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1 | INTRODUCTION

“Knowledge is Power”—Francis Bacon.

Engineering problems cannot be solved without applying knowledge. Consequently, knowledge-intensive activ-
ities, such as knowledge acquisition, representation, dissemination, utilization, and management, play a vital role
in engineering problem-solving. The advent of systems engineering! and engineering informatics® has added a new
dimension—digitization of knowledge-intensive activities with the aid of advanced computing, information, and com-
munication technologies. The remarkable thing is that such advanced computing, information, and communication
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technologies have coined a concept of manufacturing systems called the fourth industrial revolution (popularly known
as Industry 4.0 or smart manufacturing).>® In Industry 4.0, humans, technology, and organizations are integrated in
both horizontal and vertical manners using advanced information and communication technologies.®* The integration
must result in some intelligent enables that help achieve the manufacturing tasks through data integration from agile
sources.’ At the same time, the data must be transformed into knowledge,® enabling seamless integration between phys-
ical and cyber spaces.”® This results in some embedded systems (eg, cyberphysical systems) that can perform high-level
cognitive tasks such as monitoring, understanding, predicting, deciding, acting, and adapting.”®!° Without applying
digitized knowledge, these systems cannot perform the abovementioned cognitive tasks. As a result, digitization of
knowledge-intensive activities (knowledge acquisition, representation, dissemination, utilization, and management) is
critical for the advancement of Industry 4.0.

However, the embedded systems underlying Industry 4.0 perform the above-mentioned cognitive tasks to support
engineering design and manufacturing processes autonomously. Numerous authors have studied the engineering design
and manufacturing knowledge representation and reuse.!' It is emphasized that the underlying knowledge manage-
ment framework must incorporate some mechanisms that semantically classify engineering design and manufacturing
knowledge.!? Pomp et al'3 and Paulus et al'* developed a system (ESKAPE) where the semantically annotated data
structures (or knowledge graph) are utilized to deal with the computational complexity of knowledge representation
and knowledge sharing within the constituents of Industry 4.0. Nevertheless, when a digitized engineering design and
manufacturing knowledge management systems are constructed, the systems become domain specific and web tech-
nology specific. For example, Chhim et al’> developed a knowledge representation system for design failure mode and
effects analysis (DFMEA) and process failure mode and effects analysis (PFMEA) using some high-level concept maps
(user-defined ontology) from the context of the semantic web. The main problem of these systems is their scalabil-
ity and user-friendliness because the underlying knowledge representation depends heavily on the query language and
data access protocol (SPARQL) customized for the resource description framework (RDF). Thus, these systems are, by
nature, esoteric. On the other hand, as far as the customer needs elicitation and small/medium enterprises are concerned,
knowledge sharing is a bottleneck of Industry 4.0,'° which needs further research.

In general, knowledge makes a vast ecosystem integrating human learning, machine learning, logical inferences
(deduction, induction, and abduction), experimental data, analytical results, simulations, algorithms, creative thinking,
and cognitive reflections. In most case, data and knowledge are used interchangeably (eg, compare the articles>3%13-16),
The myriad proximal and distal interactions of knowledge among the abovementioned entities result in heavy computa-
tion. The computational complexity cannot be tackled if the concept of knowledge is succinctly defined.

The above descriptions indicate that before developing methods and tools needed for achieving the desired level of
digitization of knowledge-intensive activities from the context of Industry 4.0, the following questions must be addressed.
What is knowledge? What are the types of knowledge? How to create knowledge? How to represent knowledge in a
domain-independent manner? What is the difference between data/information and knowledge? What is the role of
human cognition in knowledge formation? What is the role of experience in knowledge formation? Is the attainment of
“true” knowledge possible? Is analytical knowledge better than experiential knowledge? How to digitize the represented
knowledge without web-specific query programming? The abovementioned questions are challenging to answer since a
relatively unambiguous, succinct, and circularity-free definition of knowledge is not yet available. This can be understood
from a relatively compressive account on the definition of knowledge presented in Section 2. For the sake of introduction,
three commonly used definitions of knowledge are considered as follows.

Consider the following three general views regarding knowledge. (a) First, consider the most general view regarding
knowledge—a piece of knowledge is a proposition that corresponds to justified true belief.!” The process of justifying the
truthfulness of a belief involves several intellectual resources, and the process capable of making justification of a belief
possible may not be known beforehand. Thus, “true knowledge” may not exist. (b) Second, consider the dictionary mean-
ing of knowledge. For example, a dictionary-based definition describes knowledge as an awareness, understanding, or
information, which either resides within a person’s mind or is possessed by people and can only be obtained via experi-
ence or investigation.'® This is a rather broad definition of knowledge involving other concepts requiring prior definition.
(c) Finally, consider the definitions of knowledge given by legislative bodies. For example, the European Union defines
knowledge as facts, principles, theories, and practices accumulated by learning; both cognitive reflections and direct
experiences of individuals or groups contribute to the body of knowledge.*®

The remarkable thing is that the definitions of knowledge (the above ones and the ones presented in Section 2) are
based on several concepts. For example, the last definition mentioned above associates concepts such as learning, cog-
nitive reflection, direct experience, fact, principle, theory, and practice, to define the knowledge. Such concepts must be
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defined before defining knowledge. This results in a phenomenon called circularity that must be avoided while defining
knowledge.?® Therefore, defining knowledge in clear terms, at the same time avoiding circularly, is a challenging task. This
article aims to present a circularity-free and unambiguous definition of knowledge that can help build knowledge-based
systems from the context of Industry 4.0.

The remainder of this article is organized as follows. Section 2 presents a comprehensive review of definitions of
knowledge reported in extant literature concerning epistemology, engineering design, manufacturing, as well as organi-
zation science, education science, and information science. Section 3 presents a revised definition of knowledge along
with its different types and categories. Section 4 describes the types and categories of knowledge presented in Section 3
using some real-life examples. The representation of knowledge using knowledge graphs (concept maps) is also presented
in Section 4. Section 5 discusses the implications of this study by demonstrating the existence of different types and cate-
gories of knowledge in a creative design process. This section also suggests a framework for developing knowledge-based
systems for the advancement of Industry 4.0. Section 6 presents the concluding remarks drawn from this study.

2 | LITERATURE REVIEW

Three commonly known definitions of knowledge are very briefly presented in the previous section. However, the concept
of knowledge and its definitions have been studied at great depth in epistemology. This section thus, first, reviews the
definitions of knowledge found in epistemology. The definition of knowledge has also been studied in other relevant
disciplines. Subsequently, this section reviews the definitions of knowledge found in the literature of engineering design,
manufacturing, and organization, information, and education sciences.

2.1 | Epistemology

Epistemology is the philosophical study that deals with the nature, origin, and formulation of knowledge irrespective of
the academic discipline.?!*? The definition of knowledge in epistemology exhibits multiplicity, which has lasted since
the period of Aristotle. Multiplicity originates from such metaphysical concepts as idealism, rationalism, empiricism,
neutralism, pragmatism or evolutionism, and explanationism. Each metaphysical concept corresponds to certain truths
that manifest knowledge. In particular, idealism considers there exist unquestionable and transcendental truths that are
entirely independent of experiences. Rationalism considers that there exist rational processes that are somewhat inde-
pendent of experiences, thereby leading to some truths. Empiricism considers all truths to be dependent on experiences,
that is, the experience is the sole driver that contributes to knowledge formation. Pragmatism adopts a skeptic or evo-
lutionary view toward truth, that is, the usefulness of the perceived truth determines its fate—whether or not it will be
considered a piece of knowledge. Consequently, truthfulness may vary with time. Neutralism is similar to pragmatism
and considers that while finding truth, any metaphysical concept from among idealism, rationalism, and empiricism
can be used. This implies that truth is not biased to a specific metaphysical concept, and that any combination of
metaphysics can be used to formulate knowledge. Explanationism considers that a so-called scientific truth evolves fol-
lowing the deductive-nomological (D-N) explanation, inductive-statistical (I-S) explanation, or statistical-relevance (S-R)
explanation.?328

In classical epistemology, definitions of knowledge proposed by Hume and Kant have attracted significant attention.
According to Hume, knowledge corresponds to two propositions: relations of ideas and factual matters (referred to as
matters of fact).?’ Relations of ideas are a priori nonfalsifiable propositions (eg, a triangle has three sides, the summation
of all included angles of a triangle equals 180°, and alike). Matters of fact are experience-dependent propositions that
can be falsified if a counterexample is available (eg, apples are good for health, bachelors are messy, and alike). Kant,
on the other hand, analyzed the work of Hume and proposed there exist three types of knowledge—analytic a priori,
synthetic a priori, and synthetic a posteriori*® Analytic a priori knowledge is always true because these are mere defini-
tions of ideas (eg, a triangle has three sides, all unmarried males are bachelors, and alike). Synthetic a priori knowledge
is deduced from a set of analytic a priori knowledge (eg, 4+ 7 = 11, the summation of all included angles of a trian-
gle equals 180°, and alike). Thus, the knowledge gained from mathematical and geometric derivations falls under the
category of synthetic a priori knowledge. Synthetic a posteriori knowledge corresponds to knowledge gained through
experience (eg, apple is good for health, bachelors are rich, and alike). In addition, Kant considered the existence of four
concepts or categories of pure understanding—quantity, quality, relation, and modality—which correspond to humans’
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ability to organize their experiences and formulate synthetic a posteriori knowledge. These four categories, in turn, entail
12 concepts of judgment. Specifically, quantity entails the concepts of unity, plurality, and totality; quality entails reality,
negation, and limitation; relation entails inherence and subsistence, cause and effect, and community; and finally, modal-
ity entails possibility-impossibility, existence-nonexistence, and necessity and contingency. Although Hume and Kant are
considered empiricists and rationalists, their definitions of knowledge possess certain similarities. For example, Hume’s
relations of ideas correspond to experience-independent knowledge, which Kant classified into two categories—analytic a
priori and synthetic a priori. Both Hume and Kant categorized experience-dependent knowledge into a separate category.
Hume classified it as matters of fact, whereas Kant considered it as synthetic a posteriori.

Apart from the Hume- and Kant-based definitions of knowledge, there exist other definitions of knowledge in episte-
mology. According to Russell.3!*2 there exist two types of knowledge—by acquaintance and by description. Knowledge
by acquaintance implies knowledge gained by direct awareness or experience of a knower and is free from any intermedi-
ary inference processes. Knowledge by description, in contrast, is a propositional truth acquired via inferential, mediated,
or indirect processes. Such definitions of knowledge explicitly specify the role of the knower in knowledge formulation.
Many authors have investigated knowledge from the perspectives of acquaintance and description and provided epistemo-
logical descriptions of acquaintance and descriptive knowledge.3>3* Meanwhile, new metaphysics have also been added
while formulating knowledge by prioritizing the knower. For example, Zagzebski?® considered that knowledge formu-
lates when knowers try to build a relationship with a portion of reality through consciousness. Knowers might directly or
indirectly be related to a portion of reality. Therefore, knowledge depends on knowers’ cognitive abilities and emotional
attachment with a portion of reality, that is, the knower’s role must be quantified while defining knowledge. Accordingly,
Zagzebski®® defined knowledge as a cognitive contact with reality arising out of acts of intellectual virtue. This implies that
“intellectual virtue” is a metaphysical quantifier of the knower with regard to knowledge formulation. However, intellec-
tual virtue can be defined in two different ways* that depend on the concept of reliability?!:36 and responsibility.?%3> The
above definition of knowledge is based on responsibility (open-mindedness, courage, critical thinking, moral obligation,
and alike).

2.2 | Engineering design and manufacturing

Like its predecessors, in Industry 4.0, it is highly likely that seamless execution of engineering design and manufacturing
(ie, product, system, and service conceptualization and realization) gets the highest priority. Thus, how the concept of
knowledge has been treated in engineering design and manufacturing must be elucidated before proposing a clear and
circularity-free definition of knowledge.

First, consider engineering design (product, system, and service conceptualization). Engineering design is a purely
knowledge-intensive activity.3” Therefore, certain design theories explicitly highlight the contribution of knowledge in
the execution of a design process. For example, let us consider the general design theory**! and C-K theory of design.*>4>
Following the general design theory.3®3 the execution of a design process requires knowledge manipulation, wherein
“knowledge” may either be of the ideal or real types.*®*! This ideal/real knowledge plays its role through logical processes
of deduction and abduction*! as described in Section 3. Both knowledge types assist in making necessary decisions con-
cerning the continuation of a design process under given circumstances.*! Nevertheless, ideal or real knowledge types
can be defined with respect to other concepts, such as the “entity” and “topology” of the design space.*’ which must be
defined before defining the knowledge types. This injects circularity in the definition of ideal or real knowledge, in addi-
tion to certain logical ambiguities caused by induction (Section 3). In addition to deduction and abduction (refer to Section
3 for definitions), another logical process called induction*® must be considered when processing real knowledge. This is
because induction extracts knowledge from experiences and experimental data. In addition, the role of induction is not
explicitly highlighted when processing real knowledge within the framework of the general design theory, thereby impart-
ing ambiguity in the general-design-theory-based definition of knowledge. By contrast, the C-K theory of design considers
the simultaneous evolution of two domains—concept and knowledge—when a design process continues.*>*3 Application
of this theory requires two knowledge types—existing and new—for continuing a design process.***> New knowledge
is necessary to resolve epistemic uncertainties underlying creative concepts.*> Unlike the general design theory, the
C-K theory does not define new-knowledge creation or existing-knowledge utilization processes in terms of deduction,
abduction, induction, and alike. Consequently, C-K-theory-based definitions of knowledge are somewhat informal.

Similar to engineering design, in manufacturing (product, system, service realization), the concept of knowledge has
always existed. It appears more explicitly owing to the advent of Industry 4.0. Industry 4.0 employs embedded systems (eg,
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cyberphysical systems) to perform cognitive tasks such as monitoring, understanding, predicting, deciding, acting, and
adapting. Some authors reckon that the cyberphysical systems are nothing but an extensive and self-growing knowledge
base,? but knowledge is not defined clearly. On the other hand, some authors consider that the contents by which the
embedded systems perform, take the form of digital twins—exact mirror images of real-world objects, processes, and
phenomena—in cyberspace.”*” Some of these twins consist of different types of knowledge.” but these types are not clearly
defined. Some other authors (eg, consider the work in*®) reckon that both data-bases and knowledge-bases must populate
the embedded systems, where the demarcation lines between “data” and “knowledge” are not drawn. Some authors
consider that knowledge is semantically annotated data,'>15 as already described in Section 1. Thus, in the literature of
Industry 4.0, the concept of knowledge remains ambiguous.

2.3 | Other relevant fields

In addition to epistemology, engineering design, and manufacturing, definitions of knowledge have also been reported in
the literature of other fields such as organization, education, and information sciences.

A well-known definition of knowledge in organization science states that knowledge can either be of the tacit or
explicit types.**->3 Tacit knowledge pertains to intuitions, experiences, and know-how possessed by active individu-
als in their respective organizations. Consequently, it is challenging to identify or even codify such knowledge.**-%%53
Explicit knowledge includes documented instructions for facilitating organizational activities. It is, therefore, easy to
identify and share. Tacit knowledge dynamically transforms into explicit knowledge and vice versa through social or
teamwork-based interactions (dialogue) among employees.’> Remarkably, such transformations do not require formal
logical processes.”®>! This contradicts the definitions of knowledge reported in other disciplines, such as information
science. However, other schools of thought in organization science exist related to knowledge>* and its formation.> For
example, Albino et al>* considered five types of knowledge—scientific, quantitative, qualitative, tacit, and intuitive. As
reported by Boh.>> knowledge formation and validation processes follow a hierarchy that is not clearly defined.

In education science, the concept of knowledge has always existed along with human-learning. For example, con-
sider the definitions of knowledge presented in-8. Carson>® has proposed nine categories of knowledge—empirical,
rational, conventional, conceptual, cognitive-process skills, psychomotor, affective, narrative, and received. All these cat-
egories of knowledge form in the intertwined domains, and ultimately transform to conventional knowledge. Kinchin
et al®” have proposed four types of knowledge, namely, novice knowledge, theoretical knowledge, practical knowledge,
and professional knowledge. All these types of knowledge possess different degrees of “semantic gravity.” Ullah®® has pro-
posed five types of knowledge—analytic a priori, synthetic a priori, synthetic a posteriori, meaningful, and skeptic—for
discipline-based education. The first three types follow the Kantian epistemology described in Section 2.1 and form in the
cognitive and real worlds, whereas the last two types of knowledge form in the pragmatic world, where the preferences
of the knowledge formulator and the purposes of application become the main ingredients of knowledge. Nonetheless,
the definitions of knowledge in6->® are somewhat informal and defined linguistically, only.

In information science, the concept of knowledge has always existed along with the concepts of information and
data wherein data, information, and knowledge have been used interchangeably. These concepts have started to play
an explicit role in engineering problem solving when several machine-learning approaches have been introduced®-% to
facilitate learning from a given data set. This enables expert systems to solve domain-specific problems.®® At the core of
these systems lie certain rules (eg, if ... then ... rules) extracted from a given data set using probabilistic reasoning and
fuzzy logic.®®7 Therefore, in information science, machine-learning-enabled rules have been playing the role of knowl-
edge. A few authors in information science have formally defined knowledge with regard to data and information.%68
Nevertheless, these definitions suffer circularity. For example, consider the definitions reported in%2% Nagao%? has classi-
fied knowledge into two types—factual and inference-based. Factual knowledge is obtained objectivity, accepted widely,
and can be expressed as a sentence or symbolic equation, wherein each term is clearly defined. In order to represent
factual knowledge, other concepts (referred to as primary and secondary information)®? can be used as semantic annota-
tions for ease of digital-media-based information processing. On the other hand, using inferences (deductive, inductive,
or probabilistic),** cognitive reasoning (analogical, common sense, and qualitative), and heuristics, new knowledge can
be acquired from factual knowledge. Such knowledge is called inference knowledge.®®%-19) Mizzaro® has introduced a
concept called knowledge-state to draw demarcation lines among knowledge, information, and data. Although the tem-
poral nature of a knowledge-state has been studied,%® the types of knowledge have not been shown explicitly in terms of
knowledge state or data/information.
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3 | REVISED DEFINITION OF KNOWLEDGE

The previous section describes the multiplicity and circularity underlying the definitions of knowledge as elaborately as
possible, referring to different fields (epistemology, engineering design, manufacturing, organization science, education
science, and information science). This section presents a revised definition of knowledge from the perspective of Industry
4.0. Before presenting the revised definition, the following points are highlighted for the sake of better understanding.

Despite the multiplicity and circularity in the definitions of knowledge described in the previous section, there are
some common grounds. One of the noteworthy common grounds is related to the representation of knowledge-knowledge
graphs (eg, concept maps) can represent knowledge irrespective of its types, human-learning, machine-learning, and aca-
demic fields. To understand this, recall information and education sciences, as described above. In information science,
where machine-learning is the primary concern, knowledge representation boils down to concept mapping. For example,
the types of knowledge called factual and inference knowledge®? are represented using semantic networks of concepts
wherein the logical operations (AND, OR, NOT, and alike) connect the relevant concepts manifesting a set of if ... then ...
rules.®? In education science, where human-learning is the primary concern, knowledge representation also boils down
to concept mapping. For example, Kinchin et al’” and Ullah® represented various types of knowledge using concept
maps. A concept map here is a personalized ontology of human understanding regarding a given issue.®””? These types
of maps ultimately refer to the assimilation hypothesis of human learning.”® The remarkable thing is that the technol-
ogy of semantic web wherein the machine and human-readable knowledge and linked data will reside for using them in
Industry 4.0 will rely on the knowledge graph-based data-format (ie, concept mapping).’*7>

On the other hand, there are some disputed grounds. For example, consider the role of logical operations in knowl-
edge formation. There is a split in this regard. To understand this, recall the recall information and organization sciences,
as described above. Information science demands the application of logical operations for knowledge formulation and
transformation, for example, factual-inference knowledge transformations require sophisticated logical operations.5?
Organization science demands the application of social interactions—tacit-explicit knowledge transformations only
require social interactions.*

Drawing the demarcation lines among knowledge, data, and information has been an important issue. Though
knowledge-state® may be used to solve this problem, it would be challenging to implement it in real-life scenarios without
the types of knowledge. Though the semantic networks of linked data and knowledge (ie, knowledge graphs or concept
maps) integrate the relevant data, information, and knowledge to solve problems in engineered systems,’®”® the maps
are created without making any distinctions among knowledge, data, and information. As a result, when the so-called
knowledge state®® changes, its influence randomly propagates to the whole network. This means that what has been
affected (knowledge, data, or information) to what extend remains obscure. On the other hand, human-learning described
so far is based on the assimilation hypothesis.”® which states that nothing new can be learned without existing knowl-
edge. This contradicts the concept of new knowledge given by the C-K theory of design,*® and is not desirable because
new knowledge is the primary ingredient for creating artifacts. Thus, education-science-driven definitions of knowledge
tend to ignore the main ingredient of creativity. On the other hand, which segment of a knowledge graph or concept
map is knowledge and which part is not must be known beforehand. This is not possible until a clear demarcation line
exists between knowledge and other relevant contents (eg, data and information). At the same time, the relevant system
must aware of the coexistence of different types of knowledge. This is a drawback of the existing knowledge and data
representation using the semantic web.”*7

Based on the abovementioned considerations, this section presents an Industry 4.0- and semantic web-friendly
definition of knowledge, which is free from circularity and ambiguity.

The proposed definition of knowledge is as follows. A piece of knowledge (denoted as K) comprises three
elements—knowledge claim (K ), knowledge provenance (Kp.), and knowledge inference (Kiyr). In general, these
elements demonstrate the following relationship.

Kin
K= {Kclm,Kprv’ Kint } Kprv _’f Kom (1)

In the above expression, K, denotes a manifestation of K, that is, K, can be a proposition, an equation, or any
other piece of information. Other elements may or may not be reported explicitly, that is, K, and Kj,r may remain empty,
but Kcim # 8. Kprv helps identify the truthiness of K. There exist no restrictions that K¢, must be “completely true” or
“completely false.” Partially true or partially false K., can be used to manifest K. This implies that K, may not fully
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justify Kem. Kint refers to the inferential process involved in gaining K, in the presence of K. In addition, Kj,¢ helps
categorize K into different types and categories. In some cases, K, and Kjys may remain empty that is, Kpry, Kins = 0 is
allowed.

The definition of knowledge given by Equation (1) yields four fundamental knowledge types—(a) definitional, (b)
deductive, (c) inductive, and (d) creative—which are summarized in Table 1 along with their main characteristics and
descriptions.

As described in Table 1, definitional knowledge refers to knowledge gained by defining ideas or concepts such that
their definitions are not uncontroversial or readily accepted by stakeholders. For definitional knowledge, K¢im = Kprv and
Kint = @. Since such pieces of knowledge correspond to mere definitions of ideas, they are always true (tautology). From
an epistemological sense, such knowledge qualifies as analytic a priori knowledge, as described in Section 2. This type of
knowledge can be further explained using examples discussed in Section 4.

Deductive knowledge implies knowledge gained by establishing relationships among definitional knowledge with the
aid of a logical process called deduction. Mathematically,

Deduction : (A > B)AAFB, (A—->BAB-C)FA->CO). 2)

In the above equation, A, B, and C are, by definition, true entities, that is, they qualify as definitional knowledge.

Thus, from the viewpoint of deductive knowledge, K¢im # Kpw, Kinf = Deduction, and K,y represent pieces of defini-
tional knowledge. From an epistemological sense, deductive knowledge refers to synthetic a priori knowledge or relations
of ideas, as described in Section 2. There exist two categories of deductive knowledge—(a) primary relation of ideas and
(b) secondary relation of ideas—as exemplified in Section 4.

Inductive knowledge refers to knowledge gained by experiencing the world with the aid of a logical process called
induction. Mathematically,

Induction : (04, ... ,0,) F (A - B). 3)

In the above expression, Oy, ... ,0, refer to finite observations, experimental results, experiences, or data. Entities A
and B are consistent with objects related to Oy, ...,0,. Thus, from the viewpoint of inductive knowledge, Kcim # Kprv,
Kins =Induction, and K,y correspond to pieces of data and/or observations, thatis, Oy, ... ,0,, as described above. Based on
the nature of induction, inductive knowledge can be classified into three main categories—(a) informal-induction-based
knowledge, (b) relation-of-ideas-assisted inductive knowledge, and (c) complex-induction-based knowledge. These
categories have also been exemplified in Section 4.

Formulation of creative knowledge is caused by creative activities or pragmatic preferences. In this case, there exists
no formal provenance that is, K,rv = @, and the logical process involved most likely corresponds to abduction, that is,
Kinf = Abduction (eg, introducing plausible causes (A1, A2, ... ) for achieving a given effect (B).

Abduction : (Unknown A — B) A (B) F Plausable A1,A2, ... . @)

TABLE 1 Definition of knowledge

Types of knowledge Main characteristics Descriptions
Definitional knowledge Kem = Kprv, Kint #9 Knowledge due to uncontroversial definition of ideas or
concepts

Deductive knowledge Kim # Kpry, Kins = Deduction, K, are Knowledge due to deduction applied to ideas, primary
some pieces of definitional knowledge relations of ideas, and/or secondary relations of ideas

Inductive knowledge Kim # Kpry and Ky = Induction, Kpry Knowledge due to induction applied to experience or data,
consists of some pieces of data and/or resulting in informal induction-based knowledge,
observations relations-of-ideas assisted inductive knowledge, and

complex induction-based knowledge

Creative knowledge Ko =@ and Kj,; = Abduction (most likely) ~ Knowledge due to abduction (creative activities or pragmatic
preferences), resulting in analytic a priori-based creative
knowledge, synthetic a priori-based creative knowledge,
and synthetic a posteriori-based creative knowledge
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It is remarkable that the truthiness of A1, A2, ... is neither true nor false until a new piece of deductive or inductive
knowledge is available. The truthiness may refer to Kantian categories of judgment, as described in Section 2. Creative
knowledge can be categorized into three types—(a) analytic a priori-based, (b) synthetic a priori-based, and (c) synthetic
a posteriori-based—as exemplified in Section 4.

The proposed knowledge types and their categories, except the definitional knowledge, cannot exist independently. As
a result, knowledge chains or graphs form, manifesting a concept map, or a set of concept maps. When a concept map or
network is studied, its contents boil down to definitional, deductive, inductive, and/or creative knowledge. Consequently,
while constructing concept maps for use in desired purposes (eg, human learning or learning in human-cyberphysical
systems), their contents can be organized and analyzed in terms of the knowledge types and categories presented in this
section.

4 | EXEMPLIFICATIONS

This section presents examples that describe the types and categories of knowledge presented in Section 3. Most of the
examples are relevant to arbitrary scenarios underlying engineering design and manufacturing. In all examples, a knowl-
edge graph (concept map) represents knowledge claim (K¢ ), and in some cases, the concept maps directly point to
relevant knowledge provenance (K, ). In other cases, K is either shown partially or not shown at all. Knowledge infer-
ence (Kiy) refers to an equation out of Equations (2)-(4), as appropriate, and it is not explicitly shown in the respective
concept maps.

4.1 | Definitional knowledge

As already mentioned, definitional knowledge is created by uncontroversial definitions of ideas or concepts, and it does
not rely on formal inference per se. At the same time, knowledge provenance cannot be separated from a knowledge
claim. For example, consider an illustration of turning (a widely used manufacturing process) and the corresponding
concept map depicted in Figure 1A,B, respectively. The concept map captures a portion of the knowledge underlying the
scenario. It boils down to the following statements:

(1) Force acting along the cutting direction is called cutting force.

(2) Cutting speed refers to the speed at which the workpiece makes contact with the cutting tool while turning.

acting along the

R Y

Cutting force (F,)

is the is called _the
Depth of cut (a,)
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FIGURE 1 Examples of definitional knowledge
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(3) Turning is a manufacturing process that removes materials from a workpiece via chip formation.

(4) If the cutting force equals zero, no chip formation occurs.

Since these statements define the concepts of cutting speed and cutting force during the material-removal process
called turning, they can only be considered pieces of definitional knowledge. Thus, the above statements can be consid-
ered a knowledge claim and provenance simultaneously. Without these definitions, other types or categories of knowledge
underlying turning (described below) do not make sense.

4.2 | Deductive knowledge

Asalready described, deductive knowledge comes into being due to the inference called deduction (Equation (2)), wherein
knowledge claim and knowledge provenance need not be identical. Instead, the knowledge provenance here refers to the
pieces of definitional knowledge. There exist two categories of deductive knowledge, namely, primary relation of ideas
and secondary relation of ideas. For example, consider the concept map depicted in Figures 2 that underlies the scenario
described in Figure 1A. The concept map boils down to the following statements:

(1) The manufacturing process called turning entails cutting power (P.), material-removal rate (MRR), and specific
cutting energy (K.).

(2) Cutting power (P.) can be expressed as P, = F.V..

(3) Material-removal rate (MRR) is given by MRR = apfv.

(4) Specific cutting energy (K.) is given by K. = P./MRR.

(5) Pc = Fcve, MRR = a,fi, and K. = P./MRR yield K. = F¢/(apf).

The first statement does not qualify as a piece of deductive knowledge. It is instead a piece of informal-induction-based
knowledge, as described in the next subsection. Statements (2), (3), and (4) are examples of primary relation of ideas,
whereas the last statement exemplifies secondary relation of ideas, because it has been derived from statements (2), (3),
and (4) using deduction.

Statement (2) entails three pieces of definitional knowledge (cutting power, cutting force, and cutting speed) that col-
lectively refer to the knowledge provenance (when force is multiplied by speed, it yields power). This provenance, as
well as the definitional knowledge about the cutting force and cutting speed, are not explicitly shown in the concept map
(Figure 2). (Figure 1B, on the other hand, explicitly describes the relevant definitional knowledge.) Therefore, knowledge
can be made more meaningful from a user’s point of view by integrating the concept maps depicted in Figures 1B and 2,
and a concept map showing the provenance mentioned above. Statement (3) entails four pieces of definitional knowl-
edge (material-removal rate, depth of cut, feed rate, and cutting speed) that collectively refer to the provenance “material
removal rate refers to the volume of material removed in unit time.” Once again, this provenance and associated defini-
tional knowledge (depth of cut, feed rate, and cutting speed) are not explicitly described in the concept map (Figure 2).
Figure 1B, on the other hand, depicts a portion of the relevant definitional knowledge (cutting speed). Thus, by adding

[a manufacturing processJ

called

/entlails\

cutting power specific cutting energy
(Pc) (Ke)

material removal rate
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|
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FIGURE 2  An example of deductive knowledge Ke = Fe/(ap*f)
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definitions of the depth of cut and feed rate to the concept map depicted in Figure 1B and subsequently integrating it

with the concept map depicted in Figure 2 and abovementioned provenance would make knowledge representation more
meaningful. A similar argument is valid for statement (4).

4.3 | Inductive knowledge

As already stated, inductive knowledge is caused by an inference, called induction (Equation (3)), where knowledge
claim and provenance are not identical. Instead, knowledge provenance here refers to pieces of observations, exper-
imental data, and alike. There exist three categories of inductive knowledge—informal-induction-based knowledge,
relation-of-ideas-assisted inductive knowledge, and complex induction-based knowledge—described as follows.

The first category can be described using the scenario depicted in Figure 3. Figure 3A depicts plots of machining
forces, such as the cutting force (F.), thrust force (F;), and feed force (F¢). The underlying machining experiments have
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been reported in”. Figure 3B depicts a concept map that comprises a piece of informal-induction-based knowledge that
underlies the provenance depicted in Figure 3A. The concept map depicted in Figure 3B boils down to the following
statements:

(1) The manufacturing process called turning exhibits machining force.

(2) Machining force comprises three orthogonal components—cutting force (F.), thrust force (F}), and feed force (F).

(3) Experimental results (shown here) demonstrate that the three orthogonal components are related as F. > F > Fr.

The last statement is an example of informal-induction-based knowledge because it is derived by visually inspecting
the data sets depicted in Figure 3A without performing any formal computations. The truthiness of such knowledge can
be verified using provenance. Thus, data attached to the node “shown here” must direct users to the URL https://doi.
0rg/10.3390/jmmp2040068 from where they can extract relevant data. The other two statements represent definitional
knowledge.

Next, consider the category of relation-of-ideas-assisted inductive knowledge. For describing this category, consider
the scenario described in Figure 4. Figure 4A depicts a data set and a plot demonstrating the relationship between cutting
conditions and surface roughness during turning. Thus, the provenance of inductive knowledge is presented in Figure 4.
The knowledge claim is depicted in Figure 4B using a concept map.

The concept map boils down to the following statements:

(1) Surface roughness (R,) of turned surfaces depends on three factors—cutting velocity (v.), depth of cut (a,), and
feed rate (f), as demonstrated by experimental results.

(2) A new variable cv = f?/ ((ap)b(vc)c) defines the relationship between the said three factors.
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(3) Experimental results shown here yield R, = 0.163 + 68.36 * cv so that a, b, and c equal 1.8, 0.1, 0.4, respectively.

Statement (3) is a piece of relation-of-ideas-assisted inductive knowledge because the expression for R, is established
based on a relation of ideas (cv), and it is valid only for the given data set. The other two statements do not qualify as
relation-of-ideas-assisted inductive knowledge. Statement (2), in particular, is a piece of relation-of-ideas-based knowl-
edge that defines a new variable (cv) relating existing parameters—f, ap, and v.—found in the provenance. Statement (1),
on the other hand, is a piece of informal-induction-based knowledge evolved from the data set described in Figure 4A
without the need for any formal computation. This example also demonstrates that different categories of knowledge
coexist when a meaningful representation of knowledge is performed.

In a general sense, when a relatively complex machine-learning approach is adopted to understand the struc-
ture underlying a data set or observation, complex-induction-based knowledge evolves. In other words, knowledge
acquired by machine learning can roughly be considered complex-induction-based knowledge. Therefore, when
computational-intelligence techniques are applied to a set of data/observations, the extracted knowledge can be catego-
rized as complex-induction-based knowledge. Examples of such techniques include probabilistic reasoning, stochastic
simulation, artificial neural network, genetic algorithm, fuzzy or multivalued logic, rough sets, simulated annealing, deep
learning, DNA computing, multicriteria/objective decision making/optimization, decision-tree induction (ID3, C5.0),
and hidden Markov modeling.”#7>6780 For example, consider the case described in Figure 5. Figure 5A schemati-
cally illustrates two fuzzy numbers—A and B—induced from cutting-torque time-series data recorded under two sets of
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cutting conditions referred to as case-1 and case-2. Numerous methods can be used to induce a fuzzy number from a given
set of time-series numerical data.?1:82 Such induction is a complex process requiring all types and categories of knowl-
edge. Thus, if fuzzy numbers in Figure 5A are considered knowledge provenance, some pieces of knowledge represented
by the concept map in Figure 5B qualify as complex-induction-based knowledge. The concept map in Figure 5B boils
down to the following statements:

(1) Cutting torque of end-milling operation in case-1 is denoted as A.

(2) Cutting torque of end-milling operation in case-2 is denoted by B.

(3) A is a triangular fuzzy number.

(4) B is a triangular fuzzy number.

(5) Case-2 is more effective at reducing cutting torque compared to case-1.

(6) Cutting torques A and B are stored “here.”

The first two statements represent two pieces of complex-induction-based knowledge since a complex
computational-intelligence-based procedure underlies the induction of A and B. Statements (3) and (4) qualify as the
pieces of definitional knowledge. Whereas statement (5) represents informal-induction-based knowledge that evolves
from visual inspection of relative positions of A and B. The last statement is a piece of information (not knowledge) that
directs a user to the provenance, that is, data sources relevant to Figure 5A. This example demonstrates that different types
and categories of knowledge constitute a concept map, and some segments need not necessarily be a piece of knowledge.

4.4 | Creative knowledge

Unlike deductive and inductive knowledge, creative knowledge does not rely on knowledge provenance. It provides plau-
sible explanations/solutions to an issue. This, in some cases, might lead to controversies. Creative knowledge exists in
three categories—analytic a priori-based, synthetic a priori-based, and synthetic a posteriori-based—described as follows.

Let us first consider analytic a priori-based creative knowledge. As the name suggests, this category of knowledge is
introduced by an individual to define certain concepts; however, the definitions can be considered false or true depending
on the personal preference of others. This implies that some may consider the definitions to be true, whereas others may
not. For example, consider the concept map depicted in Figure 6. It boils down to the following statements:

(1) A product attribute means an attractive attribute, reverse attribute, indifferent attribute, must-be attribute, or
one-dimensional attribute.

(2) Presence of an attractive attribute contributes to customer satisfaction.

(3) Absence of attractive attribute does not contribute to customer dissatisfaction.

The first statement is a piece of analytic a priori-based creative knowledge. The reason is as follows. Here, statement
(1) classifies product attributes into five types.33#* Other researchers may define product attributes in other ways. Conse-
quently, this statement may be true for some product developers and false or partially true for others. On the other hand,
statements (2) and (3) do not qualify as pieces of analytic-a priori-based creative knowledge because these statements
collectively define the nature of the attractive attribute exclusively. Thus, statements (2) and (3) represent definitional
knowledge. Besides the abovementioned example, consider the following statements to further understand the analytic-a
priori-based creative knowledge.

(1) “Fundamental human needs demonstrate a hierarchy, and they can be classified in the ascending order
as—physiological needs, safety needs, social belonging, self-esteem, and self-actualization”.
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(2) “Fundamental human needs are nonhierarchical, and they can be classified as subsistence, protection, affection,
understanding, participation, leisure, creation, identity, and freedom.”

Both statements define human needs in two different ways. Therefore, both represent pieces of analytic-a
priori-based creative knowledge. The former statement was proposed by Maslow.3>8 whereas the latter was proposed
by Max-Neef.8”% If someone attempts another definition of human needs will be created. However, its category would
remain unchanged—analytic-a priori-based creative knowledge. Thus, the definition of knowledge presented in Section 3
boils down to some pieces of analytic-a priori-based creative knowledge.

Let us now consider synthetic-a priori-based creative knowledge. Here, a new concept or parameter is injected to estab-
lish a relationship among existing concepts/parameters using deduction. A classic example of synthetic-a priori-based
creative knowledge is presented by the concept map depicted in Figure 7. It boils down to the following statements:

(1) Euler’s number e can be expressed as e* = 1+ (x/1!) + (x?/2!) + (x3/3) + ...

(2) Sine function can be expressed as sin(x) = x - ((x*)/(31)) + ((x*)/(5!)) - ()/(7)) + ...

(3) Cosine function can be expressed as cos(x) = 1- (x2)/(2!)) + ((x*)/(41)) - (x®)/(6!) + ...

[

(4) Functions ¢*, sin(x), and cos(x) yield e* = cos(x) + i*sin(x), wherein “i” equals the square root of —1, that is,
i=+/-1.

(5) An imaginary number can be represented using i = \/—_1

(6) The relation e™ = cos(x) + i*sin(x) yields e + 1 = 0 if x = = (pi = n).

(7) Euler’s identity implied e* + 1 = 0.

The first three statements represent pieces of knowledge classified as secondary relations of ideas because these can
be derived via deduction from respective primary relations of ideas and definitional knowledge. For the same reason,
statement (6) is also a secondary relation of ideas. Statements (5) and (7) are pieces of definitional knowledge, whereas
statement (4) is a piece of synthetic-a priori-based creative knowledge since it entails a new concept (imaginary num-
ber i = \/—_1) that was not known before Euler introduced it to deduce a relationship between the Euler’s number,
sine function, and cosine function. Remarkably, synthetic-a priori-based creative knowledge has a temporal dimension.
As a result, it may transform into definitional knowledge at a later time. For example, nowadays, an imaginary num-
ber is a piece of definition knowledge. At the time of its inception, it was a piece of synthetic a priori-based creative
knowledge.

Finally, let us consider synthetic-a posteriori-based creative knowledge. This category includes pieces of knowledge
that emerge owing to pragmatic preferences, which are led by data- or experience-driven activities. For example, consider
a signal (time series) that provides information about surface heights of an arbitrary machined surface, as depicted in
Figure 8A. A concept map gives some pieces of knowledge underlying the signal, depicted in Figure 8B, which boils down
to the following statements.

(1) A signal (time series) may comprise three stochastic features—trends, noises, and bursts.

(2) The stochastic features can be defined using functions 7, N, and B, respectively.

(3) Functions T, N, and B can be added to yield function S given by S= T+ N + B.

(4) S can be used to simulate signals (time series).

The first statement is an example of synthetic-a-posteriori-based creative knowledge because it seems (to an individ-
ual) that the given signal (Figure 8A) is caused by the stochastic features (trends, noises, and bursts); other individuals
might imagine it differently. The second and third statements represent the pieces of definitional knowledge. On the other
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hand, the last statement is a piece of analytic-a priori-based creative knowledge since it is unclear whether or not signals
can be accurately simulated by the function S.

5 | DISCUSSIONS

As described in Sections 3 and 4, the different types and categories of knowledge tend to coexist, except definitional
knowledge. Knowledge representation can be performed using knowledge-type-aware concept mapping, wherein the
types and categories of knowledge play a vital role. It is worth mentioning that when a concept map represents a piece
of knowledge claim, it may incorporate other relevant content, such as those relevant to knowledge provenance. At the
same time, other nonknowledge contents (eg, information to help users grasp the meaning of the concept map) may also
be considered part of a concept map. In order to understand this issue in greater detail, a creative design process has been
considered and represented by a concept map of a solid-fuel-based engine developed for Mars exploration.2439

Figure 9 depicts seven interdependent concept maps, denoted by C1,...,C7, that collectively represent the
solid-fuel-based engine’s conceptual design. For the sake of analysis, internal combustion (IC) engines are considered
to be available in the market a priori. The same, however, is not valid for solid-fuel-based engines. Consider the con-
cept map (C1) that boils down to the proposition that an IC engine requires a fuel and an oxidizer. This is the definition
of an IC engine, and, therefore, represents a piece of definitional (or analytic a priori) knowledge. The second concept
map (C2) boils down to the proposition that the earth’s atmosphere supplies ample O, (>20%) and hydrocarbons, but
hardly supplies any CO, (<0.05%). This is a piece of informal-induction-based knowledge. Experimental data regard-
ing chemical analyses of the substances found in the earth atmosphere form the knowledge provenance for this piece
of knowledge. The third concept map (C3) boils down to the statement that an IC engine uses O, as an oxidizer and
hydrocarbons as a fuel. This qualifies as informal-induction-based knowledge, and data regarding oxidizers and fuels
used of existing IC engines form the provenance for this piece of knowledge. Concept map (C4) boils down to the
statement that an ample supply of fuel and oxidizer is essential for an IC engine. This, too, qualifies as a piece of
informal-induction-based knowledge for which data concerning the performance of the existing IC engine constitutes
knowledge provenance. Up to C4, the design process deals with the existing IC engine. From C5 onward, the focus is
shifted to a new engine that usages Magnesium (Mg) as a solid fuel. The fifth concept map (C5) boils down to the propo-
sition that the engine for Mars exploration may require fuel and an oxidizer. This is an analytic-a priori-based creative
knowledge. No knowledge provenance (data or theoretical analysis) is available to support this proposition; it is nei-
ther true nor false at the time of its conception. The sixth concept map (C6) boils down to the statement that Mars’
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atmosphere supplies ample Mg, CO, (>95%), hardly supplies any O, (<0.1%), and does not supply hydrocarbons. This is
a piece of informal-induction-based knowledge, and experimental data obtained from chemical analyses of substances
found within Mars’ atmosphere form the provenance for this knowledge. The last concept map (C7) boils down to the
proposition that an engine for Mars exploration may use Mg as fuel and CO, as an oxidizer. This represents analytic-a
priori-based creative knowledge since no knowledge provenance (data or theoretical analysis) is available to support this
proposition at the time of its inception. Thus, it is neither true nor false. This piece of knowledge, in turn, leads the design
process of solid-fuel-based engines for Mars’ exploration into the embodiment, parametric, and detailed design stages,
respectively.

Itis clear from the characteristics of concept maps C1, ..., C7 that a creative design process entails definitional knowl-
edge, analytic-a priori-based creative knowledge, and informal-induction-based knowledge. Formal computation-based
knowledge (eg, secondary relations of ideas, complex induction-based knowledge, and synthetic a posteriori-based knowl-
edge) hardly dominates a creative design process. This is perhaps a characteristic of creative design processes. Similar
investigations can be performed to determine the characteristics of other design processes, such as embodiment design,
parametric design, and detailed design. Thus, a more comprehensive and systematic structure of each design process can
be established. In turn, this would help digitize knowledge-intensive activities more effectively from both human and
machine-learning viewpoints. The same augment is valid for knowledge-intensive activities relevant to manufacturing.
As aresult, knowledge-type-aware concept mapping activities can benefit engineering design and manufacturing as well
as engineering informatics.

The findings discussed thus far in this article refer to the scenario schematically illustrated in Figure 10. As can be seen
in Figure 10, five integrated domains denoted by D1, ..., D5 must work collectively to realize the engineering informatics
objectives relevant to Industry 4.0. The first domain (D1) records the previously performed operational, analytical, and cre-
ative activities. These activities refer to knowledge claim, provenance, and inference that help create the domain denoted
as D2. D2 must be integrated with D3, which can organize elements of knowledge into knowledge-type-aware concept
maps, to facilitate human and machine learnings. D4 is populated with the outcomes of D3. Thus, it represents a set of
knowledge-type-aware concept maps. Contents of D4 are fed into D5, the domain of smart manufacturing, wherein the
distributed embedded systems (cyberphysical systems, digital twins, and IoT-embedded manufacturing enablers [such
as machine tools, robots, and material handling devices]) function. Research endeavors explicitly aimed at addressing
the construction of these domains would offer benefits to smart manufacturing techniques. In doing so, the types and
categories of knowledge presented in this article will play a pivotal role.
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The cognitive task-based autonomous agents that materialize Industry 4.0 (IIoT, cyberphysical systems, and digital
twins) are always subjected to cyber risk. Radanliev et al’! have introduced an epistemological framework of standardizing
cyber risk and decision-making, avoiding such risks. The kind of framework must be integrated with the abovementioned
knowledge-type-aware informatics, ensuring the robustness of the agents. Since both the cyber risk framework®! and
knowledge-type-aware informatics are based on epistemological considerations, the integration may not be difficult to
achieve. This issue remains open for further research.

The role of human resources has been redefined in Industry 4.0, where workers are supposed to engage in more cogni-
tive tasks, and easing of physical tasks must be enhanced using advanced ergonomic arrangements.’> Thus, empowering
human resources with the required knowledge has become an important issue. In this respect, various computer-aided
human learning concepts have been introduced (eg, Education 4.0, Operator 4.0, and alike).”*>> For example, in Operator
4.0, adaptive learning at work, sharing knowledge, collaborative job design, adaptive solution making must go hand in
hand.”® A similar trend is observed in the case of Education 4.0, with an emphasis on augmented-reality-based educational
content. The knowledge-type-aware contents can be used while building the systems that empower human resources
under the umbrella of Education 4.0 or Operator 4.0. This will make the learning system development process, as well as
learning outcome assessment process, more focused and productive. Further study can be carried out in this direction.

Industry 4.0 underlies a complex ecosystem. In this ecosystem, manufacturing enablers (eg, CAD/CAM systems,
monitoring systems, material handling systems, programmable machines and tools, robots, and human resources) make
myriad proximal and distal interactions among the cyberphysical systems, IIoT, cloud computing, and digital twins.
These interactions are supposed to make the manufacturing enablers autonomous in solving problems and performing
high-level cognitive tasks (understand, predict, decide, act, and adapt). Now, solving a problem or performing a cognitive
task requires knowledge. If it (solving a problem or performing a cognitive task) is done in the Industry 4.0 ecosystem,
digitized knowledge is required. Therefore, digitize knowledge is critical to the Industry 4.0 ecosystem. The remark-
able thing is that knowledge entails another complex ecosystem defined as a knowledge ecosystem. In this ecosystem,
knowledge makes myriad proximal and distal interactions among human learning, machine learning, logical inferences
(deduction, induction, and abduction), experimental data, analytical results, simulations, algorithms, creative thinking,
and cognitive reflections. The outcomes of this study bridge the gap between these ecosystems (Industry 4.0 ecosystem
and knowledge ecosystem). Thus, this study establishes the fundamentals based on which sophisticated methods and
tools can be developed for the advancement of Industry 4.0.

6 | CONCLUDING REMARKS

Without apply digitized knowledge, problems cannot be solved in Industry 4.0. Thus, any ambiguity in the definition of
knowledge creates unnecessary complexity and hinders the advancement of Industry 4.0.

As found from the articulations of knowledge reported in the extant literature of epistemology, engineering design,
manufacturing, organization science, information science, and education science, most authors attempting to define
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knowledge have restricted themselves to their respective disciplines and provided piecemeal solutions. Some of the defi-
nitions suffer circularity. Notably, the concepts such as human learning, machine learning, logical inferences (deduction,
induction, and abduction), experimental data, analytical results, simulations, algorithms, creative thinking, cognitive
reflections, virtue, and moral thinking, have been the leading causes of circularity. Thus, eliminating circularity (ie,
straightforwardly positioning knowledge to the abovementioned concepts) in the definition of knowledge as well as
maintaining a genial attitude toward all definitions reported to date constitutes a significant challenge when attempting
to define knowledge. This article overcomes this challenge by introducing a three-element-based definition of knowl-
edge, that is, a piece of knowledge consists of knowledge claim, knowledge provenance, and knowledge inference. These
elements have been defined in clear terms to help distinguish between knowledge and data/information. Knowledge
inference helps define knowledge types—definitional, deductive, inductive, or creative—whereas knowledge claim man-
ifests knowledge in explicit terms. Each type of knowledge exhibits some categories, which have been exemplified using
real-life scenarios relevant to engineering design and manufacturing. It has been observed that no other knowledge types
or categories can exist independently except definitional knowledge. However, they form concept maps (user-defined
ontologies), which are networks of concepts forming a knowledge graph. These graphs can easily be digitized to make
them available to the relevant systems using semantic web technology. In other words, when a piece of knowledge is
studied, its contents boil down to definitional, deductive, inductive, and/or creative knowledge.

Consequently, when constructing knowledge graphs for human or machine learning, contents can be organized and
analyzed based on the type of knowledge and its categories. This way, the types of categories of knowledge can be used as
semantic annotations, making them distinguishable from other relevant contents such as experimental data, analytical
results, simulations, algorithms, creative thinking, and alike. Thus, if the outcomes of this study are utilized in developing
cyberphysical systems, unnecessary computational complexity can be avoided and the systems become transparent and
manageable due to semantic richness.

Nevertheless, defining knowledge implies proposing pieces of analytic a priori-based creative knowledge. Thus, the
process of defining knowledge requires further development. In this sense, the proposed study marks the beginning of a
long journey that would end when the definition of knowledge becomes an analytic a priori knowledge to all stakeholders.
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