) Graph map. (b) Dense 3D map. (c) Grid map.

In the proposed work, it is assumed that the robots work in the common service area whose map
is available to the robots. This map itself could be heterogenous, for example, grid-map, RGBD map
and so forth, which is built using different sensors mounted on different robots. Moreover, the maps
could be build from different anchor points. Thus, different robots could have heterogeneous maps.

3. ‘T-Node’ Map Representation

A T-node representation of the map has been proposed in our previous work [12]. We briefly
explain the T-node map and how obstacles are represented in it. Later, we describe how path planning
is done on the node map. It is assumed that each robot is also assigned a unique robot-id (Rid) and the
robots are on the same network to exchange messages with each other.

A node is defined as a point of turn in a path of the map. The paths are represented as a network
of these nodes in the map. Figure 4a shows the node representation of the environment shown in
Figure 1. Notice that, the nodes n1, n2, · · · , n12 are the points of turns in the map. The terminal nodes
are shown in red color in Figure 4a. Nodes are connected to each other through edges. Figure 4b
shows the T-node map with an obstacle placed between the nodes n9 and n3. The distance between



Appl. Sci. 2019, 9, 2753 6 of 21

the nodes n9n3 is L and the distance of the obstacle from node n3 is x, which can easily be estimated
using an on-board distance sensor.

n1
n2

n4

n3
n6

n5

n7
n8 n9 n10

n11

n12
(a) T-node map without obstacle.

n1
n2

n4

n3
n6

n5

n7
n8 n9 n10

n11

n12

L

x

obstacle

uncertainty

(b) T-node map with obstacle.

Figure 4. T-node representation of the environment shown in Figure 1. (a) T-node map without obstacle.
(b) T-node map with obstacle between nodes n9n3.

A table stores T-node map’s information viz. traversable/blocked edges (paths) and any changes
at the edges. All the robots have access to this table. In the context of Figure 4b, the corresponding
information is shown in Table 2. The table contains a set of four information about each path: (1) binary
information of whether a new obstacle is found on an edge, (2) a binary information if the path
is blocked and cannot be traversed, (3) details of the obstacle if the path is changed and (4) the
timestamp (Ts) when the information was updated. The details of the information will vary according
to the type of the sensor used. For example, in case of Lidar, the obstacle information will contain:
the obstacle coordinates from the node (dx, dy), dimensions of the obstacle like width (wobs) and height
(hobs) and the positional uncertainty associated in estimating the obstacle (σx, σy). The uncertainty
information comes from the SLAM module used in the robot. As shown in T-node map of Figure 4b,
only one of the edges n3n9 is obstructed. This information is reflected in Table 2. It is possible that
a new obstacle is found on a path, however the path could be still be traversed. A blocked path cannot
be traversed by the robot.

Table 2. T-node map information corresponding to Figure 4b.

Node Path New Obstacle Path Blocked Meta-Data

n1n2 0 0 -

· · · · · · · · · · · ·

n3n9 1 1 { d:(dx, dy),w:wobs,h:hobs,Σ:(σx, σy), Ts }

n9n12 0 0 -

Each robot has a copy of this table which has small memory requirement as the meta-data for
only the changed paths are required. Moreover, information is communicated to other robots only
when some path information is changed. A T-node representation makes it easier for a robot to share
information with other robots. The local maps maintained by the two robots might differ by some
rotation, translation or scale. As an example, Figure 5a shows the section of the map of Figure 4b with
obstacles. Figure 5b shows a scaled version, Figure 5c a rotated version and Figure 5d a scaled and
rotated version of Figure 5a. However, the nodes on the paths remains the same and information
that there is an obstacle on one of the edges is still conveyed clearly from Table 2 which maintains
the details of the obstacles. In addition, with a T-node representation a global map is not required.
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Even for a large number of nodes, only those edges which are changed is communicated to the robots.
The small data size ensures fast and reliable communication with small communication bandwidth.

n3

n9

L

x

n3

n9

L

x

n3

n9

L
x

n3

n9

L

x

P P P P

(a) (b) (c) (d)

θ1 θ2

Figure 5. Scale and rotation effects on the T-node map. In all cases, meaningful information can still be
shared between robots. (a) Original section n9n3 of Figure 4b. (b) Figure 5a scaled down. (c) Figure 5a
rotated by angle θ1. (d) Figure 5a scaled up and rotated by angle θ2.

The T-node map can be generated by maneuvering the robot in the environment and setting
points of turns (where the robot turns by around 90 degrees) as nodes. Automatic generation of T-node
map is also possible if a map is available. For example, if there is a grid-map with obstacles (black),
open (white) and unknown (grey) areas, the first step is to generate a binary image of the grid-map
which is done by turning all unknown cells to blocked (black) value. This is shown in Figure 6a. Noise is
removed by successively applying morphological erode and dilate operations [32,33]. The next step is
to apply skeletonization algorithm [34,35]. Many skeletonization and thinning algorithms generate
unnecessary tentacles which needs to be removed using pruning algorithm [36]. Result of showing
skeletonization on binary map of Figure 6a is shown in Figure 6b. Line segments are then detected
using techniques like SVD and Hough Transform [1]. The end-points of segments which are within
a small threshold distance (δ) can be clustered [37] using k-means [38,39], fuzzy c-means [40] or density
based clustering methods [41] into a single node as shown in Figure 6c,d. A graph ‘N’ of these nodes
{n1, n2, · · · , nm} form the T-node map of the environment. The pseudo-code is given in Algorithm 1.

Algorithm 1: T-node-map Generation
Data: m : Gridmap, m_height : map height, m_width : map width

1 Function node_mapping(m)

2 for each row in m_height do
3 for each col in m_width do
4 if cell m[row][col] is unknown then
5 m[row][col]← loccupied

6 Successively erode and dilate binary image multiple times [32,33]
7 Apply skeletonization algorithm [34,35]
8 Apply prunning algorithm [36]
9 Detect lines segments and their endpoints using algorithm [1]

10 Cluster nearby endpoints in range δ with k means algorithm. [37]
11 Mark clustered points as nodes N← {n1, n2, · · · , nm}
12 return(N)

It should be noted that a ‘node’ is merely a point of turn in the navigational graph. It does
not include any feature information (e.g., corners, line, color, etc.) of the map. Hence, map-merger
on T-Node map is not possible. However, traditional methods [42,43] can be used to first merge
feature-rich maps and thereby T-node map. Moreover, since the characteristics of the navigational
paths are different for unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs), this
work does not consider the case of heterogeneous robots. Only ground robots are considered and the
proposed method will work well for both differential drive robots and skid-steer drive robots.
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(a) (b)

δa b

c
(c)
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Figure 6. T-node map generation. (a) Binary grid-map. (b) Skeleton map. (c) Clustering within δ

distance. (d) Clustered node n.

4. Obstacle Removal and Update in T-Node Map

This section briefly discusses about modeling the transience of obstacles first proposed in our
previous work [12]. The new contribution of this extended work lies in integrating the positional
uncertainty in the decay mechanism which is discussed in the next Section 4.1. The obstacles in the
passages may be permanent or temporary and removed after some time. Regardless of the transience
of the obstacles, all the robots update their respective T-node map. Newly added obstacles can only be
re-confirmed if a robot actually visits the area near the obstacle. Hence, once an obstacle information
on a particular node has been updated and communicated to other robots, robots update their map
and if that obstacle is found again, the timestamp is updated. However, there is no upper time bound
of when a robot would actually visit the particular location and update its map. The obstacle might
already have been removed by that time. This problem needs to be modeled mathematically.

A timestamp (Ts) is maintained for each obstacle representing the time at which the obstacle
was last seen. If an obstacle has recently been added to the map and a short time has elapsed since
its addition, then the probability that it has not been removed is high. On the contrary, if a lot of
time has elapsed since the addition of the obstacle, the probability that it still exists in the map is less.
We model a confidence (c) measure which represents this probability 0 ≤ cth ≤ 1. The maximum value
of confidence is 1 and its value decreases with time. The robots assumes that the obstacle still exists in
the map until the corresponding confidence has not dropped to below a threshold confidence (Cth).
Depending on the nature of the environment, a threshold time (tth) is chosen in which the confidence
decays to cth value and the time in which the confidence decays to zero is (tz). To model the confidence
decay, the following family of curves are chosen.

c = 1−
Å

tth
tz

ãn
(1)

The curves given by Equation (1) have the desired characteristic that for higher values of n,
the curve flattens out more and delays confidence decay until the threshold time (tth) and after that it
decays quickly to zero in tz time. For a given cth, tth and tz, the value of the degree of the curve (n) can
be found by solving Equation (1) as,Å

tth
tz

ãn
= 1− cth, (0 ≤ cth ≤ 1),

n log
Å

tth
tz

ã
= log(1− cth),

=⇒ n =
log(1− cth)

log
Ä

tth
tz

ä .

(2)

Figure 7 shows the curves for the decay function given by Equation (1) for various values of n.
The Ufactor in Figure 7 shows the uncertainty factor which is discussed in Section 4.1. The various
curves have been generated for cth = 0.55 and tz = 600 s, for varying values of tth between 300 s to
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600 s. It can be seen that the corresponding values of n can be found for different tth according to
Equation (2). Moreover, as the value of n increases, the decay curves flatten out more taking more time
to reach the threshold time and then quickly decrease to zero.

For a given instantaneous value of confidence c, the elapsed time t is calculated from
Equation (1) as,

t = e
1
n log(1−c)+log(tz). (3)

The time remaining (trem) to reach the threshold time (tth) is,

trem = tth − e
1
n log(1−c)+log(tz). (4)

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Time (s)

C
o

n
fid
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n
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c)

Obstacle Confidence Decay Function 
[ Cth = 0.55, tz = 600 s, Ufactor = None ]

n = 1.5632
n = 2.0316
n = 2.7757
n = 4.1509
n = 7.5788

Figure 7. Obstacle confidence decay function. cth = 0.55, tz = 600 s. Effects of uncertainty are not
considered and Ufactor = 0.

4.1. Integrating Uncertainty in Confidence Decay Mechanism

Uncertainty in obstacle’s position affects the rate of confidence decay. If there is a large uncertainty
in obstacle’s spatial position, the threshold time tth is reduced by an uncertainty factor. In case of
no uncertainty, Equations (1)–(4) are used. In SLAM, the obstacle’s uncertainty in state is generally
represented by the covariance matrix (Σt),

Σt =

 σ2
x σxy σxθ

σxy σ2
y σyθ

σxθ σyθ σ2
θ

 (5)

If the uncertainty given by Σt is large, the confidence falls down faster and vice-versa.
Hence, the confidence decay is modeled as,

Confidence decay ∝
1

Uncertainty given by Σt
. (6)

The eigenvalues (λ1, · · · λn) and eigenvectors (~v1, · · · ~vn) of the matrix Σt denotes the magnitude
of the variance. Two largest eigenvalues λ1 and λ2 control the decay of confidence. The threshold time
after uncertainty integration t

′
th is given as,

t
′
th = tth −

Ψ»
λ2

1 + λ2
2

, (7)
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where, Ψ is a controlling factor. The new confidence c
′

is given as,

c
′
= 1−

Ç
t
′
th
tz

ån

= 1−

à
tth −

Ψ»
λ2

1 + λ2
2

tz

ín

= t−n
z

Ä
λ2

1 + λ2
2

ä−n
2
ï

tn
z

Ä
λ2

1 + λ2
2

ä n
2 −
ß

tth

Ä
λ2

1 + λ2
2

ä 1
2 −Ψ

™nò
.

(8)

The degree of the curve is given as,

n
′
=

log(1− c
′
th)

log
Å

t′th
tz

ã ,

=⇒ n
′
=

log
Å

1− t−n
z
(
λ2

1 + λ2
2
)− n

2

ï
tn
z
(
λ2

1 + λ2
2
) n

2 −
ß

tth
(
λ2

1 + λ2
2
) 1

2 −Ψ
™nòã

log
Å

tth
(
λ2

1 + λ2
2
) 1

2 −Ψ
ã
− log

Å
tz
(
λ2

1 + λ2
2
) 1

2

ã .

(9)

Figure 8 shows the results of integrating the spatial uncertainty in the obstacle confidence decay
time for various values cth = 0.55, tz = 600 s and different values of the uncertainty factory (Ufactor).
In Figure 8, Ufactor represents,

Ufactor =
Ψ»

λ2
1 + λ2

2

, (10)

where, values λ1 and λ2 capture the amount of estimated uncertainty. In Figure 8, Ufactor is given
as a factor of threshold time. It can be seen that for more uncertainty, the curve starts to fall faster to
the threshold time. Appropriate values of Ufactor can be chosen depending on different scenarios.
Moreover, this value can also be changed dynamically.

The obstacle confidence decay mechanism ensures a smooth robot operation in multi-robot
system where multiple robots frequently inform each other about the new obstacle information. If a
robot receives an obstacle information update from another robot while it is navigating towards its
goal location, then it would have to stop and update its map information which consumes time and
computation. To avoid this, a check is performed to see if the information received affects the current
navigation towards the goal. This is easily achieved by checking the blocked flag of the corresponding
edge. If the blocked flag is set to 1 and the current navigational path is affected, the timestamp and
other meta-data for the blocked edge are checked. Based on the obstacle’s confidence value, path
re-planning or continuation on the same path can be decided according to the priority of the task
at hand.

A major benefit of tightly coupling the obstacle’s uncertainty with confidence decay mechanism
is minimizing the false map updates corresponding to the dynamic obstacles in vicinity. Generally,
the uncertainty of dynamic obstacles is larger than that of static obstacles estimated by the underlying
SLAM module. In the absence of uncertainty integration, confidence all the obstacles irrespective
of their positional uncertainty decays at the same rate. Therefore, if there is a false map update
corresponding to a dynamic obstacle (like moving people), it decays at the same rate like other fixed
obstacles. This increases the chances of false map updates due to dynamic obstacles. However, with the
uncertainty integration, the confidence of obstacles with larger positional uncertainty decay faster than
those with less uncertainty. In effect, this allows minimizing false map updates, as they decay out
quickly. This also prevents false notifications to other robots.
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Figure 8. Obstacle confidence decay function with uncertainty integration. With more positional
uncertainty, the confidence falls below the threshold confidence fast. In all the cases, cth = 0.55
and tz = 600 s.

5. Uncertainty Integrated Confidence Decay Mechanism with Extended Kalman Filter

The integration of confidence decay meachanism in EKF is given in Algorithm 2. The algorithm is
straightforward and estimates the Kalman gain (Kt), robot’s pose (µt) and the covariance (Σt) at time t
until step 12. Later, Eigen values (λ1 · · · λn) are extracted from the covariance matrix (Σt) by applying
Singular Value Decomposition. The degree of the confidence curve is then determined using the
amount of uncertainty represented by the Eigen values in steps 14 and 15 of Algorithm 2 as explained
in the previous section. Essentially, the degree of the curve is chosen to fasten the confidence decay
inversely proportional to the positional uncertainty.

6. Experimental Results

This section presents the results of the experiments. The extended work discuss information
sharing in heterogeneous maps made with different sensors and tests the proposed method under
pressure with dynamic obstacles in the vicinity of robots.

We used Pioneer-P3DX [44] and Kobuki Turtlebot [45] robot shown in Figure 9a. Both the robots
are wheeled differential drive robots and the motion model is explained in our previous work [12].
Both the robots used ROS [46] on Ubuntu computer and were on the same network to communicate
with each other.
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Algorithm 2: Uncertainty Integrated Confidence Decay with Extended Kalman Filter
1 # xt: robot state, vt, ωt: translation and rotational velocity.

xt = [x y θ]T

2 # EKF uses Jacobian to handle non-linearity. Gt: Jacobian of motion function w.r.t state

Gt ←

1 0 − vt
ωt

cosθ + vt
ωt

cos(θ + ωt∆t)
0 1 − vt

ωt
sinθ + vt

ωt
sin(θ + ωt∆t)

0 0 1


3 # Vt: Jacobian of motion w.r.t control

Vt =


−sinθ+sin(θ+ωt∆t)

ωt

vt(sinθ−sin(θ+ωt∆t))
ω2

t
+ vt(cos(θ+ωt∆t)∆t)

ωt

cosθ−cos(θ+ωt∆t)
ωt

− vt(cosθ−cos(θ+ωt∆t))
ω2

t
+ vt(sin(θ+ωt∆t)∆t)

ωt

0 ∆t


4 # Mt: Covariance of noise in control space. α1, · · · , α4: Error-specific parameters.

Mt =

ï
α1v2

t + α2ω2
t 0

0 α3v2
t + α4ω2

t

ò
5 # µ̄t: Prediction updates in state.

µ̄t = µt−1 +

−vt
ωt

sinθ + vt
ωt

sin(θ + ωt∆t)
vt
ωt

cosθ − vt
ωt

cos(θ + ωt∆t)
ωt∆t


6 # Σ̄t: Prediction updates in covariance.

Σ̄t = GtΣt−1Gt + Vt MtVT
t

7 # Q̄t: Covariance of the sensor noise.

Qt =

σ2
r 0 0
0 σ2

φ 0
0 0 σ2

s


8 # [mix miy]

T : coordinates of the ith landmark. zi
t: measurement. q: squared distance.

q = (mk,x − µ̄t,x)
2 + (mk,y − µ̄t,y)

2

ẑt
k =

 √
q

atan2(mk,y − µ̄t,y, mk,x − µ̄t,x)− µ̄t,θ
mk,s


9 # Ht: Jacobian of measurement with respect to state.

Hk
t =

−
mk,x−µ̄t,x√

q −mk,y−µ̄t,y√
q 0

mk,y−µ̄t,y
q −mk,x−µ̄t,x

q −1
0 0 0


10 # St: Measurement covariance matrix.

Sk
t = Hk

t Σ̄t[Hk
t ]

T + Qt.
11 # j(i): likely correspondence after applying maximum likelihood estimate.

j(i) = argmax 1√
det(2πSk

t )
e−

1
2 (z

i
t−ẑk

t )
T [Sk

t ]
−1(zi

t−ẑk
t )

12 # Kt: Kalman gain, µt: state, Σt: covariance.

Ki
t = Σ̄t[H

j(i)
t ]T [Sj(i)

t ]−1

µt = µ̄t + Ki
t(z

i
t − ẑj(i)

t )

Σt = (I − Ki
t H j(i)

t )Σ̄t
13 # Apply Singular Value Decomposition and get Eigen-values λi:

λ1, · · · λn = svd(Σt) = svd

Ñ σ2
x σxy σxθ

σxy σ2
y σyθ

σxθ σyθ σ2
θ

é
14 # n: degree of decay curve, tth: threshold time, cth: threshold confidence, tz: time to decay to zero.

n =
log(1− cth)

log
( tth

tz

) .

15 # n
′
: degree of decay curve with uncertainty integrated, Ψ: decay control factor.

n
′
=

log
Å

1− t−n
z
(

λ2
1 + λ2

2

)− n
2

ï
tn
z
(

λ2
1 + λ2

2

) n
2 −
{

tth
(

λ2
1 + λ2

2

) 1
2 −Ψ

}nòã
log
(

tth
(

λ2
1 + λ2

2

) 1
2 −Ψ

)
− log

(
tz
(

λ2
1 + λ2

2

) 1
2

)
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Figure 9. Experiment setup. (a) Differential drive robots Kobuki-Turtlebot2 and Pioneer-P3Dx.
(b) Environment with initial position of robots. (c) Another view of the environment. (d) Environment
dimensions. (e) Node-map of the environment where S and G are the start and goal points.

6.1. Experiments with Heterogeneous Maps

In this section, we describe the results of the proposed method with heterogeneous maps.
The environment for experiments is shown in Figure 9b,c. The dimensions of the environment are
shown in Figure 9d. The environment had two static obstacles ‘Obstacle1’ and ‘Obstacle2’ marked in
Figure 9d. The start and goal positions are marked as ‘S’ and ‘G’, respectively, in Figure 9d. The T-node
map is shown in Figure 9e.

The two robots used in the experiment were both equipped with 2D Lidar and RGBD sensors.
As shown in Figure 9a, the Pioneer P3DX robot was equipped with a Sick-Lidar of 10 m range and ASUS
Xtion-Pro RGBD camera. Turtlebot was equipped with a Hokuyo Lidar of 20 m range and a Kinect
RGBD camera.
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To test the proposed method with heterogeneous maps, Pioneer P3DX robot was programmed to
use only the RGBD sensor to build a 3D map, and navigate in the environment. Pioneer P3DX first
started navigation from location ‘S’ to the goal location ‘G’ as shown in Figure 10a. A* algorithm [47]
and SHP algorithm [48,49] were used for path planning and path smoothing, respectively. As soon as
the P3DX robot started moving, a long new obstacle was placed in the environment as shown in
Figure 10b, well outside the range of the sensor. As shown in Figure 10c, the person moves in front
of the robot and blocks its way purposefully. The details of dynamic obstacle are discussed in the
next Section 6.2. P3DX perceives the new obstacle and alters its path towards the goal as shown in
Figure 10d–f, while also updating the map with the newly added obstacle. P3DX was programmed to
come back to its initial position ‘S’ and the navigation in shown in Figure 10g,h.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. Timely snapshots of the experiment. (a) P3DX starts moving with old map. (b) Person adds
a new obstacle. (c) Person moves in front of P3DX. (d,e) P3DX observes the new obstacle, changes
trajectory and updates map. (f–h) P3DX return to the starting position. (Supplementary Materials)

The updated 3D map build by P3DX robot is shown in Figure 11a. In this experiment, Turtlebot
used only the 2D Lidar sensor with 2D gridmap. Hence, P3DX could not directly share the 3D
point-cloud information due to the heterogeneous maps used by the two robots. By using the T-node
map, P3DX blocked the path between nodes n6 and n7 and shared this information with the Turtlebot
to plan appropriate path. More information regarding the dimensions of the new obstacle could also
be shared for better path planning. Hence, the 3D information was converted to a 2D information to
be shared with Turtlebot. Grid maps are the most commonly used 2D maps in which each grid-value
represents whether the grid is occupied, free or unknown. The 3D point-cloud were projected to the
ground which was detected using a RANSAC based plane detection [50]. This 2D information was
shared by P3DX robot with Turtlebot and the updated T-node map is shown in Figure 11b. In the
updated T-node map of Figure 11b, the obstacle is placed between the nodes n6 and n7 blocking it.

Turtlebot was programmed to navigate from the same start location ‘S’ to the goal location ‘G’.
In the absence of the proposed information sharing mechanism, the path planned by Turtlebot would
be (Figure 11b),

S→ n2 → n5 → n6 → n7

The Turtlebot would encounter a new obstacle between the nodes n6 and n7 and would have to
re-plan a new path towards the goal. However, with the proposed information sharing mechanism,
Turtlebot could directly plan a path considering the newly added obstacle and the planned path was
(Figure 11b),

S→ n2 → n5 → n6 → n9 → n8 → n7.
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Figure 11. (a) RGBD map updated by P3DX. (b) Node-map. S and G are the start and goal points.
The new obstacle is shown on nodes n6n7. Ellipse represents positional uncertainty.

Notice that, this appropriate path was generated by Turtlebot ‘remotely’ before actually
encountering the new obstacle. Figure 12 shows the navigation of Turtlebot after considering the new
obstacle. The entire navigation is illustrated between Figure 12a–h. In particular, it can be seen from
Figure 12e–g, that Turtlebot maintains a safe threshold from the start itself. Turtlebot itself updated its
map using the attached Lidar and the updated grid-map is shown in Figure 13.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12. Timely snapshots of the experiment. (a–h) Turtlebot starts navigation with the updated
information and plans a trajectory considering the new obstacle. (Supplementary Materials)

The dimensions of the obstacles in the experiment are given in Table 3.
The decay curve is shown in Figure 14. In the experiment, Cth was set to 0.45 and tz to 20 min.

Based on the uncertainty of the obstacle, the Ufactor was calculated as approximately 15% of tz.
Figure 14 shows the decay of confidence considering the uncertainty of the obstacles.

Figure 15 shows different decay curves for different amounts of estimated positional uncertainties
of the new obstacle. Although Figure 14 shows the actual decay curve of the experiment, Figure 15
shows theoretical values for different values of uncertainty. Figure 15a–d shows the confidence decay
with increasing uncertainty of 35%, 45%, 55% and 65%, respectively. It can be seen that, for increasing
uncertainty, the curve decays much faster, as desired.

Thus, the T-node enables robots to share information across heterogeneous maps. Indeed, there
is a need to transform the newly added obstacle’s information to spatial coordinates but it can easily
be achieved in real-time. Moreover, to avoid the overheads of such computation for time-critical
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applications, only the blocked/un-blocked information could also be shared. Using the same approach,
information among other type of maps could be shared effectively.

Figure 13. 2D gridmap updated by Turtlebot during navigation.

Table 3. Obstacle Dimensions in the Experiment.

Obstacle Length ×Width × Height

Obstacle1 40 cm × 40 cm × 68 cm

Obstacle2 50 cm × 35 cm × 50 cm

Newly Added Obstacle 300 cm × 5 cm × 100 cm
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Obstacle Confidence Decay: [ Cth = 0.45, tz = 1200 s, Ufactor = 15]
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Figure 14. Confidence decay curve in the new experiment. Cth = 0.45, tz = 1200 s, Ufactor = 15.



Appl. Sci. 2019, 9, 2753 17 of 21

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

Time (s)

C
o

n
fid

e
n

ce
 (

c)

Obstacle Confidence Decay: [ Cth = 0.45, tz = 1200 s, Ufactor = 35]

n = 0.48633

(a)

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

Time (s)

C
o

n
fid

e
n

ce
 (

c)

Obstacle Confidence Decay: [ Cth = 0.45, tz = 1200 s, Ufactor = 45]

n = 0.42814

(b)

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

Time (s)

C
o

n
fid

e
n

ce
 (

c)

Obstacle Confidence Decay: [ Cth = 0.45, tz = 1200 s, Ufactor = 55]

n = 0.37435

(c)

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

Time (s)

C
o

n
fid

e
n

ce
 (

c)

Obstacle Confidence Decay: [ Cth = 0.45, tz = 1200 s, Ufactor = 65]

n = 0.32345

(d)

Figure 15. Estimation of confidence decay curve for different values of positional uncertainty with
Cth = 0.45 and tz = 1200 s. (a) Ufactor = 35%. (b) Ufactor = 45%. (c) Ufactor = 55%. (d) Ufactor = 65%.
It can be seen that for higher uncertainties, the curve decays faster as desired.

6.2. Results with Dynamic Entities (Moving Obstacle)

The proposed method was tested under complex scenarios by purposefully moving a person in
front of the robot and blocking its way. This is shown in Figure 16. As P3DX robot started navigation
from start location ‘S’ to goal location ‘G’, a person blocked its way by randomly moving in front of
the robot. This is shown in Figure 16a–j.

Similarly, the path of P3DX robot was blocked again while it was navigating back from the goal
location ‘G’ to its start location ‘S’. This is shown in Figure 17. The person randomly moved in front of
the robot blocking its path as shown in Figure 17a–j.

In both the cases of Figures 16 and 17, the robot attempted to avoid collision and planned alternate
trajectories or stopped if the person stands dangerously close to the robot. Moreover, in both the cases,
the robot did not update the map corresponding to the person as a new obstacle in the map. This is
because the positional uncertainty corresponding to the moving obstacle was large as calculated by
Algorithm 2. Even if the person is falsely identified as a new obstacle and the map is updated, it
has no adverse effects in the proposed method, as uncertainty is integrated in the confidence decay
mechanism. Any wrong map update corresponding to dynamic obstacles has high probability of larger
positional uncertainty corresponding to the dynamic obstacle and therefore a quicker decay given by
Equation (6), (7) and (9). On the other hand, for static new obstacles in the map, the underlying SLAM
(Algorithm 2) algorithm estimates smaller positional uncertainty and therefore a larger decay time,
ensuring its permanence in the map.

Thus, uncertainty integration has two merits in the information sharing scheme. First, it acts
a filter for wrong map updates corresponding to the dynamic obstacles in the environment through
a quick confidence decay. Second, it ensures that only the correct information is shared with other
robots corresponding to the new static obstacles. It should be noted that the dynamic detection of



Appl. Sci. 2019, 9, 2753 18 of 21

moving people can be done using image processing for camera-based sensors [51], RGBD sensors [52]
or leg detector for Lidar-based sensors [53] and integration of such approaches [54] will increase the
robustness of the system.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 16. Dynamic obstacle experiment with P3DX navigation from position S to G in Figure 9. (a–j)
Person moved randomly in front of P3DX for a long time moving in and out of the range of sensors.
P3DX changed trajectories or stopped if the obstacle was dangerously close. (Supplementary Materials)

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 17. Dynamic obstacle experiment with P3DX navigation from position G to S in
Figure 9. (a–j) To further test the method under pressure, a person moved randomly near P3DX.
(Supplementary Materials)

7. Conclusions

Information sharing is a powerful technique which has many potential benefits in path planning
of multi-robot systems. A node-map was proposed in our previous work to solve the problems of
information sharing in different robots. We extended our previous work by integrating the positional
uncertainty of the new obstacles in the confidence decay mechanism which models the transience of the
obstacles. This minimizes false map updates and notifications in the system. New experiments were
performed to share information about new obstacles in heterogeneous maps. The results shown that
using the nodemap allows the robots to smoothly share the information. Moreover, since path planning
is also done using the nodemap, efficient trajectories considering the position of new obstacles can be
done in real-time. The information sharing mechanism allows the robots to obtain timely information
about remote obstacles in the map without having to explicitly visit those areas. In addition, new
experiments were performed to test the proposed mechanism in complex environments with moving
people in the vicinity of the robots. Due to the tight coupling of uncertainty and decay mechanism,
the dynamic obstacles could be filtered and avoided false update of the map. Even if there is some
false update, the confidence corresponding to them decays fast due to larger uncertainty. Experiment
results confirm that, in the long run in large environments employing multiple robots, the proposed
method can improve the efficiency of the system in terms of shorter distance traveled by the robots
and shorter planning time by eliminating path re-planning. In future, we will continue to test the



Appl. Sci. 2019, 9, 2753 19 of 21

robustness of the proposed method in more complex and realistic environments such as cafeterias
and offices.

Supplementary Materials: The supplementary materials are available online at http://www.mdpi.com/2076-
3417/9/13/2753/s1.
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