凍結融解履歴が植物根系を含む土の 侵食抵抗に及ぼす影響に関する基礎的研究 BASIC STUDY ON THE EFFECT OF FREEZE-THAW CYCLE ON THE EROSION RESISTANCE OF SOIL INCLUDING PLANT ROOT SYSTEMS

中陳実咲希¹・中村 大²・川口貴之³・川尻峻三²・山下 聡³・宗岡寿美⁴ Misaki NAKAJIN, Dai NAKAMURA, Takayuki KAWAGUCHI, Shunzo KAWAJIRI, Satoshi YAMASHITA and Toshimi MUNEOKA

1学生会員 北見工業大学博士前期課程2年 社会環境工学専攻(〒090-8507 北見市公園町165番地)
²正会員 工博 北見工業大学准教授 社会環境系(同上)
³正会員 工博 北見工業大学教授 社会環境系(同上)
⁴非会員 農博 帯広畜産大学教授 農業環境工学ユニット(〒080-8555 帯広市稲田町西2線11番地)

In this study, soil specimens with developed root systems of herbaceous plants were prepared and subjected to a freeze-thaw cycle, followed by erosion resistance tests. The test results show that erosion resistance was increased by the plant root system and the depth of erosion was significantly reduced in the unfrozen specimens. This erosion resistance increased with increasing root system content in the specimen. The stems and leaves were also confirmed to have a significant erosion control effect. In addition, the erosion resistance by the plant root system was reduced by frost heaving and erosion depth was increased in the specimens subjected to a freeze-thaw cycle.

Key Words : Erosion resistance test, soil, plant root system, freeze-thaw cycle, X-ray CT scan, frost heaving, river embankment

1. はじめに

一般的に、堤防にはのり面保護工として、植生工が用 いられている.植生工は植物を繁茂させることで根系を 侵入させ、表層地盤を補強する工法¹⁾であり、豪雨時の 雨滴侵食によるのり面表層の断面欠損防止効果や、洪水 時の川表のり面の侵食防止効果、さらには越水時の川裏 のり面の侵食遅延効果等が期待される.しかしながら、 植生工の侵食防止効果を定量的に評価する統一的な手法 が確立されていないこともあり、植生工でどの程度の降 雨や流水に耐えることができるのかといった基本的な疑 問も多く存在する.

これらを背景として,筆者らは植物根系を含む土供試体に対する侵食抵抗試験方法について検討を行ってきた. これまでに,噴霧器を応用して試験装置を作製し,豪雨時の雨滴侵食を想定した侵食抵抗試験を実施している. また,試験結果の解釈にはX線CTスキャンを活用しており,X線CTスキャンから得られる縦断面画像から,侵食 深や侵食速度を求めることを試みた.その結果,植物根 系が発達した供試体では、これを含まない供試体に比べ て侵食に要する時間が明らかに長く、最大侵食深も小さ くなったことから、根系が土の侵食抵抗を増加させてい ることが明らかとなった.また、侵食抵抗は根系含有量 が増加するに従って、増大することもわかった².

以上の研究をさらに発展させて、本研究では凍結融解 履歴が植生工の侵食防止効果に与える影響について明ら かにすることに取り組んだ.積雪寒冷地の堤防は寒気に 曝されるため、凍結融解履歴が植生工の補強効果に強い 影響を与えると考えられるが、これを明らかにした研究 事例は筆者が調べた限り存在しない.具体的には、草本 植物にケンタッキーブルーグラス(KBG)を用い、これ を播種して根系を発達させた土供試体を作製し、地盤工 学会基準³¹に準じた凍上試験方法で凍結融解履歴を与え て、侵食抵抗試験を実施した.なお、本研究で実施した 侵食抵抗試験は、供試体上端面に対して直角に水流を与 えるものであり、堤防のり面上を流下する水で発生する 侵食を模擬したものではない.

2. 試験条件と方法

表-1は本研究の試験条件をまとめたものである.供試体は大きく2種類に分けられ,一つは根系を含まない供 試体(以下,土供試体)と,もう一つはこれに播種して 植物根系を発達させた供試体(以下,根系含有土供試体) である.また,根系含有土供試体には試験前に茎葉部を カットしたものと,茎葉部を残したもの(以下,茎葉部 有土供試体)がある.さらに,土供試体と茎葉部をカッ トした根系含有土供試体の一部には,凍結融解履歴を与 えた.供試体は各ケース2~3個用意したが,再現性を確 認する意味では幾分少なく,各種の試験装置やX線CTス キャンの稼働状況でこの数量に留まっている.なお,表 中の供試体名は,土供試体はC,根系含有土供試体はC-KBG,茎葉部有土供試体はCL-KBGとした.また,凍結 融解を与えたものついては,土供試体はCF,根系含有 土供試体はCF-KBGというようにFを付している.

(1) 土供試体の作製方法

表-2は本研究に用いた土試料の粒度分布である.実験 には0.425 mmふるいを通過したものを使用した.土試料 は粗粒分・細粒分含有量および地質的背景から,火山灰 質粘性土に工学的に大分した.土粒子密度は $\rho_s=2.557$ g/cm³,最適含水比は $w_{opt}=28.0\%$,最大乾燥密度は $\rho_{dmax}=1.43$ g/cm³である.播種の有無にかかわらず,全て の供試体は含水比w=30%に調整した土試料を,湿潤密度 $\rho_t=1.58$ g/cm³で所定の層厚になるよう1層当たりの質量 を計算してモールド内に投入し,全断面ピストンをプラ スチックハンマーで打撃することで作製した(締固め度 $D_c=85\%$).なお,供試体は直径60 mm,長さ130 mmの 円柱形であり,層厚は下から6層を20 mm,上1層を10 mmとし,根系含有土供試体については根系が侵入し易 いよう上1層(上端面から10 mm)だけを撹拌した.

(2) 根系含有土供試体の作製方法

図-1は作製した根系含有土供試体と茎葉部有土供試体 である. 草本植物には耐寒性に優れるため,北海道での 使用頻度が高いケンタッキーブルーグラスを用いた. 種 子は撹拌した土供試体の上端面に播いており,播種量は 道路土工-切土工・斜面安定工指針¹⁾を参考に,0.010 g としている(平均30粒). これは発生期待本数5,000本 /m²(北海道開発局の設定⁴⁾を参考),種子の発芽率50%, 単位粒数3,500粒/g,純度85%,覆土補正率1で算出した ものであり,北海道で想定される標準的な播種量である. 以上の方法で土供試体に播種した根系含有土供試体は, アクリル円筒に移して底面にろ紙を敷設し,底部に多孔 板を設置したコンテナ内に静置した.また,供試体底面 から約10 mmは常に水浸させており,土と植物の乾燥具 合を考慮して,水を適宜噴霧した.コンテナは2019年8

表-1 試験条件

ケース	供試体の種類	凍結融解	供試体名
1	土供試体	無	C-1~2
2	土供試体	有	CF-1~2
3	根系含有土供試体	無	C-KBG-1~3
4	根系含有土供試体	有	CF-KBG-1~3
5	茎葉部有土供試体	無	CL-KBG-1~3

表-2 粒度分布

粘土分 (%)	シルト分 (%)	砂分 (%)	礫分 (%)
31	31	38	0

図-1 根系含有土供試体と茎葉部有土供試体

月上旬~11月下旬までの約3カ月半は屋外で,2019年11 月下旬~2020年1月上旬までの約1カ月半は室温約25 ℃ の日光が良く当たる屋内に設置して植物を生育させた. なお、根系含有土供試体のうち、茎葉部有土供試体につ いては植物の生育を屋外でしか行っていない.このため、 生育日数が少なく、草丈も短いことがわかる.これ以外 の根系含有土供試体は屋内で一定期間植物を生育させた 後、茎葉部を根本でカットしてラップフィルムで包み、 室内で保管した(図-1(a)参照).

表-3は根系含有土供試体の生育条件,発芽数,根系乾燥質量等をまとめたものである.表中の積算温度等の気象環境条件はアメダス北見の気象データ⁵から算出したものである.発芽数は茎の本数を数えたものであり,根系乾燥質量は侵食抵抗試験後の供試体から根系のみを慎重に採取して計量したものである.

(3) 凍結融解履歴

図-2は本研究で用いた凍上試験装置である.凍結過程 については、供試体作製時の上面が凍上試験装置の下盤 に接するように上下を入れ替えて装置内に設置し、凍上 試験を行った.つまり、根系含有土供試体では茎葉部を カットした上端面が下盤に接することとなる.これは地 盤工学会基準において、上盤とアクリルモールドとの凍 着を防ぐために、下盤から冷却させることが規定されて

ケース	供試体名	屋外 植物生育期間 A	積算温度 (℃・day)	積算日照 時間 (h)	屋内 植物生育期間 B	生育日数 A+B(d)	草丈 (mm)	発芽数 (本)	根系乾燥 質量 (g)
3	C-KBG-1	2019/8/10~11/23	1239	551	2019/11/23~2020/1/10	153	32.0	15	0.718
	C-KBG-2	2019/8/10~11/23	1239	551	2019/11/23~2020/1/10	153	34.7	12	0.640
	C-KBG-3	2019/8/10~11/23	1239	551	2019/11/23~2020/1/10	153	24.2	14	0.490
4	CF-KBG-1	2019/8/10~11/23	1239	551	2019/11/23~2020/1/10	153	30.0	20	0.445
	CF-KBG-2	2019/8/10~11/23	1239	551	2019/11/23~2020/1/10	153	26.1	17	0.427
	CF-KBG-3	2019/8/10~11/23	1239	551	2019/11/23~2020/1/10	153	27.0	10	0.270
5	CL-KBG-1	2019/8/10~10/30	1188	409	_	81	9.5	20	0.333
	CL-KBG-2	2019/8/10~11/18	1243	517	—	100	8.5	21	0.162
	CL-KBG-3	2019/8/10~11/20	1244	530	—	102	7.0	18	0.232

表-3 根系含有土供試体の生育条件, 草丈, 発芽数, 根系乾燥質量

図-2 凍上試験装置

いるためである.また,重錘による鉛直応力は10 kN/m² とし,上盤側面にはグリース,モールド内面にはシリコ ンスプレーを噴霧して摩擦の低減を図っている.

凍結方法については、基本的に地盤工学会基準³に準拠しており、上下盤の温度を0 ℃で24時間保持し、その間に吸水量と排水量が概ね一致するまで、下盤から通水して供試体を飽和させた.その後、サーマルショックを与えて氷核を形成させた後、凍上変位が停滞するまで下盤温度を一定速度(-0.4 ℃/h)で降下させた.供試体長が地盤工学会基準(50 mm)に比べて2.6倍と長いため、下盤温度の降下速度は一般的な凍上試験に比べて大きく設定している.

図-3は凍上試験後の供試体を融解させている様子である.融解過程については、凍上試験装置内ではなく、侵 食抵抗試験時に使用するアクリル円筒内で実施した.具 体的にはまず、凍上した供試体を凍結させたまま凍上試 験装置から取り外し、供試体の上下を元に戻してアクリ ル円筒内へ移設した.アクリル円筒の内面にはシリコン スプレーを噴霧して摩擦の低減を図っている.次に、 20 ℃の実験室内で沈下量が概ね収束するまで、約24時 間かけて融解させた.この時、供試体上端面には厚さ5 mmの多孔板を設置したのみで、重錘による鉛直応力は 加えていない.これは、植生工が施された堤防のり面表 層の応力状態を再現することを試みたためである.なお、

図-3 凍上試験後の供試体を融解させている様子

表-4 X線CTスキャン条件

管電圧 (kV)	管電流 (µA)	画素数	ビュー数	積算枚数
160	40	512×512	600	10

アイスレンズの融解で発生する水分の大部分は、供試体の下端面に設置された多孔板から排水される.

さらに、本研究では凍上試験前後、融解沈下後に、X 線CTスキャンを実施している.表-4はX線CTスキャン 条件をまとめたものである.解像度に相当するボクセル サイズは0.132 mmとした.使用した装置はSHIMADZU inspeXio SMX-225CTである.

(4) X線CTスキャンを活用した侵食抵抗試験

図-4は本研究で用いた侵食抵抗試験装置の模式図である.本試験装置は市販の電動式噴霧器と,供試体固定用 治具からなる.使用した噴霧器は最大噴霧量0.68 L/min の吐出能力を持ち,噴霧圧力0.26 MPaの一定水圧で連続 した吐出水を得ることが可能である.先端の噴射ノズル は2つ付いており,一方を開閉することで圧力の調整が 可能である.ここでは、2つの噴射ノズル両方を開放す ることで,噴霧圧力0.16 MPaに調整している.噴射ノズ ル先端の内径は0.9 mmであり,水を供試体上端面に対し て直角に、ストレートで噴射して侵食を発生させた.噴 射ノズル先端から侵食前の供試体上端面までの距離は、 シャッターを挟んで150 mmである.試験終了後に使用 した水量を計量して、噴射ノズルからの平均流速を求め たところ,概ね10 m/sであった.

具体的な試験方法は、まず供試体をアクリル円筒ごと 供試体ホルダーに設置する.次に、シャッターを立てて

図-4 侵食抵抗試験装置の模式図

供試体に水流が当たらないようにした後,噴射ノズル先端の流速が一定となるまで10秒間噴射させる.その後, シャッターを倒し,水流を供試体上端面に任意の時間継続して衝突させ,侵食を発生させる.以上の試験を繰り返し行い,試験後にX線CTスキャンを行うことで,供試体内の侵食状況を非破壊で観察し,得られた画像から侵食深や侵食速度を求めた.なお,本研究で使用した侵食抵抗試験装置や試験方法の詳細については,中陳ら²を参照していただきたい.

3. 試験結果および考察

(1) 凍結融解履歴

図-5は土供試体と根系含有土供試体の凍結融解時にお ける鉛直変位量の推移について示したものである.まず, 凍上挙動に着目すると,最大凍上量が大きくばらついて いることがわかる.最大凍上量が大きくなったCF-2や CF-KBG-2では、上盤付近でアイスレンズが厚く発達し ている様子が確認できた.供試体は上下を入れ替えて凍 上試験装置に設置していることから、供試体下部に多く のアイスレンズが形成されたことになる. 一方で、凍結 開始から約40時間後までの凍上量は概ね一致しているこ とが確認できる.また、凍上で発生する膨張力(凍上力) が使用した植物の根系による拘束力に比べて格段に大き いこともあり、根系の有無に関わらず、凍上速度も概ね 一定となっている. これらのことから, 供試体上部から 中部にかけて形成されたアイスレンズの量は概ね同等と 考えられる.次に、融解沈下挙動に着目すると、CF-1以 外の供試体では鉛直変位量が残留し、凍上試験前よりも 供試体長が大きくなっていることがわかる. これは、融 解時に重錘による載荷を行わず、鉛直応力を加えなかっ たためと考えられる. また, 残留変位量は, 最大凍上量 が大きい供試体ほど、大きくなる傾向が確認できた. な お、凍結融解履歴を与えたことによって、供試体長が 130 mmを超えた供試体については、侵食抵抗試験を行 う直前に、供試体下部を数mmカットしてから試験に供 している.

図-6は凍上試験前後および融解沈下後に実施したX線 CTスキャンから得られた土供試体と根系含有土供試体 の供試体中心を通る縦断面画像である.いずれの画像も

解析ソフト(ExFact VR2.1⁹)で作成した.この画像では 高密度部(主に土)が灰色,低密度部(根系やアイスレ ンズ,間隙等)が黒色で示されている.まず,凍上試験 後の画像を見ると,土供試体,根系含有土供試体ともに, 全体に無数の薄いアイスレンズを確認することができる. 特に,最大凍上量が大きくなったCF-KBG-2では,供試 体下部にアイスレンズが厚く発達している.次に,融解 沈下後の画像を見ると,土供試体,根系含有土供試体と もに供試体全体に小さな間隙が分布していることがわか る.これはアイスレンズによって発生した亀裂が融解沈 下で閉塞せず,残存したものと考えられる.

(2) 侵食抵抗試験

図-7は侵食抵抗試験前および試験後に実施したX線CT スキャンから得られた土供試体と根系含有土供試体,茎 葉部有土供試体の供試体中心を通る縦断面画像である. 各ケースの代表的なものを一例ずつ(紙面の都合上4つ ずつ)示しており,試験前から順に時系列で並べた.こ の画像では高密度部(主に土)が灰色,低密度部(主に 侵食でできた空洞部分)が黒色で示されており,各縦断

面画像中で黒色部分が最も深く侵入した箇所を侵食深と して読み取った.まず、未凍結の供試体に着目すると、 根系のない土供試体(図-7(a))では侵食は水流方向に 真直ぐ進行しており、最終的に貫通していることがわか る. なお, 侵食幅は先行研究2に比べて狭かった. これ は、本研究では噴霧圧力を先行研究の約1/2としてお り、侵食孔底面で跳ね返る水の量が少なく、侵食孔側壁 が削られなかったためと考えられる.一方, 茎葉および 根系がある供試体(図-7(c), (e))は供試体表面付近で 侵食が止まっており、貫通は発生しなかった. これは、 茎葉や根系によって土が増強されたためと考えられる. 次に、凍結融解履歴を与えた供試体に着目すると、根系 のない土供試体(図-7(b))では直線的に侵食されてい るが,根系を含む土供試体(図-7(d))では直径方向に も侵食されている様子が確認できた. これは, 侵食に幾 分時間がかかる根系含有土供試体では、侵食孔底面で跳 ね返った水によって戻り流が発生し、これによって侵食 孔側壁が削られるためと考えられる. また, X線CTス キャンで確認されたアイスレンズ融解後の間隙が、直径 方向への侵食を助長しているものと推測される. なお, 凍結融解履歴を与えた土供試体では貫通していないが, これは試験過程で供試体を倒壊させてしまい、貫通する まで侵食抵抗試験を実施できなかったためであり、試験 を継続できていれば容易に貫通したものと推測される.

図-8は図-7から読み取った侵食深の経時変化である. ここでは、例として各ケース1供試体ずつ示している. いずれの供試体においても侵食が遅くなる、もしくは進 まなくなる深さがあり、侵食深の経時変化において屈折 する挙動を示していることがわかる. 本研究ではこの屈 折点を最大侵食深と定義して読み取った。また、屈折点 より前の侵食深の傾きを最大侵食速度、後の傾きを最小 侵食速度として求めている. なお、CL-KBG-2のように 屈折点が複数となる場合は、後の点を最大侵食深として 読み取った.まず、未凍結の供試体に着目すると、根系 が無い供試体(C)は短時間で貫通していることがわか る.一方,茎葉および根系がある供試体 (CL-KBG, C-KBG) では最大侵食深まで達した後,侵食深が概ね変 化しておらず、侵食深が大幅に小さくなっていることが わかる. ただし、ここでは茎葉の有無による違いは小さ く見える.次に、凍結融解履歴を与えた供試体に着目す ると、土供試体(CF)、根系含有土供試体(CF-KBG) ともに、未凍結に比べて、侵食に要する時間が短くなっ ていることがわかる. 特に, 根系含有土供試体では明ら かに侵食速度が大きくなっており、凍結融解によって、 植物根系の侵食防止効果が低下していることが窺える.

表-5は本研究で実施した侵食抵抗試験結果をまとめた ものである.なお,侵食で貫通した未凍結の土供試体 (C)は最大侵食深を130 mmとして整理した.また,凍 結融解履歴を与えた土供試体(CF)は実験上の不手際 で,2供試体とも貫通が発生するまで侵食試験を継続で

きなかったため、最大侵食深を記載していない.

図-9(a)は最大侵食深と根系乾燥質量,図-9(b)は最大 侵食速度,図-9(c)は最小侵食速度との関係をプロットし たものである(根系乾燥質量については表-3を参照). 図中には未凍結の供試体(CとC-KBG)の試験結果、凍 結融解履歴を与えた供試体 (CFとCF-KBG)の試験結果 から求めた近似線も示している. 図-9(a)から、茎葉が ある供試体 (CL-KBG) は未凍結の供試体の試験結果を 近似した直線(赤線)よりも下方に外れてプロットされ ている. 根系量が少ないにも関わらず, 侵食深が小さい ことから、茎葉は大きな侵食防止効果を有していると言 える.一方,凍結融解を受けた根系含有土供試体 (CF-KBG) は、1点 (CF-KBG-3) を除いて、近似線 (赤線) よりも上方にプロットされており,侵食深が大きくなる 傾向を示している. このことから凍結融解履歴が植物根 系の侵食防止効果に与える影響は小さくないことが窺え る. 図-9(b), (c)から,最大・最小侵食速度はともに根 系乾燥質量が大きくなるに従って減少しており、根系が 発達した供試体ほど侵食抵抗が増大していることがわか る. また, 最大侵食深と同様に, 茎葉がある供試体 (CL-KBG) は未凍結の供試体の試験結果から求めた近 似線(赤線)よりも下方にプロットされている. さらに, 凍結融解履歴を与えた供試体の試験結果から求めた近似 線(青線)は、赤線よりも上方に位置している.特に、 最大侵食速度は、1オーダー程度、未凍結に比べて増加 していることが確認できる.

4. まとめ

本研究では草本植物の根系を発達させた土供試体を作 製し、これに地盤工学会基準に準じた凍上試験方法で凍 結融解履歴を与えて、侵食抵抗試験を実施した.ここで は、豪雨時の雨滴侵食を想定して、供試体上端面に対し て直角に水流を与えた.試験結果から、未凍結の供試体 では植物根系によって侵食抵抗が増大し、侵食深が大幅 に小さくなることが明らかとなった.この侵食抵抗は供 試体中の根系量が増加するに従って大きくなることもわ かった.また、茎葉にも大きな侵食防止効果があること も確認できた.さらに、凍結融解履歴を与えた供試体で は、凍上によって植物根系による侵食抵抗が減少し、侵 食深や侵食速度が幾分大きくなることが明らかとなった.

本研究で得られた知見から、北海道のような積雪寒冷 地の河川堤防は凍結融解履歴の影響を受けて脆弱化し、 春期には侵食されやすい状態になっている懸念があるた め、引き続き研究を進めたいと考えている.

参考文献

1) 日本道路協会:道路土工-切土工・斜面安定工指針(平成21

表-5 侵食抵抗試験結果の一覧

図-9 (a)最大侵食深,(b)最大侵食速度,(c)最小侵食速度と 根系乾燥質量の関係

年度版), pp.212-221, 2009.

- 中陳実咲希,中村大,川口貴之,川尻峻三,山下聡,山口滉 平:X線CTスキャンを活用した土の侵食抵抗試験に関する 基礎的研究,河川技術論文集,Vol.55, pp.505-511, 2019.
- 3) 地盤工学会:地盤材料試験の方法と解説JGS 0172-2009 凍上 性判定のための土の凍上試験方法, pp.230-234, 2009.
- 4) 兵庫利勇,佐藤厚子,山田充:生物多様性に配慮した法面緑 化の試み,日本緑化工学会誌,Vol.39, No.1, pp.182-185, 2013.
- 5) 気象庁: "過去の気象データ検索", 気象庁ホームページ, http://www.data.jma.go.jp/obd/stats/etrn/index.php (参照: 2020年3 月29日)
- 6) 日本ビジュアルサイエンス株式会社: ExFact VR ユーザーズ マニュアル, 143 p., 2017.

(2020.4.2 受付)