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Abstract
The time-global existence of unique smooth positive solutions to the reaction diffusion equa-

tions of the Keener-Tyson model for the Belousov-Zhabotinsky reaction in the whole space is

established with bounded non-negative initial data. Deriving estimates of semigroups and time

evolution operators, and applying the maximum principle, the unique existence and the posi-

tivity of solutions are ensured by construction of time-local solutions from certain successive

approximation. Invariant regions and large time behavior of solutions are also discussed.

1. Introduction

1. Introduction
We consider the following initial value problem of the reaction diffusion equations of

Keener-Tyson type for Belousov-Zhabotinsky reaction in the whole space Rn for n ∈ N:

(BZ)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
∂tu = Δu +

1

ε
u(1 − u) − hv

u − q
u + q

in R
n×(0,∞),

∂tv = dΔv − v + u in R
n×(0,∞),

u|t=0 = u0, v|t=0 = v0 in R
n.

For the derivation, see [5, 6]. Here, two variables u = u(x, t) and v = v(x, t) stand for the

unknown scalar functions at x ∈ Rn and t > 0 which denote the concentrations in a vessel

of HBrO2 and Ce4+, respectively; u0 = u0(x) and v0 = v0(x) are given non-negative bounded

functions. We denote ε, h, q and d by some positive constants. In [1], an example of

constants is listed-up as ε = 0.032, q = 2.0×10−4 and d = 0.6×ε. Note that h := f /ε, and h
(or, f ) stands for the excitability which governs dynamics of a pattern formulation. In fact, a

spiral pattern appears for large h. Besides, a ripple (concentric circles) pattern is developed

for small h. We have used the notation of differentiation; ∂t := ∂/∂t and Δ :=
∑n

i=1 ∂
2
i , where

∂i := ∂/∂xi for i = 1, . . . , n.

The aim of this paper is to establish the well-posedness theory and some basic properties

of solutions to (BZ), in terms of functional analysis. Although it has already been known

the solvability of (BZ) in the abstract setting of L2-framework by Yagi and his collaborators

[7, 9], we will give a rigorous proof of the existence of time-global unique non-negative clas-

sical solutions in L∞-setting. In our framework, we may treat more various data, including

the trivial solution. Thanks to this, it is possible to prove the instability of the trivial solu-

tion. Our techniques seem to be applicable for the similar situation in domains with periodic
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or inhomogeneous Dirichlet or Neumann boundary conditions. Furthermore, the invariant

region and large time behavior of solutions are concerned. For applying the estimates of

maximum principle type, we argue certain successive approximation of solutions. To obtain

uniform bounds, and to ensure positivity, some estimates for semigroups and time evolution

operators are derived by arguments of relatively compact perturbation from Laplacian, via

smoothing properties of the heat semigroup.

Throughout this paper, the approach of functional analysis is employed. Due to the semi-

group theory, the first two equations of (BZ) are formally equivalent to the integral equations:

u(t) = etΔu0 +

∫ t

0

e(t−s)Δ

[
u(s){1 − u(s)}

ε
− hv(s)

u(s) − q
u(s) + q

]
ds,(1.1)

v(t) = edtΔv0 +

∫ t

0

ed(t−s)Δ [−v(s) + u(s)] ds,(1.2)

since Δ generates a (C0) semigroup {etΔ}t≥0 in BUC(Rn), so-called the heat semigroup. We

will give the definition of function spaces in Section 3, as well as the semigroups. To show

the uniqueness, this expression is useful. Once we establish the existence of solutions to the

integral equations (1.1) and (1.2), it is easy to confirm that solutions to the integral equations

satisfy (BZ) in the classical sense by the standard argument from smoothing property of the

heat semigroup.

While we denote L := dΔ − 1, it is easy to see that L also generates a (C0) semigroup

{etL}t≥0 in BUC(Rn), having an exponential decay estimate in t → ∞. So, the second equa-

tion of (BZ) is rewritten as

(1.3) v(t) = etLv0 +

∫ t

0

e(t−s)Lu(s) ds.

The expression (1.3) has benefit for proving the positivity of v from positivities of v0 and u.

Our main issue is to ensure the positivity of u.

This paper is organized as follows. In Section 2, we will state the main results. Section 3

is to recall basic properties of semigroups and time evolution operators. We will give a

proof of time-local solvability in Section 4. A complete proof of an invariant region of

solutions is obtained in Section 5, as well as a priori estimates for the extension of solutions

time-globally.

Throughout this paper, we denote positive constants by C the value of which may differ

from one occasion to another.

2. Main Results

2. Main Results
This section is devoted to stating the main results of this note.

Theorem 1. Let n ∈ N, ε, h, d > 0, and let q ∈ (0, 1). Put ū ∈ (q, 1) is a root of
g(u) := u(1 − u)(u + q) − εhq(u − q) = 0, and S := (q, ū)2. Let u0, v0 ∈ BUC(Rn).
(i) If u0(x) ≥ 0 and v0(x) ≥ 0 for x ∈ Rn, then there exists a pair (u, v) of time-global unique
non-negative classical solutions to (BZ) in C([0,∞); BUC(Rn)).
(ii) If (u0(x), v0(x)) ∈ S for x ∈ Rn, then (u(x, t), v(x, t)) ∈ S for x ∈ Rn and t > 0.
(iii) If u(x, t∗) ≥ c∗ and v(x, t∗) ≥ c∗ for x ∈ Rn with some t∗ ≥ 0 and c∗ > 0, then there
exists a T� ≥ t∗ such that (u(x, t), v(x, t)) ∈ S for x ∈ Rn and t ≥ T�.
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Let us introduce the notion of an invariant region. A set Ω ⊂ R2 is called an invariant

region, if a pair (u, v) of solutions to (BZ) always remains in Ω. Theorem 1-(i) implies that

[0,∞)2 is an invariant region. Furthermore, the assertion (ii) tells us that the square domain

S := (q, ū)2 is an invariant region. It will be seen that [0,m]2 for m ≥ 1 are also invariant

regions in Proposition 2 in Section 5.

We easily notice that there are two non-negative steady states (solutions independent of

x and t): the trivial solution (0, 0) and a non-trivial one (̃u, ũ), where ũ is a positive root of

g̃(u) := (1 − u)(u + q) − εh(u − q) = 0. Note that (̃u, ũ) ∈ S . The reader may find the linear

stability or instability theories around (̃u, ũ) in [9]. In addition, the assertion (iii) leads us to

give large time behaviors of solutions. In fact, some global attractors are in S . Moreover,

the trivial solution is clearly instable, which follows from the strong maximum principle.

For proving the existence theory, one can release the condition of uniform continuity for

initial data. Indeed, for u0, v0 ∈ L∞(Rn), there exists a pair of time-global unique smooth

non-negative solutions to (BZ). However, in this case, there is a lack of the continuity of solu-

tions in time at t = 0. So, the solutions belong to Cw((0,∞); L∞(Rn)), i.e., C([δ,∞); L∞(Rn))

for δ > 0.

For proving Theorem 1-(i), we first show the existence of time-local unique non-negative

classical solutions. To construct time-local solutions, the key idea is to use the certain suc-

cessive approximation; see Section 4. One may easily see that the solution is smooth in

t and x. Once we obtain time-local well-posedness, it is rather easy to extend the solu-

tion time-globally, since a priori bounds are derived uniformly in time and space by the

maximum principle. Global bounds of solutions follow from the behaviors of those to the

corresponding ordinary differential equations of the logistic type.

3. Semigroups and Time Evolution Operators

3. Semigroups and Time Evolution Operators
In this section, we recall definition of function spaces and properties of the heat semi-

groups as well as time evolution operators.

Let n ∈ N, 1 ≤ p < ∞, and let Lp := Lp(Rn) be the space of all p-th integrable functions

in Rn with the norm ‖ f ‖p :=

(∫
Rn
| f (x)|pdx

)1/p

. We often omit the notation of domain (Rn),

if no confusion occurs likely. Furthermore, we do not distinguish scalar valued functions

and vector, as well as function spaces. Let L∞ be the space of all bounded functions with

the norm ‖ f ‖∞ := ess. supx∈Rn | f (x)|. Define BUC as the space of all bounded uniformly

continuous functions. Since L∞ is a Banach space, so is its closed subset BUC, as well as

C(I; BUC) for closed interval I ⊂ R. For k ∈ N, let Wk,∞ be a set of all bounded functions

whose k-th derivatives are also bounded.

In the whole space Rn, for w0 ∈ L∞(Rn) the heat equation

(H)

{
∂tw = Δw in R

n×(0,∞),

w|t=0 = w0 in R
n

admits a time-global unique smooth solution

w := w(t) := w(x, t) := (etΔw0)(x) := (Ht ∗ w0)(x)

:=

∫
Rn

(4πt)−n/2 exp(−|x − y|2/4t)w0(y)dy
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in Cw((0,∞); L∞), where Ht := Ht(x) := (4πt)−n/2 exp(−|x|2/4t) is the heat kernel. Since

‖Ht‖1 = 1 for t > 0, by Young’s inequality we have ‖w(t)‖∞ ≤ ‖Ht‖1‖w0‖∞ ≤ ‖w0‖∞ for

t > 0. In particular, if w0(x) ≥ c for all x ∈ Rn with some c ∈ R, then w(x, t) ≥ c holds

true for x ∈ Rn and t > 0; so-called the maximum principle. Furthermore, if additionally

w0 ∈ BUC and w0 � c, then w(x, t) > c for x ∈ Rn and t > 0; so-called the strong maximum

principle.

We easily see that for k ∈ N, there exists a positive constant C such that ‖∂k
i etΔw0‖∞ ≤

Ct−k/2‖w0‖∞ for t > 0 and 1 ≤ i ≤ n. So, w(t) ∈ Ck for k ∈ N and t > 0, which implies that

w(t) ∈ C∞(Rn) for t > 0, and then w ∈ C∞(Rn × (0,∞)).

In general, for w0 ∈ L∞, there is a lack of the continuity of solutions to (H) in time at

t = 0. Note that etΔw0 → w0 in L∞ as t → 0, if and only if w0 ∈ BUC. The reader may find

its proof in e.g. [3]. Indeed, if w0 ∈ BUC, then the solution w ∈ C([0,∞); BUC).

Let us consider the following initial value problem associated with the second equation

of (BZ):

(PV)

{
∂tψ = dΔψ − ψ + ϕ in R

n×(0,∞),

ψ|t=0 = ψ0 in R
n.

Here, ϕ := ϕ(x, t) is a given bounded function. We are now position to state the time-global

solvability of this problem, and derive upper and lower bounds for the solutions ψ.

Lemma 1. Let n ∈ N, d > 0, c ≥ 0, and let ϕ ∈ L∞(Rn × (0,∞)) with ϕ(x, t) ≥ c for
x ∈ Rn and t > 0. If ψ0 ∈ BUC with ψ0(x) ≥ c for x ∈ Rn, then there exists a time-global
unique solution to (PV) in C([0,∞); BUC) with ψ(x, t) ≥ c for x ∈ Rn and t > 0, enjoying

(3.1) ‖ψ(t)‖∞ ≤ ‖ψ0‖∞ + t · ess.sup0<τ<t‖ϕ(τ)‖∞ for t > 0.

Proof. Let L := dΔ − 1. One may see that L generates a (C0) semigroup {etL}t≥0 in BUC
with

‖etL‖(L∞) := ‖etL‖L∞→L∞ := sup
ψ0∈L∞,�0

‖etLψ0‖∞
‖ψ0‖∞ ≤ e−t for t > 0,

since etL = e−tedtΔ. So, for ψ0 ∈ BUC, (PV) is written as

(3.2) ψ(t) = etLψ0 +

∫ t

0

e(t−s)Lϕ(s)ds.

The existence of a time-global unique solution follows from this formula. Taking L∞-norm

into (3.2) above, the upper bound estimate (3.1) is easily obtained.

We next show the lower bound. If ϕ ≡ ψ0 ≡ c, then ψ ≡ c is a unique solution to (PV).

So, by (3.2), χ := ψ − c satisfies

χ(t) = etL(ψ0 − c) +

∫ t

0

e(t−s)L {ϕ(s) − c} ds ≥ 0

for x ∈ Rn and t > t�. Thus, ψ ≥ c. �

Remark 1. (i) If ϕ has higher regularity, e.g. ϕ ∈ L∞([0,∞); W1,∞), then ψ is a classical

solution; C1 in t and C2 in x; see the proof of Lemma 3 in below. Moreover, if ϕ is smooth

in t and x, then the solution ψ is also smooth in t and x.
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(ii) If either ϕ(x, t) > c in some open set around x� ∈ Rn and t� ∈ [0,∞) or ψ0 � c, then

ψ(x, t) > 0 for x ∈ Rn and t > t� by the strong maximum principle.

In what follows, we recall some theories and estimates for time evolution operators. Let

us consider the following autonomous problem:

(PA)

{
∂tξ = Δξ − η(x, t)ξ in R

n×(0,∞),

ξ|t=0 = ξ0 in R
n.

Here, η := η(x, t) is a given bounded function. We now establish the time-local solvability

of (PA) with upper bounds of ξ(t).

Lemma 2. Let n ∈ N, a > 0. Assume that η ∈ L∞(Rn× [0,∞)) with |η(x, t)| ≤ a for x ∈ Rn

and t > 0. If ξ0 ∈ BUC, then there exist a T∗ > 0 and a time-local unique solution to (PA) in

C([0, T∗]; BUC), having ‖ξ(t)‖∞ ≤ 4

3
‖ξ0‖∞ holds for t ∈ [0, T∗].

Proof. The proof is based on the standard iteration. Set ξ1(t) := etΔξ0,

ξ�+1(t) := etΔξ0 −
∫ t

0

e(t−s)Δη(s)ξ�(s) ds

for � ∈ N, successively. Obviously, ‖ξ1(t)‖∞ ≤ ‖ξ0‖∞ for t > 0. Taking ‖ · ‖∞ into above,

‖ξ�+1(t)‖∞ ≤ 4

3
‖ξ0‖∞ holds for � ∈ N, at least when t ∈ [0, 1/4a]. So, we also see that

{
ξ�

}∞
�=1

is a Cauchy sequence in C([0, T∗]; BUC) with some T∗ ≥ 1/4a. One can easily check that

ξ = lim�→∞ ξ� is a solution to (PA). The uniqueness follows from the Gronwall inequality,

as usual. �

Let A := A(x, t) := Δ − η(x, t), the solution to (PA) can be rewritten as ξ(t) = U(t, 0)ξ0,

using time evolution operators
{
U(t, s)

}
0≤s≤t associated with A; see e.g. the book of Tanabe

[8]. The upper bound above imples ‖U(t, 0)‖L∞→L∞ ≤ 4/3 for 0 ≤ t ≤ 1/4a, as well as

‖U(t, s)‖L∞→L∞ ≤ 4/3 for 0 ≤ s ≤ t ≤ 1/4a.

We shall discuss a classical solution to (PA). Let ∇ := (∂1, . . . , ∂n).

Lemma 3. In addition to the assumption in Lemma 2, suppose that t1/2∇η(t) ∈ L∞(Rn ×
[0,∞)). Thus, ξ is a classical solution to (PA).

Proof. Although the argument is rather standard, we give a proof. It is easy to see that

‖∇ξ(t)‖∞ ≤ Ct−1/2 for t ∈ [0, T∗] with T∗ ≤ 1 by

ξ(t) = etΔξ0 −
∫ t

0

e(t−s)Δη(s)ξ(s) ds,

taking ∇ and ‖ · ‖∞ into above. So, the key is to derive estimates for the second spatial

derivatives. One easily has

‖∇2ξ(t)‖∞ ≤ ‖∇2etΔξ0‖∞ +
∫ t

0

‖∇2e(t−s)Δη(s)ξ(s)‖∞ ds

≤ Ct−1‖ξ0‖∞ +
∫ t

0

(t − s)−1/2‖∇ {η(s)ξ(s)} ‖∞ ds

≤ Ct−1‖ξ0‖∞ +
∫ t

0

(t − s)−1/2Cs−1/2 ds ≤ Ct−1
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for t ∈ (0, T ′∗] with T ′∗ ≤ T∗ ≤ 1 and constant C depending only on n, ‖ξ0‖∞, sup0≤τ≤T ′∗ ‖η(τ)‖∞
and sup0≤τ≤T ′∗ τ

1/2‖∇η(τ)‖∞. The estimate for ∂tξ can also be derived, similarly. By the

uniqueness of solution, ξ is a classical solution as long as it exists, at least up to T∗. �

Here, a kind of linearized problem of the first equation of (BZ) with a non-autonomous

term is considered.

(PN)

{
∂tξ = Δξ − η(x, t){ξ − c} + ζ(x, t) in R

n×(0,∞),

ξ|t=0 = ξ0 in R
n,

where ζ := ζ(x, t) is a given bounded function; c ≥ 0 is a constant.

Lemma 4. Let n ∈ N, a, b > 0 and c ≥ 0. Assume that η, ζ ∈ L∞(Rn × [0,∞)) satisfying
t1/2∇η and t1/2∇ζ are bounded, |η| ≤ a and 0 < ζ ≤ b for x ∈ Rn and t > 0. If ξ0 ∈ BUC with
ξ0(x) ≥ c for x ∈ Rn, then there exist a T† > 0 and a time-local unique classical solution to
(PN) in C([0, T†]; BUC) with ξ(x, t) > c for x ∈ Rn and t ∈ [0, T†], having ‖ξ(t)‖∞ ≤ 2‖ξ0‖∞
holds for t ∈ [0, T†].

Proof. Let θ := ξ − c and θ0 := ξ0 − c ≥ 0. So, θ satisfies

∂tθ = Δθ − η(x, t)θ + ζ(x, t), θ|t=0 = θ0,

which is also rewritten as

(3.3) θ(t) = U(t, 0)θ0 +

∫ t

0

U(t, s)ζ(s) ds.

When θ0 ≡ 0, it is easy to show θ > 0. So, let us assume ‖θ0‖∞ > 0. By Lemmas 2 and 3, we

can show the existence of a time-local unique classical solution to (3.3), having the upper

bound estimate:

‖θ(t)‖∞ ≤ ‖U(t, 0)θ0‖∞ +
∫ t

0

‖U(t, s)ζ(s)‖∞ ds

≤ 4

3
‖θ0‖∞ + 4

3
t · ess.sup0<τ<t‖ζ(τ)‖∞ ≤ 2‖θ0‖∞

for t ∈ (0, T†] with some T† ≤ min{T∗, ‖θ0‖∞/2b}. Once we have ξ(t) ≥ c, it is clear that

‖ξ(t)‖∞ ≤ 2‖ξ0‖∞ in [0, T†].
The lower bound of solutions follows from the maximum principle for a classical solution.

We suppose that there exists (x̂, t̂) ∈ R × (0, T∗] such that ξ(x̂, t̂) = c. Without loss of

generality, t̂ is taken as the first time when ξ touches c. At (x̂, t̂), we see that ∂tξ ≤ 0 in

the left hand side of (PN), however, Δξ ≥ 0, ζ > 0 and η{ξ − c} = 0 in the right hand side.

This contradicts to that ξ is a classical solution to (PN). We can apply Oleinik’s technique

to avoid the situation for the case ξ(x̂, t̂) → c as |x̂| → ∞; see [4] or [2]. Note that even if

θ0 = ξ0 − c ≡ 0, then θ = ξ − c > 0 by the positivity of ζ. Therefore, ξ(x, t) > c for x ∈ Rn

and t ∈ [0, T†]. �
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4. Time-Local Solvability

4. Time-Local Solvability
We give a complete proof of the time-local solvability in this section.

Proposition 1. Let n ∈ N, ε, h, d > 0, and let q ∈ (0, 1). If u0, v0 ∈ BUC(Rn) with
q ≤ u0(x) ≤ 1 and q ≤ v0(x) ≤ 1 for x ∈ Rn, then there exist T0 > 0 and time-local unique
classical solutions (u, v) to (BZ) in C([0, T0]; BUC(Rn)) with q ≤ u(x, t) ≤ 2m and q ≤
v(x, t) ≤ 2m for x ∈ Rn and t ∈ [0, T0], where m := max {‖u0‖∞, ‖v0‖∞} ≤ 1. Furthermore,
T0 ≥ C/m with some constant C > 0 independent of m.

Proof. We employ an iteration argument. For making the approximation sequences, we

begin with

u1(t) := etΔu0 and v1(t) := edtΔv0.

For � ∈ N, we successively define

u�+1(t) := U�(t, 0)u0 +

∫ t

0

U�(t, s)

[
u�(s)

ε
+

hqv�(s)

u�(s) + q

]
ds,

v�+1(t) := etLv0 +

∫ t

0

e(t−s)Lu�(s) ds.

Here, we put A� := Δ − η� with η�(x, t) :=
u�(x, t)
ε
+

hv�(x, t)
u�(x, t) + q

, and
{
U�(t, s)

}
t≥s≥0 is the

time evolution operator associated with A�. Note that u�+1 and v�+1 formally satisfy

(4.1) ∂tu�+1 = A�u�+1 + ζ� = Δu�+1 +
u�(1 − u�+1)

ε
− hv�

u�+1 − q
u� + q

with u�+1|t=0 = u0 and ζ�(x, t) :=
u�(x, t)
ε
+

hqv�(x, t)
u�(x, t) + q

≥ 0;

(4.2) ∂tv�+1 = Lv�+1 + u� = dΔv�+1 − v�+1 + u�

with v�+1|t=0 = v0 for positive functions u� and v�.

In what follows, we derive estimates for u�, v�, ∂iu� and ∂iv�. We put

K1,� := K1,�(T ) := sup
0≤t≤T

‖u�(t)‖∞,
K2,� := K2,�(T ) := sup

0≤t≤T
‖v�(t)‖∞,

K3,� := K3,�(T ) := sup
0≤t≤T

t1/2‖∂iu�(t)‖∞,

K4,� := K4,�(T ) := sup
0≤t≤T

t1/2‖∂iv�(t)‖∞

for T > 0, 1 ≤ i ≤ n and � ∈ N. For deriving the uniform estimates, we will use the induction

argument for �.

For � = 1, by q ≤ u0 ≤ m and q ≤ v0 ≤ m, we easily see that q ≤ u1(t) ≤ ‖u0‖∞,

q ≤ v1(t) ≤ ‖v0‖∞, t1/2‖∂iu1(t)‖∞ ≤ ‖u0‖∞ and t1/2‖∂iv1(t)‖∞ ≤ ‖v0‖∞ for t > 0 and 1 ≤ i ≤ n
by the maximum principle and estimates for the heat kernel. Thus,

(4.3) Kj,1 ≤ m for T > 0 and 1 ≤ j ≤ 4.

For � = 2, before estimating u2 and v2, we give bounds for η1 and ζ1. By u1 ≥ q, v1 ≥ q
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and (4.3), it holds that

‖η1‖∞ ≤ h
q

m =: a1 and 0 ≤ ζ1 ≤ m(1 + m)

ε
+ hm := b1.

So, by Lemma 2 and Lemma 4, it holds that

‖u2(t)‖∞ ≤ ‖U1(t, 0)u0‖∞ +
∫ t

0

‖U1(t, s)ζ1(s)‖∞ ds

≤ 4

3
‖u0‖∞ +

∫ t

0

4

3
b1ds ≤ 2m

provided if t ≤ T†,2 with some T†,2 > 0. Furthermore, since u2 is a classical solution to

(4.1) with � = 1 by Lemma 3 with c = q, we can apply the maximum principle to obtain

u2(x, t) ≥ q for x ∈ Rn and t ∈ [0, T†,2]. To get the estimate for K3,2 = supt t1/2‖∂iu2(t)‖∞, we

use the expression by the heat semigroup:

u2(t) = etΔu0 +

∫ t

0

e(t−s)Δ [−η1(s)u2(s) + ζ1(s)
]
ds.

Hence, it holds that

t1/2‖∂iu2(t)‖∞ ≤ ‖u0‖∞ + t1/2

∫ t

0

(t − s)−1/2[a1‖u2(s)‖∞ + b1] ds ≤ 2m

for t ∈ (0, T ′
†,2] with some T ′

†,2 ≤ T†,2. On the other hand, by Lemma 1 with c = 0, it holds

that

q ≤ v2(x, t) ≤ ‖v0‖∞ + t sup
0≤τ≤t

‖v1(τ)‖∞ ≤ 2m

for x ∈ Rn and t ∈ [0, 1]. For deriving the estimate for ∂iv2, we appeal to the heat semigroup,

again, to have

t1/2‖∂iv2(t)‖∞ ≤ ‖v0‖∞ + t1/2

∫ t

0

‖∂ie(t−s)Δ [−v2(s) + u1(s)] ‖∞ ds ≤ 2m

for t ∈ (0, T�,2] with T�,2 ≤ 1. So, let T2 := min{T ′
†,2, T�,2}, we have

(4.4) u2 ≥ q, v2 ≥ q, Kj,2 ≤ 2m for T ≤ T2, 1 ≤ j ≤ 4.

Similarly above, there exists a T0 ≤ T2 such that

(4.5) u3 ≥ q, v3 ≥ q, Kj,3 ≤ 2m for T ≤ T0, 1 ≤ j ≤ 4.

Note T0 ≥ C/m with some C > 0. The proof is essentially the same as that for � ≥ 4 in

below. So, the detail is omitted in here.

Let � ≥ 4. We now assume that

(4.6) u� ≥ q, v� ≥ q, Kj,� ≤ 2m for T ≤ T0, 1 ≤ j ≤ 4

hold. We will compute estimates for u�+1 and v�+1. By assumption,

‖η�‖∞ ≤ 2h
q

m =: a and 0 ≤ ζ� ≤ 2m(1 + 2m)

ε
+ 2hm := b

hold for t ∈ [0, T0]. Hence, by Lemma 2 and 4, one can see that
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‖u�+1(t)‖∞ ≤ ‖U�(t, 0)u0‖∞ +
∫ t

0

‖U�(t, s)ζ�(s)‖∞ ds(4.7)

≤ 4

3
m +

∫ t

0

4

3
b ds ≤ 2m

for t ∈ [0, T0]. Note that we took T0 ≤ m/2b in here. Since u� is a classical solution to (4.1),

we can apply the maximum principle to obtain u�+1(x, t) ≥ 0 for x ∈ Rn and t ∈ [0, T0]. For

using the expression

u�+1(t) = etΔu0 +

∫ t

0

e(t−s)Δ [−η�(s)u�+1(s) + ζ�(s)
]
ds,

we take ∂i and ‖ · ‖∞ into above to obtain that

t1/2‖∂iu�+1(t)‖∞ ≤ ‖u0‖∞ + t1/2

∫ t

0

(t − s)−1/2[a‖u�+1(s)‖∞ + b] ds ≤ 2m

for t ∈ [0, T0] by (4.7). Besides, by Lemma 1,

q ≤ v�+1(x, t) ≤ ‖v0‖∞ + t sup
0≤τ≤t

‖v�(τ)‖∞ ≤ 2m

holds for x ∈ Rn and t ∈ [0, T0]. By the heat semigroup, we obtain

t1/2‖∂iv2(t)‖∞ ≤ ‖v0‖∞ + t1/2

∫ t

0

‖∂ie(t−s)Δ [−v2(s) + u1(s)] ‖∞ ds ≤ 2m

for t ∈ [0, T0]. Therefore,

u�+1 ≥ q, v�+1 ≥ q, Kj,�+1 ≤ 2m for T ≤ T0, 1 ≤ j ≤ 4.

Thus, (4.6) holds true for all � ∈ N.

One may see that u� and v� are continuous in t ∈ [0, T0] for � ∈ N. It is also easy to see

that
{(

u�, v�, t1/2∂iu�, t1/2∂iv�
)}∞
�=1 are Cauchy sequences in C([0, T0]; BUC), taking T0 small

again, necessarily. We denote (u, v, û, v̂) by the limit functions of (u�, v�, t1/2∇u�, t1/2∇v�) as

� → ∞. The coincidences of û = t1/2∇u and v̂ = t1/2∇v hold, obviously. The uniqueness

follows from the Gronwall inequality, directly. Furthermore, by construction, q ≤ u(x, t) ≤
2m and q ≤ v(x, t) ≤ 2m for x ∈ Rn and t ∈ [0, T0], as well as (u, v) is a pair of the time-local

unique classical solutions to (BZ). This completes the proof of Proposition 1. �

Remark 2. (i) For k ∈ N, it is possible to construct u(t), v(t) ∈ Ck(Rn) for t ∈ (0, Tk],

if Tk is chosen small enough. Nevertheless, the solution is unique as long as it exists, one

can extend the existence time of the solution up to T0 having bounds for k-th derivatives.

We hence confirm that u(t) ∈ Ck(Rn) for all k ∈ N and t ∈ (0, T0], which means that

u(t), v(t) ∈ C∞(Rn) in t ∈ (0, T0], as well as u, v ∈ C∞(Rn × (0, T0]).

(ii) This iteration procedure also works for proving u ≥ 0 and v ≥ 0, provided if u0 ≥ 0

and v0 ≥ 0. Since u� ≥ 0 and v� ≥ 0 hold for � ∈ N by Lemma 1 and Lemma 4 with

c = 0, as the same way as above, we ensure that the limits also satisfy 0 ≤ u(x, t) ≤ 2m and

0 ≤ v(x, t) ≤ 2m for x ∈ Rn and t ∈ [0, T0].
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5. Invariant Region

5. Invariant Region
In this section, invariant regions are discussed. We first show that the solutions obtained

by Proposition 1 can be extended time-globally.

Proposition 2. Let n ∈ N, ε, h, d > 0 and q ∈ (0, 1). If u0, v0 ∈ BUC(Rn) with
0 ≤ u0(x) ≤ m and 0 ≤ v0(x) ≤ m for x ∈ Rn with some m ≥ 1, then there exists a time-
global unique classical solutions (u, v) to (BZ) in C([0,∞); BUC(Rn)) with 0 ≤ u(x, t) ≤ m
and 0 ≤ v(x, t) ≤ m for x ∈ Rn and t > 0.

Proof. By Proposition 1, we have already obtained a pair of time-local unique classical

solutions (u(x, t), v(x, t)) ∈ [0, 2m]2 for x ∈ Rn and t ∈ [0, T0]. In what follows, we will

derive the a priori estimates u ≤ m and v ≤ m for t ∈ [0, T0]. It is enough to consider the

local behavior of solutions. Using the same argument in the proof of Lemma 4, there does

not exist (x̃, t̃) such that u(x̃, t̃) > m by m ≥ 1. So, we have u ≤ m. Furthermore, since u ≤ m
and v0 ≤ m, one can also see that v > m never happened. So, v ≤ m.

Gathering the time-local solvability, uniqueness and upper bounds, we can extend the

existence time of the solution up to t ∈ [0, 2T0]. Repeating this argument infinitely many

times, we obtain a time-global unique classical solutions (u, v) ∈ [0,m]2. �

Note that Theorem 1-(i) immediately follows from Proposition 2. And also, this implies

that [0,m]2 is an invariant region for m ≥ 1. We are now position to show that S := (q, ū)2

is an invariant region.

Proof of Theorem 1-(ii). Let (u0, v0) ∈ S . By Proposition 1, Remark 2-(ii) and Proposi-

tion 2, we have obtained a time-global unique smooth solutions having the lower and upper

bounds (u, v) ∈ [q, 1]2. So, it is required to show that u and v never touched ū ∈ (q, 1).

We assume that there exists (x̄, t̄) such that u(x̄, t̄) = ū. Without loss of generality, x̄ ∈ Rn,

and t̄ ∈ (0,∞) is the first time when u touches ū. Since u, v ≥ q and ū is a positive root of

g(u) = 0, at (x̄, t̄) we see that ∂tu > 0, Δu ≤ 0 and
1

ε
u(1− u)− hv

u − q
u + q

≤ 0. This contradicts

to that u is a solution. One can avoid the case u(x, t) → ū at |x| → ∞ by Oleinik’s technique.

Similarly, if there exists (x̄, t̄) such that v(x̄, t̄) = ū, then at (x̄, t̄) we see that ∂tv > 0,

dΔv ≤ 0 and −v + u ≤ −v + ū = 0. This contradicts. It is also easy to see that u and v never

touched q, as the same arguments above. Therefore, (u, v) ∈ S . �

Finally, we will give the remaining parts of the proof of Theorem 1.

Proof of Theorem 1-(iii). We now put m := max{‖u0‖∞, ‖v0‖∞} > 1 and c∗ ∈ (0, q),

without loss of generality. Applying Lemma 1, Lemma 4 with c = c∗ and Proposition 2, it

is easy to see that c∗ ≤ u(x, t) ≤ m and c∗ ≤ v(x, t) ≤ m for x ∈ Rn and t > t∗. Let ρ := ρ(t)
be the solution to the following ordinary differential equation of logistic type:

ρ′ =
1

ε
ρ(1 − ρ) for t > t∗, ρ(t∗) = c∗.

Note that 0 < c∗ < q < 1, and then ρ is monotone increasing. So, there exists a T�1 > t∗ such

that ρ(T�1) = q. By the argument of the maximum principle, u(x, t) ≥ ρ(t) for x ∈ Rn and

t ∈ [t∗, T�1], that is to say, ρ is a subsolution of u up to T�1.

We secondly consider that σ := σ(t) is the solution to
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σ′ = Gm(σ) :=
1

ε
σ(1 − σ) − hm

σ − q
σ + q

for t > T�1, σ(T�1) = q.

Note that there exists q1 ∈ (q, 1) such that Gm(q1) = 0, and σ(t) → q1 as t → ∞. Since σ is

monotone increasing, for q2 ∈ (q, q1), there exists a T�2 ≥ T�1 such that σ(T�2) = q2. Again,

σ is a subsolution of u, we thus see that u(x, t) ≥ q2 > q for x ∈ Rn and t ≥ T�2.

Thirdly, we derive a lower bound of v. Let ν := ν(t) be a solution to

ν′ = −ν + q2 for t > T�2, ν(T�2) = c∗.

Obviously, ν is monotone increasing, and ν(t) → q2 as t → ∞. Hence, for q3 ∈ (q, q2), there

exists a T�3 ≥ T�2 such that ν(T�3) = q3. Since ν is a subsolution of v, we have v(x, t) ≥ q3 > q
for x ∈ Rn and t ≥ T�3.

In what follows, we shall derive upper bounds of u and v. Let us define κ := κ(t) as the

solution to

κ′ = G∗(κ) :=
1

ε
κ(1 − κ) − hq3

κ − q
κ + q

for t > T�3, κ(T�3) = m.

Note that κ is monotone decreasing, and κ(t) → κ∗ as t → ∞, where κ∗ ∈ (q, ū) satisfies

G∗(κ) = 0. For u∗ ∈ (κ∗, ū), there exists a T�4 ≥ T�3 such that κ(T�4) = u∗. Since v ≥ q3 for

t ≥ T�3, it holds that u(x, t) ≤ κ(t) for x ∈ Rn and t ≥ T�3. That is to say, κ is a supersolution

of u. Moreover, u(x, T�4) ≤ u∗ for x ∈ Rn. We thus see that u(x, t) ≤ u∗ < ū for x ∈ Rn and

t ≥ T�4.

Since u ≤ u∗ < ū for t ≥ T�4, there exists a T� ≥ T�4 such that v(x, T�) ≤ ū for x ∈ Rn, by

observing a supersolution of v:

μ′ = −μ + u∗ for t > T�4, μ(T�4) = m.

Hence, v(x, t) < ū for x ∈ Rn and t > T�.
Note that S is an invariant region by Theorem 1-(ii). Therefore, summing up the ar-

guments above, (u(x, t), v(x, t)) ∈ S for x ∈ Rn and t > T�. This completes the proof of

Theorem 1-(iii). �

Remark 3. (i) Looking at the proof above, we find the following fact. Let κ̄ ∈ (q, ū) be a

root of κ(1 − κ)(κ + q) − εhq1(κ − q) = 0. For q� ∈ [q, q1) and u� ∈ (κ̄, ū], then there exists a

T� ≥ t∗ such that (u(x, t), v(x, t)) ∈ S � := (q�, u�)2 ⊂ S for x ∈ Rn and t ≥ T�. Note that S � is

an invariant region depending on m.

(ii) The assumption u(t∗), v(t∗) ≥ c∗ are crucial. Indeed, it seems to be difficult to show

(u, v) ∈ S for large t, when u0 ≥ 0, v0 ≥ 0 and either u0 � 0 or v0 � 0 only.
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