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Abstract: Many tasks involved in viticulture are labor intensive. Farmers frequently monitor the
vineyard to check grape conditions, damage due to infections from pests and insects, grape growth,
and to estimate optimal harvest time. Such monitoring is often done manually by the farmers.
Manual monitoring of large vineyards is time and labor consuming process. To this end, robots
have a big potential to increase productivity in farms by automating various tasks. We propose
a low-cost semantic monitoring system for vineyards using autonomous robots. The system uses
inexpensive cameras, processing boards, and sensors to remotely provide timely information to the
farmers on their computer and smart phone. Unlike traditional systems, the proposed system logs data
‘semantically’, which enables pin-pointed monitoring of vineyards. In other words, the farmers can
monitor only specific areas of the vineyard as desired. The proposed algorithm is robust for occlusions,
and intelligently logs image data based on the movement of the robot. The proposed system was tested
in actual vineyards with real robots. Due to its compactness and portability, the proposed system
can be used as an extension in conjunction with already existing autonomous robot systems used in
vineyards. The results show that pin-pointed remote monitoring of desired areas of the vineyard is a
very useful and inexpensive tool for the farmers to save a lot of time and labor.

Keywords: viticulture; vineyard robots; vineyard monitoring; sustainable viticulture

1. Introduction

Viticulture, a branch of horticulture, is the cultivation and harvesting of grapes and is carried out
in many countries. The tasks involved in viticulture include monitoring, irrigation, adding fertilizers,
canopy management, controlling pests and diseases, monitoring fruit development and characteristics,
deciding the harvesting time, and vine pruning during the winter months. Among these, tasks such as
harvesting and vine pruning are performed at specific times. The task of irrigating the vineyard is
simple to automate. However, monitoring fruit development and characteristics is typically carried
out frequently over the entire area of the vineyard, and is a labor intensive and time consuming task as
it involves visual inspection of the fruit and plants by the farmer.

Frequent monitoring of the crop is important to check for pests and diseases in leaves and grapes,
to check the growth of grapes, and to inspect for any damage. Typical estimation of optimal harvest
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time is also done visually and may vary for different types of grapes in different areas. Monitoring of
humidity levels and mineral levels in the soil, temperature, etc. is done by directly embedding sensors
in the soil and various IoT approaches have been proposed [1–9]. However, visual inspection of crop
is another key aspect of monitoring. Visual monitoring is important for a viticulturist and involves the
following key features:

• Grape growth: A viticulturist generally inspects the growth of grapes visually.
• Damage inspection: During the flowering of vine, strong winds and hail can cause damage.

Cold temperatures may cause millerandage producing clusters with varying sizes or no seeds [10].
On the other hand, hot conditions may cause coulure causing grape clusters to either drop or not
develop fully. This monitoring is often performed visually.

• Oidium inspection: Oidium is a fungal disease which has the potential to attack all the green parts
of the vine with devastating consequences [11]. This is inspected visually.

• Peronospora inspection: Peronospora are obligate plant pathogens producing a downy mildew
disease, which in turn produces stains on leaves [12]. Its treatment involves spraying copper
sulphate [13]. This can be inspected visually at an early stage.

• Phylloxera inspection: Phylloxera [14] is a pest of commercial grapevines worldwide and can easily
be inspected visually.

• Monitoring for green harvest: Green harvesting is the process in which immature and green grape
bunches are purposefully removed so that the vine uses all the nutrients for developing the
remaining grapes. This helps to develop and ripen the grape with good flavors.

• Estimation of harvest time and areas: Visual monitoring is important to estimate the appropriate
harvest time and areas of the vineyard.

• Yield estimation: Visual estimation is important to estimate an approximate yield estimation of
a vineyard.

Thus, visual monitoring of vineyard is crucial with many advantages. However, manual monitoring
is a labor and time consuming task.

The present work was conducted in Japan, which prominently grows around 30–40 varieties
of grapes, each with its own unique taste and fragrance [15]. Worth mentioning among these are:
the Kyoho variety, which is also known as the king of grapes and popular for its juiciness and plump;
the Muscat of Alexandria; the small seedless Delaware; and the Pione, famous for its flavor [15,16].
Almost all areas except the Nansei Islands are suitable for grapes, so grapes are produced in a wide
range from Hokkaido to Kyushu prefectures of Japan. In Japan, nearly 90% of produced grapes
are used for raw food, whereas less than 10% of the produced grapes are used for processing wine,
grape juice, confectionery, etc. Japan does not export grapes but around 10,000 tons of grapes are
imported annually [17]. The most cultivated variety in Japan is Kyoho, which is cultivated on 5465 ha.
Delaware follows with 2967 ha, Pione with 2430 ha, and Campbell Early with 655 ha[18].

There are different varieties of grapes, and the practice of viticulture varies from place to place.
In Japan, vineyards are located in hilly regions and generally characterized by cultivating grape plants
in a nearly straight line. Grapevines are climbing plants that do not have their own natural support
as with trees; hence, the grape plants are supported between wooden pillars which are called trunks.
The grape plants grow to a certain height and hang on the supporting wires or rope above a certain
distance from the ground. Hence, the pillars can serve as concrete features in the vineyards.

The focus of the proposed work is on visual monitoring using autonomous robots.
Autonomous robots have successfully been employed in construction, manufacturing, and many
aspects of agriculture industry. The motivation behind the proposed work lies in reducing the labor of
farmers and bringing efficiency in grape production through the use of autonomous robots.

Recently, significant works related to autonomous vineyard robots have been proposed for different
purposes. Some researchers have focused on localization of the robots, while others have focused
on trunk recognition for single- [19,20] and multi-robot scenarios [21]. Apart from these, researchers
have also focused on the problems of autonomous pruning [22], irrigation [23], yield estimation [24,25],
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and skeletonization [26] in vineyards by using autonomous robots. Color image-based grape detection
is proposed in [27]. In [28], a monitoring robot for mountain vineyards is proposed. Mapping and
localization in vineyard is discussed in [29]. Researchers have also focused on the improvement
of plague control tasks, specifically on the distribution and placement of pheromone dispensers for
matting disruption in the vineyards in [30]. Precision agriculture using multi-rotor micro aerial vehicles
and human-carried multi-spectral 3D imaging device is proposed for automated monitoring in [31].
Wireless sensor network for vineyard monitoring that uses image processing is proposed in [32].
Other projects (e.g., Vinbot [33]) are also worth mentioning.

The novel contributions of this paper are summarized below:

• A vineyard monitoring system which only uses inexpensive camera sensor is proposed.
• We propose a novel way to semantically label image data in vineyards by detecting the pillars set

in the vineyard to support grapes. The system labels the image data on the basis of field name,
lane number, and pillar numbers, which are automatically identified through image processing.
Unlike traditional monitoring techniques, the proposed semantic labeling enables pin-point
monitoring of the vineyard. In other words, farmers do not need to access the whole data,
but instead can specify the exact location in the field which needs to be monitored. This is very
efficient and time saving. Feature detection is important for semantic labeling. While extracting
features such as walls, corners, and straight lines are easier in indoor environments, robust feature
extraction in vineyard is difficult due to the dynamic nature of the environment (viz. moving
leaves, plant’s trunk, changing lighting conditions, etc.). Hence, robust feature extraction is a
major challenge faced by mobile robots in farms, which generally lack static features. Due to this,
many researchers tend to use expensive sensors such as GPS, dense RGBD sensors, and 3D Lidar
(e.g., VLP-16/32), or sensor networks [34–36]. However, such sensors increase the system cost.
Feature detection is done using inexpensive cameras in the proposed research.

• A way to increase the robustness of the system by varying the range of detection is proposed.
• An algorithm to automatically turn data logging on and off has been proposed based on the

motion of robot.
• An interactive software has been developed through which the farmers can monitor the vineyard.

The rest of the paper is organized as follows. Section 2 explains the main idea and system overview.
Section 3 explains the landmark (pillar) detection algorithm, which forms the basis of semantic data
labeling. Section 4 shows how the robustness of landmark detection algorithm is improved without
significantly impacting the processing time. Semantic data logging is explained in Section 5. Section 6
discusses experimental results in real environments with actual robots. Section 6.1 shows the results of
pillar detection in actual vineyard. Section 6.2 discusses the processing time. Section 6.3 explains about
the monitoring software to interactively monitor the vineyard on a pin-point basis. Finally, Section 7
concludes the paper.

2. System Overview

Figure 1 shows the overview of the proposed semantic monitoring system. The monitoring system
comprises of a camera with a processing board. The system is set on the top of an autonomous robot
with the camera facing the grapes. In other words, the camera is setup perpendicular to the direction
of motion of the robot. As the robot navigates the vineyard, the camera records the images in its local
database. The images are processed and pillars are detected in the field. These pillars are shown as
P1, P2, · · ·P3 in Figure 1.
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Figure 1. Overview of the proposed semantic monitoring system.

The robot localizes itself in the field using a Simultaneous Localization and Mapping (SLAM)
module [37–39]. The robot identifies the field name, lane number, and pillar numbers using image
processing and labels the image data with this information. Semantic data are thus logged and stored
in the robot’s database. These data are then uploaded to a remote server. Farmers can access this
information on their smart-phone, tablet-PC, or computer using a monitoring software which has been
developed. Farmers can monitor the entire vineyard from their home. They can also pinpoint the areas
they want to monitor. Moreover, they can compare a particular location with the past data. Farmers
can thus monitor the growth of grapes, leaves, and weeds by comparing it with the historical data.

3. Pillar Detection Algorithm

Feature detection is important for labeling image data. In the proposed method, pillars setup in the
vineyards to support the grape plants are detected as features using image processing. The algorithm
to detect pillars is given in the flowchart of Figure 2. The algorithm is divided into four parts:

1. Setting Pillar Parameters: We first set the static parameters used for pillar detection. These includes
the approximate width (Thresh_W) and height (Thresh_H) of the pillars, the approximate
threshold area of detection (Thresh_Area), and the range in the horizontal axis of image within
which pillars should be detected (X_RANGE). At the start of the algorithm, a flag (SAVE_DB)
which controls the labeling and saving of images in the database is set to False.

2. Pillar Detection in HSV Colorspace: The camera setup on the robot reads an RGB color image when
the robot starts to move. The camera reads the image in full HD (1920 × 1080) pixel resolution.
This image is resized to 768× 432 pixels for faster image processing. Next, pillars are detected in
HSV colorspace and the various steps are explained below:

• BGR to HSV Conversion: The resized RGB image (Irgb) is converted to HSV colorspace.
Unlike RGB (Red, Green, and Blue channel image), HSV (Hue, Saturation, and Value)
separates the color information (chroma) from the image intensity (luma). This separation
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enables robust color detection. The RGB to HSV color conversion is done using the following
equations [40]:

V ← max(R, G, B)

S←


V −min(R, G, B)

V
, if V 6= 0

0, otherwise

H ←



60(G− B)
V −min(R, G, B)

, if V = R

60(B− R)
V −min(R, G, B)

+ 120, if V = G

60(R− G)

V −min(R, G, B)
+ 240, if V = B

(1)

If H < 0, then H ← H + 360. The range of values are: 0 ≤ V ≤ 1, 0 ≤ S ≤ 1, 0 ≤ H ≤ 360.

• Masking: The image contains information about the grapes (mainly in middle), leaves,
weed (at the bottom), and soil (at bottom). We mask the top and bottom areas to focus only
on pillar detection. This masking is achieved by setting pixels in certain range of the HSV
image (Ihsv) to zero value as follows:

Ihsv[MHs : MHe, MWs : MWe, CH ]← 0

Ihsv[MHs : MHe, MWs : MWe, CS]← 0

Ihsv[MHs : MHe, MWs : MWe, CV ]← 0

(2)

In Equation (2), MHs and MHe represent the masking range’s start and end points in
perpendicular direction (along y-axis), respectively. Similarly, MWs and MWe represents the
masking range’s start and end points in horizontal direction (along x-axis), respectively.
C represents the specific channel of the image Ihsv. These values are set according to the
height of the crop, the position at which the camera is fixed on the robot, and the height of
the robot. In this work, full masking is applied in the horizontal direction (along x-axis).
This was achieved by setting MWs to 0, and MWe to the width of the image i.e., 768. Masking
in vertical direction (along y-axis) was done in two levels. In the first level, masking was
done by setting the values of MHs and MHe to 0 and 298, respectively. In the second level,
masking was done by setting the values of MHs and MHe to 370 and 432, respectively.
Masking was done in all the three channels. The result of masking with dimensions is
shown in Figure 3.

• Color Search: In the next step, we search for the pillar color within an upper_range and
lower_range. These values are set by taking a snapshot of all the pillars in the vineyard in
different lighting conditions and finding the lower and upper ranges of HSV values. In this
work, upper_range was set to (34, 110, 255) and lower_range was set to (17, 26, 50) for the H,
S, and V values. The result of color search in this range is a binary image (Ib). If the pixel
values of Ihsv is within the upper and lower ranges, the respective pixel in Ib is set to white
(0xFF), or zero, otherwise.

Ib ←
{

0xFF, if {lower_range ≤ Ihsv ≤ upper_range}ch∀ch ∈ {H, S, V}
0, otherwise

(3)

• Noise Removal Using Erosion and Dilation: Noise is removed from the binary image Ib by
applying morphological operations [41] of erosion followed by dilation. Both the operations
use a structuring element (SE), which is used to process the image. Erosion removes pixels,
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whereas dilate adds pixels based on the structuring element [40]. We first apply erosion
operation, which removes the small and independent noise pixels. This operation affects the
entire image. Therefore, dilate operation is applied afterwards.

Ibe ← min
(x′ ,y′)∈SE

Ib(x + x′, y + y′)

Ib ← max
(x′ ,y′)∈SE

Ibe(x + x′, y + y′)
(4)

• Detecting Contours: The next step involves retrieving contours from the noise removed
binary image Ib using the algorithm [42]. Each contour is stored as a vector of points. In this
research, only the extreme outer contours are retrieved. Hence, each contour ci is a vector
of five parameters: xi, yi, wi, hi, and ai. Here, xi and yi are the coordinates of the top-left
coordinates of the contour (ci), respectively. Moreover, ai is the contour area, with wi and hi
the width and height of the contour (ci), respectively.

3. Checking Detected Pillar’s Dimensions: If n contours are detected, then the dimensions of each
contour are checked. Using the contour parameters xi, yi, wi, hi, and ai, the condition for pillar
detection is done using Algorithm 1.

4. Image Labeling and Saving in Database: The SAVE_DB controls the semantic indexing of image
data in the robot’s database. For each frame, the SAVE_DB is set to the output of Algorithm 1.
When the SAVE_DB flag is True, the pillar number is incremented, and successive images are
logged based on the new pillar index.

Figure 2. Simplified flowchart of pillar (feature) detection from images.
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Figure 3. Masking of HSV image Ihsv. The range is also shown.

Algorithm 1: Contour check for pillar.
Data: Contours(ci)

Result: Trueifpillarisdetected.Falseotherwise.
1 f lag← False
2 while eachcontourci ∈ {0, 1, · · · , n− 1} do
3 xi ← ci [0] // Top-left x-coordinate
4 yi ← ci [1] // Top-left y-coordinate
5 wi ← ci [2] // Contour Width
6 hi ← ci [3] // Contour Height
7 ai ← ci [4] // Contour Area
8 cond1← xi > X_RANGE
9 cond2← hi > Thresh_H&wi > Thresh_W

10 cond3← ai > Thresh_Area
11 f lag← cond1&cond2&cond3
12 returnflag

Figure 4 shows the results of the pillar detection. Figure 4a is the resized 768× 432 input image
in RGB colorspace. Figure 4b shows the image Ihsv which has been converted to HSV colorspace.
Masking is applied to avoid detection of pillars and soil in the background. Figure 4c shows the result
of masking. Color of the pillar is searched in this image between the upper_range of (34, 110, 255)
and lower_range of (17, 26, 50) and the resultant binary image Ib is shown in Figure 4d. In this image,
the white pixels are those whose values fall within the color search range. It can be seen that the
pillar and stem of the grape plant are predominantly emphasized by this operation. At the same time,
noise can also be seen in the image as small and independent white blobs. By applying morphological
operations of erosion and dilation, noise is removed and the result is shown in Figure 4e. Finally,
contours are retrieved from the noise removed image, and parameters of contour’s width, height, area,
etc. are checked for detecting the pillar. The result of the detected pillar is shown in Figure 4f, in which
the detected pillar is marked by a blue rectangle.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Pillar detection in vineyard: (a) input RGB image; (b) image Ihsv in HSV colorspace;
(c) Masked image; (d) binary image Ib after color search between upper_range and lower_range; (e) image
Ib with noise removed after erode and dilate operations; and (f) pillar detected after finding contours
and checking parameters. Detection is shown as a blue rectangle.

Effect of X-Range Parameter

Section 3 described many parameters which were used in the pillar detection algorithm.
Among these, one of the parameters X_RANGE is briefly explained here. This parameter sets the range
in the horizontal axis of the image within which a pillar should be detected. In the proposed work,
the value of X_RANGE is set to 350. Thus, pillars are detected only within x < 350. The same pillar
detected at different angles has varying height, width, and area. Therefore, different thresholds need
to set for different angles. Hence, for accurate estimation, the pillar is said to be detected only when
the line joining the camera and the pillar are perpendicular to the direction of robots motion. The effect
of this parameter on pillar detection is shown in Figure 5. In Figure 5a, a red vertical line is shown at
x = 350. A pillar appears on the right side of the line. Although visible, it is not detected at this stage.
As the robot moves, the pillar gets close to the red vertical line, as shown in Figure 5b. Finally, when
the pillar’s top-left x-coordinate is within X_RANGE and the other conditions of height, width, and
area are satisfied, the pillar is detected, as shown in Figure 5c.
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(a) (b) (c)

Figure 5. Pillar detection within horizontal threshold of X_RANGE = 350 shown as red line: (a) a new
pillar appears on the right side of the frame; (b) image captured as the robot moves forward, where the
pillar is not detected as it is not within X_RANGE; and (c) pillar is recognized as it is within X_RANGE.

Section 3 describes masking to produce a horizontal band of HSV pixels. The results of this
masking are shown in Figures 3 and 4c. This was performed to avoid detection of pillars and soil in
the background. Moreover, masking was not applied for areas where x > X_RANGE. This is because
the algorithm has an alert feature which tracks soon to appear pillars for safety.

4. Improving the Robustness of Pillar Detection Algorithm

In real-world scenarios, it is possible that an object (e.g., box) whose color resembles the color of
pillars is kept in the vineyard. This may lead to false data logging. To avoid this, it is important to
improve the robustness of the algorithm. To do this, once a pillar has been detected using the algorithm
described in Section 3, the pillar is searched again within a larger search-space.

The algorithm is shown in Figure 6. The algorithm begins by reading image from the camera
and initial pillar detection is done according to the flowchart given in Figure 2. If a pillar is detected,
the flowchart in Figure 2 outputs the blob dimensions x, y, w, h, and a representing the top-left
x-coordinate and y-coordinate, width, height, and area of the detected pillar, respectively. As shown in
Figure 6, the search range is then expanded based on the parameters retrieved from initial detection.
This expansion is done using two parameters φx and φy, which control the expansion of the search
range on x-axis and y-axis, respectively. The parameter φx is a vector of φxl and φxr, which represent
expansion in the left and right directions along the x-axis, respectively. Similarly, the parameter φy is
a vector of φyu and φyd, which represent expansion in the up and down directions along the y-axis,
respectively.

φx = {φxl , φxr}
φy = {φyu, φyd}

(5)

If x, y, w, h, and a are the dimensions of the pillar detected using the flowchart in Figure 2, the pillar
is searched again in an expanded range given by parameters x′, y′, w′, and h′, which are given as:

x′ ← x− φxl

y′ ← y− φyu

w′ ← w + φxl + φxr

h′ ← h + φyu + φyd

(6)
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Start

It: Read Cam Image

Pillar
Detected?

Flowchart 1 (Fig.3) for 
Pillar Detection

Get blob dimensions: x, y, w, h

Expand Search Range: 
x’ = x - φx , y’= y - φy 

w’ = w + 2φx , h’ = h + 2φy

Crop image in New Range
I’t = It [x’: w’, y’: h’, 3 ]

Convert I’t to HSV &
Search Color with inRange

Area > δarea

Height > δh

Find contours & get blob dim.

Increment
Pillar No.

N

Y

N

Y

Figure 6. Flowchart of pillar detection in expanded range after initial detection.

The HSV colorspace image Ihsv is cropped with the dimensions given in Equation (6) generating
an image It. Color is then searched in this cropped image within an upper_range and lower_range.
The values of these limits are the same as used in Section 3, and upper_range is (34, 110, 255) and
lower_range is (17, 26, 50) for the H, S, and V values. This results in a binary image I’t. Noise is removed
using erosion and dilation and contours are retrieved using the algorithm given in [42]. The dimensions
of the detected contours are checked against new thresholds of height (δh) and area (δarea). As shown
in Figure 6, if the conditions are satisfied, the pillar is said to be detected, and pillar number counter
is incremented.

Figure 7 shows the initial range detection and expanded range detection used in this work.
The initial detection range is shown in Figure 7a. It can be seen that the pillar is detected within
y = 298 and y = 370 over the entire x-axis. Once the pillar is detected, the range is expanded, as shown
in Figure 7b. In this work, the parameters given in Equation (6) are set as below:

φxl ← 30, φxr ← 30, φyu ← 118, φyd ← 0. (7)

This expands the search range for pillar detection between y = 180 and y = 370 along the y-axis
and between x− 30 and x + w + 60 along the x-axis, as shown in Figure 7b. Note that φyd is set to 0 to
avoid noise due to soil. The initial detection in narrow range is performed for faster detection. Once a
pillar has been detected, search range is expanded and pillar is detected again for robustness.
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(a) (b)

Figure 7. Search range in small range and expanded range: (a) search range for initial detection; and
(b) expanded range based on coordinates retrieved from initial detection.

5. Semantic Data Logging and Monitoring System

This section explains the format of data logging used in the proposed work, and the
monitoring system.

5.1. Semantic Data Logging in Vineyard

Data are semantically logged in the robot’s database in the format shown in Figure 8. This is
the format in which image captured from the camera is named and saved in the robot’s database.
Different sections of the image filename are separated by hyphen. The first section of the filename is
the field name, which could be set arbitrarily by the field owner. The second section of the filename is
the type of the grape. The third section is the lane number. The fourth section is the pillar number,
which is followed by the frame number. In addition, the database also consists of a direction flag,
which indicates the direction of motion of robot in forward or reverse direction. Images can be store in
JPEG, PNG, or RAW format. An example of semantic data is shown below.

‘Kitami− Kiyomai− L5− P3− 108.jpg′

It is evident from the filename that the image containing grape information belongs to a field in
‘Kitami’, the type of grape is ‘Kiyomai’. ‘Kiyomai’ is a grape type cultivated in Hokkaido region of Japan.
It is a crossbreed of Crimson glory vine and Kiyomi grape. Kiyomi grape is a clone version of Seibel
13053 (see [16]). The image belongs to Lane 5, and it is the 108th image from the third pillar. The precise
date and time of the image can be accessed indirectly by referring the properties of the image or it can
be directly stored in the database. Separating different sections of the image filename also simplifies
programming while displaying the images to the farmers through the monitoring system.

Fn—Gt—Ln—Ps—Fr

Field
Name

Grape
Type

Lane
No.

Pillar
No.

Frame
No.

Figure 8. Format of data logging showing different sections separated by hyphen.

5.2. Monitoring System

Figure 9 shows the simplified flowchart of the monitoring software. It starts with a user interface
through which the farmer interacts. It first connects to the local or remote database. The farmer
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specifies the field name, lane number, and pillars between which the field is to be monitored. If the lane
number is not specified, all the lanes are shown. If a lane number is specified but the pillar number
is not specified, all the images in that lane are shown to the farmer. The farmer can skip through the
vineyard images on a pillar by pillar basis by pressing the ‘Esc’ key. In case of wrong input, an error
is displayed.

Figure 9. Simplified flowchart of monitoring software.

6. Experiments in Real Field and Results

Figure 10 shows the experiment setup. We performed experiments in a vineyard located in
Hokkaido prefecture of Japan, as shown in Figure 10a. The pillars in this vineyard are separated by
about 2.9 m. The diameter of the pillar is between approximately 13 and 16 cm. The grape plants are
planted about 40 cm above the ground. The maximum height of the grape plants is 1.6 m.

(a)

UTM-30LX 
Lidar

Logicool
C920 Camera

Control PC

Robotnik
Summit XL
Robot

(b)

Figure 10. Experiment setup: (a) vineyard where experiments were performed; and (b) robot setup.

The Summit XL robot (Figure 10b) [43] was used in the experiment, which is a four-wheel drive
robot. It was equipped with a lightweight (≈370 g) Hokuyo UTM-30LX Lidar sensor [44]. This sensor
has a range of 30 m and a scanning angle of 270 degrees. The angular resolution is 0.25° and the scan
time is 25 ms/scan. The sensor has an accuracy of ±30 mm within 0.1–10 m, and ±50 mm between
10 and 30 m. The Lidar was used for robot localization and mapping (SLAM) using the algorithm
proposed in [37,38].
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The robot was also equipped with a Logicool C920 camera facing the grapes. The camera was
used for logging image data. The robot was programmed using a control computer with Intel Core-i5
processor, 8 GB RAM, and Ubuntu Linux operating system. MySQL software was used for database.
Robot programming was done using Robot Operating System (ROS) [45].

6.1. Results of Pillar Detection for Semantic Labeling

Figure 11 shows the results of pillar detection in a particular lane of the vineyard for semantic
labeling. We briefly explain the results with Figure 11, which shows the first pillar detection results.
The description of the other pillar’s detection is similar and therefore omitted for brevity.

(a) (b) (c) (d) (e)

Figure 11. Robust pillar detection in vineyard (Pillar-1): (a) input RGB image; (b) binary image
generated after noise removal from HSV image; (c) initial pillar detection in small search range;
(d) binary image with pillar detection in enlarged search range; and (e) detected pillar.

Figure 11 shows the first pillar detection of a lane in the vineyard. Figure 11a shows the RGB color
image captured from the camera and resized. This image is converted to HSV colorspace in which the
pillar’s color is detected resulting in binary image. Contours are then detected in the binary image
after noise removal and the result is shown in Figure 11b. After checking various thresholds of height,
width, and area, the pillar is detected, as shown by a blue rectangle in Figure 11c. This is the result of
initial detection of the algorithm explained in Section 3.

Using the dimensions of the initial detection, the search range in the HSV colorspace is expanded,
as explained in Section 4, and the pillar’s color is checked once again. The binary image from this
detection is shown in Figure 11d. Contours are retrieved again and finally the pillar is detected,
as shown in Figure 11e.

6.2. Processing Time for Pillar Detection

Table 1 summarizes the processing time of each frame for pillar detection. The total time required
is around 40 ms per frame. Apart from this, around 15 ms is required for pillar detection in expanded
search space. However, this extra time is only required once when a pillar is detected in a smaller
search space. Since we resize the image, a faster processing time has been achieved. It should be noted
that, although processing is done using the resized image, an actual full sized HQ image can be saved
in the database after each detection.

Table 1. Processing time of each frame for pillar detection.

Function Time (ms)

Image resize 6.71
BGR to HSV Conversion 2.41
Masking 0.88
Pillar’s color search 0.88
Erode and Dilate 4.08
Contours Detection 0.40
Image Labeling and DB Save 23.19
Total 38.55
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6.3. Vineyard Monitoring System

The monitoring system was programmed in Python 3.6 using Matplotlib, NumPy, and OpenCV
libraries. MySQL database was used. The farmer accessed the system on a Windows tablet PC.
The database was downloaded on the local machine. At the current stage, the monitoring system
uses command line interface. A snapshot of the software is shown in Figure 12. The farmer can
pin-pointedly monitor the vineyard using the following command:

C : \ > pythonmonitor.pyfield=<field-name>lane=<Lane-No.>pillar=<Pillar-No.>

The user specifies the field name, range of lane numbers, and range of pillar numbers which are
to be monitored. By default, the most recent data are shown. A concrete example is given below:

C : \ > pythonmonitor.pyfield = Kiyomailane = L5pillar = P1− P4

As shown in Figure 12, the above command specifies the field name (Kiyomai), Lane 5, and pillar
range P1 to P4. This shows only the images in the range specified by the user. As an example, the first
image is shown in Figure 12. The software displays the image with certain information, e.g., P1− 1,
which indicates that this is the first image among all the images starting from pillar P1. The lane
number is 5 and the field is Kiyomai. The detected pillars are also shown. The software successively
displays the next image with information: P1− 2, P1− 3, · · · , P1− n, where n is the last image from
pillar P1 until the detection of the next pillar P2. From the next pillar P2, the images are shown with
information: P2− 1, P2− 2, · · · , P2−m, where m is the last image from pillar P2. This sequence is
continued until pillar P4.

Field
Name

Lane 
No.

Pillar 
No.

Program
Name

Meta-data
(can be turned off)

Detected Pillar

Figure 12. A snapshot of monitoring software.

This is illustrated in Figure 13, which shows selected outputs of the monitoring system for Lane 5
and Pillars 1–4. Figure 13a shows the first image of output. The successive image from Pillar 1 are
also displayed, as shown in Figure 13b (241st image from Pillar 1) and Figure 13c (507th image from
Pillar 1). Finally, Figure 13d shows the last image. It can be seen that the next pillar appears in the
scene. Figure 13e shows the first image from Pillar 2, and subsequently Figure 13h is the last image
from Pillar 2. Similarly, Figure 13i shows the first image from Pillar 3, and subsequently Figure 13l is
the last image from Pillar 3.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 13. Output of monitoring software for command: field = Kiyomailane = L5pillar = P1− P4:
(a) initial image from Pillar 1; (b,c) intermediate images; (d) last image from Pillar 1; (e) initial image
from Pillar 2; (f,g) intermediate images; (h) last image from Pillar 2; (i) initial image from Pillar
3; (j,k) intermediate images; and (l) last image from Pillar 3. Please see the video provided in the
Supplementary Materials.

It should be noticed that the total number of images between different pictures is different. This is
because, even if the robot navigates at a constant speed, the distances between different pillars are
not the same. Readers are strongly advised to see the attached video for better comprehension of the
monitoring software.

A minimal setup of the proposed monitoring system per se can be realized using an inexpensive
processing board (e.g., Raspberry-Pi 4 board), a web-camera, and a storage device. Using this
equipment, a minimal setup is possible for under 100 USD (as of May 2020) while noting that the cost
of computing decreases day-by-day [46]. This estimate excludes the cost of the autonomous robots on
which the setup will be installed. However, the setup can be used in conjunction with already existing
robots used for tasks such as weed removal.

Robust feature (pillar) detection is a critical component of the proposed monitoring system. Since
the proposed work uses only cameras for feature detection, illumination changes are taken care using
various thresholds. However, under very low illumination (e.g., during evening or very cloudy days),
it is difficult to set the correct thresholds and features might not be detected robustly. Since an on-board
large database access is not always feasible, the proposed system requires access to a server through a
network. In remote areas, network unavailability can be another possible technical limitation over a
long time.

7. Conclusions

Viticulture involves many labor intensive tasks. Among these tasks, vineyard monitoring is a task
which is often done frequently to check the growth of grapes and damage. To sustain viticulture in
countries such as Japan which have increasing old-age population, it becomes important to support
viticulture activities using robots and AI. To this end, this research proposed a low-cost monitoring
system for vineyards. The proposed system uses only low-cost cameras to semantically label the
image data. This semantic labeling enables the farmers to pin-point the location which needs to be
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monitored. The proposed system detects pillars setup in the vineyard as features to label the image
data. An algorithm to improve the robustness of pillar detection was proposed by detecting the
pillar in a larger search space. The entire system is comprised of only a camera and a computer. The
proposed system does not require a high-end computer and embedded boards such as Raspberry-Pi
can also be used for real-time processing. Due to its compactness, the system is portable and can be
installed on already existing autonomous robots used in vineyards. We tested the proposed monitoring
system in actual vineyards with real robots. The results show that, unlike images captured from
UAVs or drones, the proposed system can provide high quality images of grapes from short distance,
which enables better monitoring of the vineyard. Moreover, pin-pointed semantic monitoring enables
farmers to check only specific areas of the vineyard. The proposed system can provide monitoring on
both local and online devices. In its present state, the proposed monitoring system uses a command
line interface for monitoring. In the future, we plan to improve the system by providing a graphical
user interface for farmers. Moreover, the present study was limited to a single vineyard. In the future,
we plan to implement the proposed monitoring system in different vineyards and estimate the farmer’s
satisfaction level.

Supplementary Materials: Video of the proposed monitoring system: https://www.dropbox.com/s/
o6c68kyrtsjh98i/vineyard_monitoring_ravankar.mp4?dl=0.
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Abbreviations

The following abbreviations are used in this manuscript:

Thresh_W Width threshold for pillar detection
Thresh_H Height threshold for pillar detection
Thresh_Area Area threshold for pillar detection
X_RANGE Horizontal range within which pillars is detected
SAVE_DB Boolean flag to turn data logging ON or OFF
Irgb Image in RGB colorspace
Ihsv Image in HSV colorspace
MHs Masking range’s start point along y-axis
MHe Masking range’s end point along y-axis
MWs Masking range’s start point along x-axis
MWe Masking range’s end point along x-axis
lower_range Lower range of HSV values for pillar detection
upper_range Upper range of HSV values for pillar detection
Ib Noise removed binary image
ci Contour number i
xi Top-left x-coordinate of contour (ci)
yi Top-left y-coordinate of contour (ci)
ai Area of contour ci
wi Width of contour ci
hi Height of contour ci
φxl Expanded range in left direction along the x-axis
φxr Expanded range in right direction along the x-axis

https://www.dropbox.com/s/o6c68kyrtsjh98i/vineyard_monitoring_ravankar.mp4?dl=0
https://www.dropbox.com/s/o6c68kyrtsjh98i/vineyard_monitoring_ravankar.mp4?dl=0
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φyu Expanded range in top direction along the y-axis
φyd Expanded range in down direction along the y-axis
δh Height threshold in expanded search space
δarea Area threshold in expanded search space
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