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Abstract

The existence of positive solutions to the system of ordinary dif-
ferential equations related to the Belousov-Zhabotinsky reaction is
established. The key idea is to use a new successive approximation
of solutions, ensuring its positivity. To obtain the positivity and
invariant region for numerical solutions, the system is discretized as
difference equations of explicit form, employing operator splitting
methods with linear stability conditions. Algorithm to solve the
alternate solution is given.
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1. Introduction

The goal is to give new discretization scheme for some reaction diffu-
sion equations, which a priori ensures the positivity-preserving. The
model equations incorporate a modified version of Holling-Tanner (or
Leslie-Gower) functional response, which are studied for pattern dy-
namics and Turing instability. We consider the reaction diffusion e-
quations of Keener-Tyson model for Belousov-Zhabotinsky reaction:

0w = Au~+u(l —u)/e — hv(u — q)/(u+ q),
O = dAv — v + u,
ult=0 = uo, v|t=0 = vo.

(BZ)

See [1] and [2]. Here, u = u(z,t) and v = v(x, t) stand for the unknown
scalar functions at € R™ and ¢ > 0 which denote the concentrations
in a vessel of HBrOy and Ce'*t| respectively. Besides, ug = ug(z)
and vy = wo(x) are given non-negative functions as the initial da-
ta. Throughout of this paper, to avoid the difficulty arising from
boundaries, the Cauchy problem is treated in the whole space R" for
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n € N or, the periodic boundary conditions are assumed in a bound-
ed domain. In [1], an example of constants is concretely listed-up as
€~ 0.032, g~ 20x10"%and d ~ 0.6 x &; h := p/e and p ~ 1/2
stands for the excitability which governs dynamics of a pattern for-
mulation. It has been used the notation of differentiation; d; := 9/0t,
A=3" 107,0;:=0/0x; fori=1,...,n.

On (BZ), the positivity of u is a critical issue. In [3], the time-global
existence of positive unique smooth solutions to (BZ) was established.
They also obtained that Ri and S := (q,u)? are invariant regions,
where @ € (g, 1) is a unique root of

u(l —u)(u+ q) —ehg(u—q) =0.

That is to say, when the initial data (uo, vo) € S, the solution (u, v) €
S for t > 0. The aim of this paper is to establish the similar results for
numerical solutions to the difference equations of discretized (BZ) of
special type. In particular, our numerical scheme congenitally equips
the positivy-preserving and the maximum principle.

The key idea in [3] is to use the following successive approximation:

Qg1 = Augyq +ue(1 —ugp1)/e — hog(ugsr — q)/(we + q),
Opvp41 = dAvgp1 — vey1 + ug,

for ¢ € N with ugyi1|t=0 = up and vey1|t—0 = vg, starting at
up = e®ug and vy := e te'™ vy with non-negative initial data wuo,
vog € BUC(R™). Here, BUC is the space of all bounded uniformly
continuous functions. The virtue of this scheme is to be ensured that
up > 0 and vy > 0 for all £ € N, automatically. So, one can obtain the
time-local non-negative classical solutions to (BZ) as u = limy_, o g,
v = limy_,o v¢. We would emphasize that this technique can be ap-
plicable to construct positive (or, non-negative) solutions to ordinary
differential equations and positive numerical solutions to finite differ-
ence equations.

There are many literatures on structure-preserving numerical meth-
ods for partial differential equations; e.g. [4] and references therein.
Moreover, the researchers on reaction diffusion equations often dis-
cuss the positivity of numerical solutions, when the time-step size At
is small enoughly; the reader can find it in e.g. [5]. In this paper, we
introduce a new difference scheme which produces positive numerical
solutions for arbitrary large At; for the partial difference equations,
we additionally impose the linear stability condition. From this view
point, it has been known that Mimura and his collaborators obtained
the positive numerical solutions to the system of some reaction dif-
fusion equations; see ( [6], [7]). However, it seems to be new that a
numerical scheme leads us to invariant regions.

In addition, there are many numerical results on BZ reaction; e.g. [§]
and references therein. On the other hand, our scheme is an explicit
method which has the features as aiming at application to validated
numerics, in the future.

This paper is organized as follows. In Section 2, the extension of
problem in ordinary differential equation is given, and we shall prove
the existence of positive solutions to the system of ordinary differential
equations as the result. To ensure the existence of numerical solution-
s, in Section 3 we will be devoted to give a scheme of the difference
equations which produce positive numerical solutions, automatically.
We will state results for an invariant region of these numerical solu-
tions to the discretized (BZ) in Section 4, by employing the operator

DOLI: 10.4236/am.2020.1110061

944 Applied Mathematics


https://doi.org/10.4236/am.2020.1110061

Y. Adachi et al.

splitting methods, and for the end we give the conclusion in Section
5.

2. Ordinary Differential Equations

In this section, the construction of time-local positive solutions to the
system of first order ordinary differential equations (ODE) is discussed.
Let m € N, we deal with the following system of nonlinear ODE:

(P)  u,=—fi(w)u; +g;(u), t>0, w;(0)=a; i=1,...,m.

Throughout this paper, for simplicity of notation, t = 0 is the initial
time, ' := d/dt, u := (ul,...,um). Here, u; = u;(t) are unknown
functions for ¢ > 0 and ¢ = 1,...,m. Besides, a; > 0 are given initial
data, f; > 0 and g; > 0 are also given function. We often rewrite (P)
into the following vector valued ODE:

(P) u=-F(uwu+g), t>0, ul0)=a.

Here, we have denoted a := (al, ey am), g = (gl, . ,gm), and F is
the diagonal m x m matrix whose (i,7)-component is f;.
When m = 2, u := uq, v := us, a1 := ug, ag := vy and

1¢:<uk+hyw+@ ?>, g:<uk+hfﬂu+@>

are taken, then (P) is equivalent to the uniform-in-space (BZ). The
model problem (P) is often used to describe dynamics of nonlinear
chemical or biological systems, for example, the Lotka-Volterra type
equations of predator-prey models with density-dependent inhibition
(Holling’s type II or type IV), epidemic SIV (or, SHIV) models and
the Gierer-Meinhardt model. We especially treat fractional nonlinear
terms, and the denominator takes on the value of zero for negative
solutions. Hence, the positivity of solutions to (P) is strongly required,
and so is even in its approximation.
We shall state the main results in this paper.

Theorem 1. If f;, g; > 0 are local Lipschitz continuous and a; > 0,
then there exists a time-local unique solution u; > 0 to (P).

Proof. Let a; > 0 for ¢ = 1,...,m. For the sake of simplicity, let us
assume that a # 0 and g;(v) > 0 for v # 0. Making the approximation
sequences {uf};; fori=1,...,m, we begin with u'(¢) := a for t > 0.

£+1

For each ¢ € N, we successively define u as the solution to the

system of linear non-autonomous ODE:
(SA)  (uH) = —FHu fgh), t>0, ut(0)=a

with vectors of non-negative u’ and a. So, (SA) is equivalent to the
integral equation

uE'H = a— t ug S u£+1 S S t u@ S S.
(INT) (1) AH(D (M+Am(»d

Heuristically, if F' is a constant matrix, then v/ = —Fv, ¢t > 0, v(0) =
a admits a solution v(t) = e~ *a. In this situation, we thus have

t
u () = e~ Fla 4 / e~Ft=)g(uf (s))ds.
0
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For general matrix-valued functions F, one may construct u‘*! for
each ¢ € N by perturbation theory, at least time-locally.

Obviously, u} > 0 for i = 1,...,m and |ul(t)|| = |ja| for t > 0.
Here, we have used the max norm for vectors ||v|| := max;=1,.. m |vi
for v := (vl, . ,vm), as well as to matrices ||F|| := max; j=1,...m | fij

for F := ( fi j). In what follows, we will show the positivity and bound-
edness of uf“ by induction in ¢. For u?, it holds true that

[u”@)] < IIaIIJr/0 1F(a ()] - (s |d5+/ lg(u(s))l|ds
< llall + [1F@)Il - ¢ - max [la* ()]l + - (@)l

Taking maxg<¢<, in both hand side, we have
[u?(t)]| < 2[|a]| for t e [0,T5]

with 75 := min {1/(3||F(a)]]), [al/(3llg(a)])}. In addition, we can
also obtain that u? > 0. Indeed, let us assume that there exists a

€ (0, T3] such that u?(t.) = 0 for some i = 1,...,m. Without loss
of generality, t. is the first time when u? touches 0. So, at t., we see
that (u?) <0, fi(u')u? =0, and g;(u') > 0. This contradicts to the
fact that u? is a solution to (SA) with £ = 1.

Let ¢ > 2. Assume that ||u’(t)|| < 2||al| and uf(t) > 0 hold for
t €10,Tp] and @ = 1,...,m, where Ty > 0 will be determined later.
We now argue on u‘t!. By assumption, it is easy to see that

t
@) < flal + / IP(u(s))]] - [l (s)]|ds + / lg(u(s)) ds
< Lt {+1 .
< Nl + My -t guas, " (9)] + ¢
<2|la|| for te0,Tp]
with Tp := min {1/(3M}), ||a||/(3M,)}, where

My:= sup  [[F(v)l, My:= sup g(v)]|.
Ivi<2[al, v=0 Ivi<2[al, v>0

In addition, we can also see that u“l > 0 for ¢ by the same contra-

diction argument above. This means that ||u’(t)|| < 2||al| and u! >0
hold for all e Nand i =1,...,m for t € [0, Tp].

It is straightforward to get the continuity of solutions. One may
also see that {ug};‘;l is a Cauchy sequence in C([0,Tp]; R™). So, the
limit (u1(t), ..., um(t)) = u(t) = lims_o u(t) exists for t € [0, Ty,
and satisfies (P); w;(¢) > 0 for ¢ = 1,...,m by construction. The
uniqueness follows from Gronwall’s inequality, directly. O

Note that the proof is easy, if a; > 0 for all 7. In Theorem 1, it
is not needed to use neither the existence of stable solutions to (P),
comparison principle, nor a priori estimates by Lyapunov functions.

3. Difference Equations

We will argue the numerical algorithm for positive solutions. We first
discuss a discretization of (P). To obtain positive solutions, our propos-
al is to choose the following difference equations, mixing the forward
and backward Euler methods:

ubtl — uk
(DE)  ———— = —F(u")u""" + g(u®), keNo:=NuU{0},
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where u* = (uf,... uk), tp = kAt for At > 0 and v = a; > 0
for i = 1,...,m. Clearly, (DE) is a mimic of (SA). In addition, we
obviously see that the numerical solution u* to (DE) tends to the
solution u(t) to (P) at t = t;, for each k as At — 0.

Theorem 2. If f;, g; > 0 are Lipschitz continuous, At > 0 and u > 0,
then the numerical solution u¥ > 0 to (DE) exists for k € N.

Proof of Theorem 2. We rewrite (DE) into the explicit form as

k+1 uf + gz(uk)At

Pl =2 7~ keN ,=1,... .
7 1+fz(llk)At, € No, 1 ) ,m

So, uf“ > 0, if uF > 0. Thus, one can prove it by induction. O

The advantage of Theorem 2 is that we may take arbitrary large
At.

The spirit of (DE) is still valid on the numerical methods for con-
struction of non-negative solutions to the partial differential equations.
For simplicity, let n = 1, and consider the discretization u? of u(z;,tx)
for x; := jAx and t;, := kAt satisfying

k+1 _ k k
u; u; :dujJrl

At Ax?
with non-negative initial data. So, it is easy to see that all element
of uf is non-negative for all j and k, provided if the linear stability
condition At/Ax? < 1/(2d) for d > 0 in the Lax-Richtmyer sense is
assumed. Note that the similar scheme has also been introduced by
Mimura in ( [6], [7]) for ensuring the postivity of numerical solutions,
basically. In fact, Mimura argued the reaction diffusion equation of
following type:

— 2u§ +u”

L Pt gl (1)

k+1 k k k k
u; T —ul uy,, —2u’ +u’ ~
J J j+1 J j—1 ky, k+1
" =D 3 + F(uj)uj (2)

with non-negative diagonal matrix D. From this procedure, we can
also get positive solutions, under the linear stability conditions. How-
ever, it is not clear whether the invariant region for numerical solutions
to (1) and (2) is derived, in general.

4. Numerical Solutions to (BZ)

We will derive invariant regions for numerical solutions to (BZ). For
the sake of simplicity, let n = 1, and let us consider (BZ) in bounded
interval x € [0, L] for L > 0 with the homogeneous Neumann bound-
ary conditions 9,u(0,t) = J,u(L,t) = 0 or, the periodic boundary
conditions u(z,t) = u(x + L,t) for t > 0. For discretization of (BZ),
we put u;? ~ u(xj,ty) and v}f ~ v(zj,tg) for j=0,...,J and k € Ny,
taking e.g. the average of integration. Here, J € N, z; = jAz,
ty := kAt for Ax > 0 and At > 0; L = JAx.

We sometimes employ the algorithm of operator splitting methods
(OSM) for solving the discretized reaction diffusion equation and re-
lated problems. For the discretization of uniform-in-space (BZ) with
(DE) algorithm, let us consider

E+1 ok k(1 _ ,k+1 E+1
u; u; :uj(l u; )—hv’?uj q
oy ar T
’ ot ok
J Jo_ k4l ok
AUt

DOLI: 10.4236/am.2020.1110061 947 Applied Mathematics


https://doi.org/10.4236/am.2020.1110061

Y. Adachi et al.

for 5 =1,...,J —1 and k € Ny. On the other hand, for the dis-
cretization of the heat equations, we use the standard FTCS (forward
difference for time and second-order central difference for space)

~k+l _ ~k sk ~k o~k
Uy -y (I 2uj +uj_y
At B Az? ’
(Dn) ~E+1 &
v; — 05 g g+1 21} —+ v
At Ax2

for j=1,...,J—1and t € Ng; at j =0 and j = J, we give certain
definition by boundary conditions. Our algorithm is to solve alternate
(Do) and (Dy,). That is to say, a pair of the series {u], vj F1is given as

(i) Put u? ~ uo(z;) and v? ~ vo(x;), the average of integration.
ii) Construct u},v! by (D,) with k = 0.
3 Y

(ili) Construct @j,v;

§ by (Dy) with @9 := u} and ) := vj.

J J J

(iv) Conmstruct u?, v} by (Do) with uj := 4]

1._
3 and vj 1=

1
J

(v) Construct @3, 03

5 by (Dn) with ﬂjl = u? and 17]1 = ’U?.

(vi) Repeat this process.

If d = 0, then we skip the steps of construction U;“, that is, vf v;-“.

We will state the results on numerical solutions to discretized (BZ).
Theorem 3. Let ¢, h, At, Az > 0,d > 0 and ¢ € (0, 1) Define uj,v;C
as numerical solutions to alternate (D,) and (Dy). If u9,vY € (¢,1) for

j, then u%,v? € (g, 1) for j and k, provided if At/ Az* < 1/max{2,2d}.

Proof By Theorem 2 and the linear stability conditions, it holds that

uJ,vJ > 0 for all j and k. The induction in k is used. Let uj,vj €

( ¢ ) We first check that U?H L > q by ( ) It turns out that
S uf +uf At/e + hqub At/ (uf +q)
J 1+u§At/€+hv§At/(u§+q)

(W =+ (1 —qufAt/e
14 ubAt/e + hok At/ (uk + q)

by uf > g and ¢ € (0,1). Similarly, we have

R N et R U e LN
Y 1+ At '
One can also easily see that
(1 —uk) + (1 — g)hk At/ (uk + q)
1— ul_c+1 — J J J >0,
! L+ uf At/e + hof At/ (uf + q)
k
L o (1—vj)+(1—u VAt -0
I 1+ At ’

On (Dy,), it is well-known that the linear stability condition yields

the maximum principle for numerical solution, that is, uf“, ~f+1 €
(¢, 1), if @ uJ , vJ € (¢,1). This completes the proof. O
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Remark. (i) This assertion implies that Sa := (¢, 1)? is an invariant
region for numerical solutions to alternate (Do) and (Dy,).
(ii) One can easily see that Ri is also an invariant region by positivity-

preserving.
(iii) The numerical solutions converge to solutions to PDE (BZ) as

At — 0 with order O(At), as the same as the standard scheme and
equation (2).

(iv) The similar results on the predator-prey models are also obtained.
The reader can find the details on PDE in [9] and references therein.
(v) The authors believe that one may take initial data, more freely.
In fact, if ug,v;-) >0 for j, and if ug,, v?,, > 0 for some j' and j”, then
there exists a k' € Ny such that ué?, v;? € (q,1) for k > k' and j. This
means that absorbing sets for numerical solutions always exist in Sx.

5. Conclusion

The positivity of solution for BZ is ensured by discretization scheme of
reaction diffusion equation written as (D,) and (Dy). The difference
equations of discretized (BZ) with special type present the similar
results to the unique smooth solutions of differential equations (BZ).
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