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Abstract (In English)

Manufacturing has rapidly been transforming under the umbrella of the
fourth industrial revolution, known as Industry 4.0 or smart manufactur-
ing, which diligently utilizes information and communication technology. In
smart manufacturing, cyber-physical systems host Internet-of-Things (IoT)-
based networks and digital twins. The networks integrate manufacturing en-
ablers such as computer numerical control machine tools, robots, numerous
process and resource planning systems, and human resources. Digital twins
are computable virtual abstractions of real-world entities exhibiting real-time
responsive capacities. The twins work as the brains of the enablers; that is,
the twins supply the required knowledge and help enablers solve problems
autonomously, responding to various sensor signals in real-time.

Remarkably, three types of digital twins (object, process, and phenomenon
twins) must populate the cyber-physical systems. Compared to other twins,
phenomena twins have not yet been researched elaborately. This thesis fills
this gap. The issues underlying semantic annotation and time latency (or
delay) are significant for a phenomenon twin. Time latency or delay occurs
when sensor signals are exchanged through the abovementioned embedded
systems. As a result, the signal at its origin (e.g., machine tools) and sig-
nal received at the receiver end (e.g., digital twin) differ. Moreover, many
datasets of heterogeneous sensor signals are exchanged through IoT-based
networks. Hence, acquiring the right signals for a twin is difficult and time-
consuming. Semantic annotation-based representation of sensor signals can
solve this problem. Thus, a phenomenon twin must machine-learn the re-
quired knowledge to emulate the phenomenon from the relevant historical
sensor signal datasets, seamlessly interact with the real-time sensor signals,
handle the semantically annotated datasets stored in clouds, and accommo-
date the transmission delay or latency.
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Accordingly, this thesis presents two systems denoted as Digital Twin
Construction System (DTCS) and Digital Twin Adaptation System (DTAS).
The first system constructs a phenomenon twin, and the other adapts the
constructed twin into a cyber-physical system. Both systems are developed
using a JavaTM-based platform. The modular architectures of the systems
are presented in detail. In addition, real-life machining torque signals are
used to demonstrate the efficacy of DTCS and DTAS.

DTCS consists of five modules denoted as Input, Modeling, Simulation,
Validation, and Output Modules. The Input Module can make sense of the
semantically annotated datasets and helps users select the right ones. It en-
sures fast and effective data mining using a human-machine-comprehensible
semantic annotation mechanism (concept map and Extensible Markup Lan-
guage (XML) driven). The Modeling Module can extract the required knowl-
edge to emulate a phenomenon from the information supplied by the Input
Module. This module uses a Markov chain-based machine learning method
and accommodates data transmission delay-related arrangements. The Sim-
ulation Module can operate on the knowledge extracted by the Modeling
Module and simulate the signals of the phenomenon using a discrete event-
based stochastic simulation method. The Validation Module can validate the
simulated signals of the phenomenon against the real signals using quanti-
tative measures (e.g., fuzzy numbers). Finally, the Output Module transfers
the selected Modules of DTCS to DTAS. DTAS, in turn, can adapt the con-
structed phenomenon twin into the cyber-physical system for monitoring and
troubleshooting.

The thesis is organized as follows. Chapter 1 presents the introduction
of this study. Chapter 2 provides a literature review on the role of cyber-
physical systems and digital twins in smart manufacturing or Industry 4.0.
Chapter 3 describes a semantic annotation-based representation mechanism
of data and knowledge. Chapter 4 describes the role of the delay domain in
mitigating the effect of time delay or latency of signal transmission. Chap-
ter 5 presents the proposed DTCS and DTAS. Chapter 6 demonstrates the
efficacy of DTCS and DTAS using a real-life case of intelligent monitoring
of machining (milling). Chapter 7 discusses the implications of this study
and highlights future research directions. Finally, Chapter 8 provides the
concluding remarks of this thesis.

Since the digital twins of the machining phenomena are needed to make
the machine tools and other programmable devices more intelligent and au-
tonomous, the presented DTCS and DTAS contribute to the befitting ad-
vancement of Industry 4.0 or smart manufacturing.
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製造業は、インダストリー4.0またはスマートマニュファクチャリングと
して知られる第4次産業革命のもとで急速に変化している。この革命は
積極的な情報通信技術の利用によってサイバーフィジカルシステムを明
示し、IoTを規範とするネットワークおよびデジタルツインで構成され
る。IoTを規範とするネットワークは、コンピューター数値制御型工作
機械、ロボット、多数のプロセスおよびリソース計画システム、人材な
どの製造イネーブラーを統合する。デジタルツイン（リアルタイムの応
答能力を持つ実世界のエンティティの計算可能な仮想モデル化）は製造
イネーブラーの頭脳として機能している。つまり、デジタルツインは製
造イネーブラーが問題を自律的に解決するために必要な知識の獲得やさ
まざまなセンサー信号のリアルタイムによる応答を支援する。

注目すべき点はサイバーフィジカルシステムには3種類のデジタルツ
イン（物体、工程、および現象ツイン）を用意しなければならない点で
ある。しかし物体及び工程ツインの研究は進んでいるが、現象ツインに
おいてはまだ研究は不十分である。本論文はこのギャップを埋めること
を目的にしている。

現象ツインは、サイバースペースで与えられた現象（切削抵抗、ト
ルク、表面粗さなど）をエミュレートし、製造イネーブラー（工作機械
など）に必要な知識を与えることでそのイネーブラーをより効率的に活
躍させる。しかし現象ツインの作成に当たり、セマンティックアノテー
ション及び時間遅れという問題を考慮した対策を導入する必要がある。

時間遅れは、センサー信号が上記の組み込みシステムを介して交換
されるときに発生する。その結果、発信元の信号（工作機械側）と受信
側で獲得される信号（デジタルツイン側）が異なる。さらに、異種セン
サー信号の多くのデータセットは、IoTを規範とするネットワークを介
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して交換される。従って、現象ツインには次の機能が求められる。

1. 与えられたセンサー信号データセットから必要な知識を機械学習に
よって獲得すること。

2. リアルタイムセンサー信号とシームレスに相互作用すること。

3. クラウドに保存されているセマンティックアノテーションデータ
セットを処理すること。

4. センサー信号の時間遅れに対応すること。

本論文ではデジタルツイン構築システム（DTCS）およびデジタルツ
イン適応システム（DTAS）について述べる。DTCSは現象ツインを構築
し、DTASは構築されたツインをサイバーフィジカルシステムに適応さ
せる。本システムはJavaTMプラットフォームによって開発する。各シス
テムの詳細について述べるとともに機械加工のとき発生するトルク信号
を用いて開発されたシステムの有効性を実証する。DTCSは、入力、モ
デリング、シミュレーション、バリデーション、および出力という5つ
のモジュールで構成される。入力モジュールは、セマンティックアノ
テーションされた信号データセットを理解し、ユーザーが選択した適
切なデータセットを獲得することができる。このモジュールは、セマ
ンティックアノテーションメカニズムによって用意されたデータ（概念
マップおよびExtensible Markup Language（XML）型データ）を高速か
つ効果的にマイニングすることができる。モデリングモジュールは、入
力モジュールによって提供されるデータセットから現象をエミュレート
するための知識を獲得することができる。その際、マルコフ連鎖型機械
学習の実施および時間遅れの影響に対応することができる。シミュレー
ションモジュールは、モデリングモジュールによって獲得された知識
に基づいて動作し、離散事象シミュレーションを用いて現象の信号をシ
ミュレートすることができる。バリデーションモジュールは、定量的手
法によって（例：ファジー数）現象のシミュレーションされた信号を実
際の信号に対して検証することができる。出力モジュールは、DTCSか
ら選択されたモジュールをDTASに転送することができる。最後に、モ
ニタリングやトラブルシューティングのため、DTASはDTCSから転送さ
れた現象ツインの各モジュールをサイバーフィジカルシステムに導入す
ることができる。

本論文は次のように構成する。 第1章では、第4次産業革命および関
連研究分野の概要を説明する。第2章では、インダストリー4.0における
サイバーフィジカルシステムやデジタルツインの役割に関する文献を
レビューする。第3章では、セマンティックアノテーションに関するメ
カニズムを述べる。第4章では、時間遅れとそのセンサー信号の性質へ
の影響および時間遅れドメイン型信号処理の有効性について述べる。
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第5章では、DTCSならびにDTASの構成や開発について述べる。第6章で
は、DTCSならびにDTASの有効性を実例によって示す。第7章では、本
論文の含意および今後の研究課題について述べる。最後に第8章では、本
論文の結論を述べる。

機械加工現象のデジタルツインは、工作機械の知能化および自律化
に有用であるため本論文で示したシステムはスマートマニュファクチャ
リングに欠かせない。また工作機械以外のデバイスにおいても同様のこ
とが言える。従って、本論文で示したDTCSおよびDTASはインダスト
リー4.0またはスマートマニュファクチャリングの進歩に貢献する。
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Chapter 1
Introduction

This chapter addresses the introduction of this study. The introduction out-
lines the research background (Section 1.1), the context (Section 1.2), the
scope (Section 1.3), the aim and objectives (Section 1.4), and the contribu-
tion and significance (Section 1.5) of this study. Finally, this chapter presents
the structure of this thesis (Section 1.6).

1.1 Research Background

Manufacturing sector has been evolving due to several industrial revolutions
throughout time. In the first industrial revolution (also known as Industry
1.0), the main theme was to utilize steam engine-based devices. In the sec-
ond industrial revolution (also known as Industry 2.0), the main theme was
to enhance productivity by using mass production assembly lines. In the
third industrial revolution (also known as Industry 3.0), the main theme was
to automate manufacturing tasks by using numerically controlled devices.
Nowadays, the fourth industrial revolution, popularly known as Industry 4.0
[1] or smart manufacturing [2], has been fostering profound transformations
in the traditional manufacturing landscape. This evolution of manufacturing
sector is schematically illustrated in Figure 1.1.

Industry 4.0 or smart manufacturing diligently utilizes the Information
and Communication Technologies (ICT) to bring about automation and
autonomy among the manufacturing enablers (e.g., machine tools, robots,
CAD/CAM systems, process planning systems, resource planning systems

1



2 Introduction
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(ERP), human resources, and alike). As such, the enablers must perform
some high-level cognitive tasks such as monitoring, understanding, predict-
ing, decision-making, and adapting in real-time [3, 4]. Here, monitoring
means what is happening in a given manufacturing context. Understanding
means why it is happening. Predicting means what will happen. Decision-
making means setting the right course of actions based on understanding
and prediction. Adapting means to adapt the made decisions and self-
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optimization. These cognitive tasks are considered the maturity indices for
transforming a traditional automation-centric manufacturing environment
(Industry 3.0) to an Industry 4.0 environment, as schematically illustrated
in Figure 1.2.

Nevertheless, embedded systems such as Cyber-Physical Systems (CPS)
[4, 5, 6] and the Internet of Things (IoT) [6, 7] empower the enablers to-
ward performing the abovementioned cognitive tasks. The CPS is a seamless
merger among the physical manufacturing environment and its cyber coun-
terpart. As seen in Figure 1.3, CPS hosts four basic constituents: (1) IoT-
embedded manufacturing enablers in the physical layer, (2) cloud-based data
storage facility, data management and analytic systems in the cyber layer,
(3) an ever-growing knowledge base in the cyber layer, and (4) arrangements
regarding Digital Twins (DTs). These constituents interact with each other
for performing the abovementioned cognitive tasks, whenever needed.

1.2 Context

The remarkable thing is that different types of DTs supply the knowledge
for the ever-growing knowledge-base (see Figure 1.3). By definition, a DT is
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Figure 1.3: Role of digital twins in cyber-physical systems.
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a computable virtual abstraction of a real-world entity, which must respond
in real-time [8, 9]. Nevertheless, DTs can be classified into three types:
(1) object twin, (2) process twin, and (3) phenomenon twin. An object
twin means the DT of a real-world object (e.g., workpiece, cutting tool,
machine tool, sensor, and alike) used in a given manufacturing environment.
A process twin means the DT of a process sequence or process plan in a
given manufacturing environment. A phenomenon twin means the DT of
a machining phenomenon (e.g., surface roughness, cutting force, tool wear,
cutting torque, and alike) in a given manufacturing environment. These twins
collectively recreate the real-world manufacturing environment in the cyber
layer, supply the relevant pieces of knowledge, and drive the abovementioned
cognitive tasks (monitoring, understanding, predicting, decision-making, and
adapting).

Now, DTs are not readily available. They must be developed. As such,
two systems denoted as Digital Twin Construction System (DTCS) and Digi-
tal Twin Adaptation System (DTAS) must exist (see Figure 1.3). The DTCS
constructs the relevant DTs and the DTAS uses the constructed DTs for func-
tionalizing the cognitive tasks. Although many researchers have embarked
on developing the object and process twins, phenomenon twin has not been
studied in detail yet. This study fills this gap. One immediate question arises
that how the DTs of manufacturing phenomena can be developed.

1.3 Scope

Manufacturing phenomena (e.g., surface roughness, cutting force, tool wear,
cutting torque, and alike) are complex, non-linear, and exhibit stochastic
features [10]. As such, it is a cumbersome task to develop the relevant DT
analytically. One alternative way might be extracting the knowledge under-
lying the phenomena-relevant historic sensor signals and using the extracted
knowledge. For this reason, the relevant DTCS and DTAS (see Figure 1.3)
must construct the DT from the historic sensor signals and adapt the con-
structed DT for monitoring, respectively.

Now, the issues underlying semantic annotation and time latency (or
delay) are significant for developing a sensor signal-based phenomenon twin.
Time latency or delay [11, 12] occurs when sensor signals are exchanged
through the CPS. As a result, the signal at its origin (e.g., machine tools) and
signal received at the receiver-end (e.g., DT) differ. Moreover, many datasets
of heterogeneous sensor signals are exchanged through IoT-based networks.
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Hence, acquiring the right signals for constructing a twin is difficult and time-
consuming. Semantic annotation-based representation [13] of sensor signals
can solve this problem.

Thus, a sensor signal-based phenomenon twin must machine-learn the
required knowledge to emulate the phenomenon from the relevant historical
sensor signal datasets, seamlessly interact with the real-time sensor signals,
handle the semantically annotated datasets stored in clouds, and accommo-
date the transmission delay or latency.

Based on the abovementioned requirements, this study presents the rel-
evant systems (DTCS and DTAS) for constructing a phenomenon twin and
adapting the constructed twin into a CPS. Both systems are developed us-
ing a JavaTM-based platform. The modular architectures of the systems are
presented in detail. In addition, real-life machining torque signals are used
to demonstrate the efficacy of the systems (DTCS and DTAS).

Therefore, the following questions are emphasized for developing the sys-
tems and demonstrating their efficacy.

1. How can sensor signals be annotated using user-defined semantics?

2. How does time latency/delay affect sensor signals’ nature?

3. Which signal processing method can accommodate the effect of delay
effectively?

4. What should be the architecture of DTCS to construct the DTs based
on semantically annotated and time-delayed sensor signals?

5. What should be the architecture of DTAS to use the constructed DTs
for real-time in-process monitoring?

6. How can the proposed DTCS and DTAS be developed?

7. Does DTCS construct reliable DTs from the sensor signals?

8. Does DTAS functionalize effective monitoring?

1.4 Aim and Objectives

The aim of this study is to develop two computerized systems (DTCS and
DTAS) for constructing a DT of machining phenomenon (or phenomenon
twin) based on semantically annotated and time-delayed sensor signals, and
using the constructed DT for real-time monitoring.
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As such, the underlying objectives are as follows.

1. To develop a semantic annotation-based representation mechanism,

2. To investigate the impact of delay on sensor signals’ nature,

3. To determine the requirements and structure of the systems (DTCS
and DTAS),

4. To develop the systems, and

5. To test the efficacy of the systems using a real-life machining process.

1.5 Contribution and Significance

The main contribution of this study is the systems, i.e., DTCS and DTAS,
for constructing and adapting DTs of machining phenomena (e.g., cutting
torque, cutting force, surface roughness, and alike). As described in Sec-
tion 1.2, in the CPS of Industry 4.0, different types of DTs (object, process,
and phenomenon twins) are needed for virtualizing a real-life manufacturing
environment and functionalizing high-level cognitive tasks (monitoring, un-
derstanding, predicting, decision-making, and adapting). Although several
researchers have been embarked on object and process twins, the phenomena
twins (DTs of machining phenomena) have not been studied in detail yet.
There is a lack of a steadfast procedure of constructing and adapting such
DTs. This study fills this gap by presenting the required systems (DTCS
and DTAS).

The systems are developed using a JavaTM-based platform. The efficacy of
the systems is tested using a real-life machining process (milling) and milling
torque signals. The systems are found effective and fast while constructing
the relevant DT and performing real-time monitoring. Since the DTs of
the machining phenomena are needed to make the machine tools and other
programmable devices more intelligent and autonomous, the presented DTCS
and DTAS provide a steadfast procedure for materializing the vision.

Having said that, the presented systems are capable of handling data
transmission delay and semantic annotation-related issues, which are signif-
icant from the context of Industry 4.0 (as mentioned in Section 1.3). This
study also elucidates these issues in detail.

It is seen that the delay affects sensor signals’ nature. When delay is
considered, the conventional signal processing methods (time and frequency
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domain-based processing) are inadequate for unfolding signals’ nature. In
such case, an alternative method, i.e., delay domain is found more effec-
tive, revealing the fact that computational arrangements in the CPS must
accompany delay domain-based processing apart from others.

On the other hand, the presented semantic annotation-based represen-
tation mechanism ensures fast and effective data mining. It also ensures a
scalable way for representing contents and creating linked data over the web.
This means the mechanism ensures socialization among heterogeneous en-
vironments. This is significant from the viewpoint of Semantic Web (Web
3.0/4.0) because Industry 4.0 is expected to face the era of Semantic Web in
the upcoming days.

Thus, this study contributes to the befitting advancement of Industry 4.0
or smart manufacturing.

1.6 Thesis Structure

This thesis is structured into eight (8) chapters as follows.

Chapter 1 presents the introduction of this study, describing the research
background, context, scope, aim and objectives, and contribution and signif-
icance of this study.

Chapter 2 provides an extant literature review on the role of CPS, IoT,
and DTs in Industry 4.0 or smart manufacturing.

Chapter 3 describes a semantic annotation-based representation mecha-
nism of data and knowledge.

Chapter 4 describes the role of the delay domain in mitigating the effect
of time delay or latency of signal transmission.

Chapter 5 presents the proposed DTCS and DTAS, describing the sys-
tems’ context and modular architectures.

Chapter 6 demonstrates the efficacy of the DTCS and DTAS, using a
real-life machining process (end milling and milling torque signals).

Chapter 7 discusses the implications of this study. This chapter also
highlights some future research directions.

Finally, Chapter 8 provides the concluding remarks of this thesis.





Chapter 2
Literature Review

As described in Chapter 1, embedded systems called Cyber-Physical Sys-
tems (CPS) and Internet of Things (IoT) are two mainsprings for merging the
physical and cyber worlds underlying a manufacturing environment. The goal
is to functionalize high-level cognitive tasks, i.e., monitoring, understanding,
predicting, decision-making, and adapting, for a better manufacturing expe-
rience. In this context, different types of Digital Twins (DTs) supply the
required knowledge for achieving the abovementioned tasks.

Consequently, CPS, IoT, and DTs have created remarkable research di-
rections in manufacturing research groups. This chapter presents an extant
literature review on CPS, IoT, and DTs, as follows. Section 2.1 describes
some of the recent articles on the role of CPS and IoT in Industry 4.0 or
smart manufacturing. Section 2.2 describes some of the recent articles on
the role of DTs in Industry 4.0 or smart manufacturing. Section 2.3 summa-
rizes this chapter.

2.1 CPS and IoT in Industry 4.0

Many authors have embarked on CPS and IoT’s implications in Industry 4.0
or smart manufacturing. Some of the recent articles are briefly described
below.

Zhou et al. [4] described the conceptual framework of new generation
intelligent manufacturing systems, in terms of a Human-Cyber-Physical Sys-

9
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tems (HCPS). It (HCPS) hosts a self-growing knowledge base that integrates
expert knowledge and machine intelligence through new generation artificial
intelligence. Morteza [6] reviewed the extant literature of the Industry 4.0
ecosystem. The entities involved in the ecosystem are simulation and mod-
eling, CPS, semantic technologies, IoT, Internet of Service (IoS), Internet
of Data (IoD), cloud computing, big data analytics, block chain, cyber se-
curity, augmented reality, automation and industrial robotics, and additive
manufacturing. The proximal and distal relationships among these entities
achieve personalized product, corporate social responsibilities, smart factory,
smart product, interoperability, modularization, decentralization, virtual-
ization, real-time capacity, vertical integration, and horizontal integration.
Rossit et al. [14] presented a dynamic scheduling architecture based on
data-driven procedures in smart manufacturing environments. Both vertical
and horizontal data integration in the CPS to make the dynamic scheduling
achievable. The vertical allows establishing direct contact between the physi-
cal and decision-making levels and horizontal integration of CPS-driven busi-
ness functions traditionally carried out independently. Big data and other
relevant technologies become the backbone of dynamic scheduling architec-
ture due to its data dependency. Lu [15] presented a state-of-the-art survey
of the ongoing research on Industry 4.0, elucidating its content, scope, and
findings. This study emphasizes that the symbiosis of machine-to-machine
communication and machine-to-human collaboration will emerge in Industry
4.0. The integration of engineering processes, business processes, and service
processes creates a new enterprise information system architecture for Indus-
try 4.0. Oztemel and Gursev [16] provided a literature review on Industry 4.0
and related technologies. They have emphasized the harmonized roles of hu-
mans and machines in Industry 4.0, where machines perform monotonous and
recurrent tasks, opening more opportunities for humans to perform creative
tasks. Developing a taxonomy is a pressing need in Industry 4.0. Monostori
et al. [5] elucidated the structure, functions, and roles of the CPS in man-
ufacturing science and technology. They emphasized that CPS evolve due
to the advent of computer science and information and communication tech-
nologies. It will bring all stakeholders and aiding manufacturing systems into
a networked type of integration, breaking the hierarchies. Further research,
development, and implementation activities are needed to give a concrete
shape to manufacturing CPS where the socio-ethical aspects must not be
neglected. Yao et al. [17] described the eight-tuple structure of CPS with
the characteristics of real-time data access, reconfiguration, inter-operation,
decentralized decision-making, intelligence, and pro-activity to overcome the
limitations of existing integrated manufacturing systems. They have also
emphasized that the eight-tuple structure must be upgraded to a nine-tuple
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structure, adding the concept of wisdom manufacturing, incorporating the
functionalities of social computing, community, crowd-sourcing, customiza-
tion/personalization, innovation, and sustainability. Lee et al. [18] provided
a pragmatic 5C architecture of the CPS in manufacturing consisting of hierar-
chically organized five layers called connection, conversion, cyber, cognition,
and configuration. This architecture helps develop more intelligent and re-
silient manufacturing equipment and helps achieve better product quality
and system reliability. Lu and Cecil [7] outlined the IoT-based collaborative
framework, which serves as the foundation for cyber-physical interactions
and collaborations in Industry 4.0. They have introduced a language called
engineering enterprise modeling language to materialize the exchange of data
and information among the IoT-embedded devices. Pang et al. [19] devel-
oped a data-driven intelligent decision-making method for facilitating quality
control in CPS. Different machine learning techniques (e.g., artificial neural
network) must be incorporated to perform the quality control tasks in a
predictive way. Nakayama et al. [20] described how Industry 4.0 evolves
its predecessor (Industry 3.0). They have emphasized that achieving verti-
cal and horizontal integration with the aid of Industrial Internet of Things
(IIoT), service systems, semantic web, artificial intelligence, and collabo-
rative networks can transform Industry 3.0 to Industry 4.0. Morgan et al.
[21] revisited re-configurable manufacturing from the context of Industry 4.0.
They developed a three layered modularity framework of cyber-physical sys-
tems and IIoT framework, consisting of physical control, cyber control and
artificial intelligence. Physical control (edge) and cyber control (fog) layers
are connected by industrial network wherein DTs play their roles. Cyber
control and artificial intelligence (cloud) are connected by enterprise network
where services play their roles.

In sum, CPS hosts IoT-embedded manufacturing enablers, cloud-based
data storage and management system, and an ever-growing knowledge-base.
And, the DTs supply the knowledge for the ever-growing knowledge-base
(can also be seen in Figure 1.3).

2.2 Role of DTs in Industry 4.0

As mentioned above, DTs supply the knowledge for the ever-growing knowl-
edge base resided in the CPS. This eventually functionalizes the high-level
cognitive tasks (monitoring, understanding, predicting, decision-making, and
adapting) in an Industry 4.0 environment. Many authors have been embarked
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on DTs’ conceptualization, systematization, construction, and adaptation
from the context of Industry 4.0 and beyond. Some of the recent articles are
described below.

Aheleroff et al. [8] described DT with respect to digital model and
shadow. The digital model has no real-time connectivity with its physical
counterpart, but the digital shadow has limited or one-directional connectiv-
ity with its physical counterpart. On the other hand, DT has bi-directional
real-time connectivity with its physical counterpart. It has been stressed
that DT needs semantically annotated content for fulfilling its bidirectional
real-time connectivity. Note that, there is another relevant concept known as
a digital thread. This concept is synonymous with the digital model or digi-
tal shadow where the model is product-life-cycle-aware, that is, the model is
semantically annotated in terms of its role in the product-life-cycle. Fuller et
al. [22] reviewed the recent developments regarding DTs from different view-
points (manufacturing, healthcare, and smart cities). They described that a
DT incorporates data analytics, artificial intelligence (AI)-based modeling,
simulation, and visualization for decision-making. They suggested that the
DT might include validation measures to ensure the trustworthiness of the
AI-generated models before putting them into practice. Kaur et al. [23]
mentioned that a DT machine learns from real-time sensory data for fore-
casting the future of the corresponding physical counterparts. Jiang et al.
[24] described that the DTs drive value-added services (intelligent operation
and maintenance, monitoring, and optimization of assets) in IoT-embedded
industrial environment. For this, they proposed a Data-Model-Service-based
framework (DMS framework) for developing the DTs. The Industrial In-
ternet Consortium (IIC) [25] articulated that the DTs can be designed dis-
cretely (relevant to a single entity in a real-life manufacturing environment)
for monitoring purposes. The discrete DTs can also be composed to cre-
ate a composite DT for realizing the overall manufacturing environment.
Nevertheless, the DTs acquire data (physical objects’ data, time-series data,
historical data, and alike) for modeling physical entities. The models rep-
resent the behavior of those entities by incorporating machine learning and
simulation techniques. The IIC also highlighted that the DTs might contain
a set of human-comprehensive interfaces for putting them (DTs) into practice
in industrial applications and making them available to other stakeholders
whenever required. Tao et al. [26] have presented a DT-driven approach
for product development. The approach incorporates information related to
developing a product (design, design requirements, process, historical data
in the form of big data, and other associated factors such as environmental
factors, market review, and customer feedback). It improves the product
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design and optimizes relevant production and process plans. Ruppert et
al. [27] described that the real-time sensory data-driven DTs can be inte-
grated with the CPS for monitoring the status of the enablers and relevant
decision-making. They also introduced a DT framework called Real-Time
Locating Systems (RTLS)-based DT for production scheduling. Aheleroff
et al. [28] stressed the role of DT for Mass Personalization Manufacturing
(MPM). They described that DT promises a high degree of personalization
with the aid of IoT, artificial intelligence (AI), additive manufacturing (AM),
and cloud-based technologies in the smart manufacturing paradigm. They
also proposed a three-dimensional DT reference model consisting of DT ar-
chitecture, agile product development, and DT integration hierarchy.

However, DTs can make a machine tool intelligent [29, 30, 31]. As a
result, DT-embedded machine tools monitor and troubleshoot their activities
autonomously. For this purpose, sensor signal-based DTs (phenomena twins)
must be developed and adapted into the CPS apart from other types of DTs:
object and process twins (see Figure 1.3).

2.3 Summary

In sum, sensor signal-based DTs or phenomena twins are needed to make ma-
chine tools intelligent, and functionalize monitoring and autonomous trou-
bleshooting. However, such DTs have not been studied in detail yet. This
study fills this gap by addressing its development from historic sensor signal
datasets.

Since the development requires the right piece of sensor signal dataset
from a storage facility (e.g., cloud)—containing heterogeneous contents from
heterogeneous sources, and Industry 4.0 is embracing semantic web (web
3.0/4.0)-based technologies, the effective representation of sensor signals is a
relevant research question. This study first answers this question by present-
ing a semantic representation of data and knowledge, as follows.





Chapter 3
Semantic Annotation

This chapter describes semantic annotation-based representation for sharing
and reusing manufacturing contents (e.g., sensor signal datasets, cutting con-
ditions, and alike) over the web. For better understanding, the chapter is
organized as follows. Section 3.1 briefly describes the significance of semantic
annotation. Section 3.2 describes some of the recent studies on manufactur-
ing knowledge representation mechanisms. Section 3.3 presents a semantic
annotation-based representation mechanism of data and knowledge. Section
3.4 presents an example, where experimental results underlying a machin-
ing experiment is represented using the presented mechanism in Section 3.3.
Finally, Section 3.5 summarizes this chapter.

3.1 Significance of Semantic Annotation

As summarized in Chapter 2, acquiring the right piece of sensor signal dataset
among many from a storage facility (e.g., cloud) is the first-most concern to
develop a DT of a machining phenomenon. For this, an effective and mean-
ingful representation mechanism is needed so that enablers (e.g., human,
monitoring systems, DTs, and alike) can share and reuse the experimental
results (e.g., sensor signal datasets, cutting conditions, and alike) over the
web (web 2.0, or web 3.0/4.0), whenever required. One way to achieve this is
using user-defined semantics to link all the relevant entities while sharing a
piece of content. This will create linked data of all essential entities and help
other stakeholders understand the overall context before reusing the shared

15
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content. Thus, semantic annotations can facilitate effective data mining.

Moreover, as seen in Figure 3.1, Industry 4.0 is expected to face the era
of semantic web (web 3.0/4.0) [32, 13] in the upcoming days. Therefore, the
representation mechanism must create human and machine-comprehensible
linked data by putting semantic annotations on top of syntax [33] for the
sake of socialization. Here, syntax means the codified contents for enabling
Machine-to-Machine (M2M) communications. On the other hand, semantics
mean the meaning of the contents. The semantics associated with the syn-
tax provides a meaningful way to adapt the contents (experimental results
underlying a manufacturing activity) whenever required. However, in reality,
representation mechanisms are mostly domain-specific, strict ontology- and
query language-dependent (e.g., SOSA ontology and SPARQL/C-SPARQL
queries), and thus, esoteric by nature.

Nevertheless, several researchers have been embarked on representation
mechanisms and the importance of semantic annotations. Some of the recent
articles are briefly described in the following section.
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Figure 3.1: Evolution of web and its context in Industry 4.0 (rearranged from the
work in [34]).
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3.2 Studies on Representation Mechanism

Jaskó et al. [35] articulated that Manufacturing Execution Systems (MESs)
must represent knowledge in the form of semantic metadata-embedded linked
data for exchanging contextual information among all the enablers in the
Cyber-Physical Systems (CPS). Mostafa et al. [36] stressed the importance
of metadata for acquiring contextual information from big data. Souri et
al. [37] described that knowledge management frameworks must handle the
discrete nature of data from heterogeneous sources. The frameworks must
also integrate the multi-source data for easy access and reuse. For this,
they proposed a framework that semantically classifies engineering design
and manufacturing knowledge. Wang et al. [38] introduced a holistic tool
that acquires, organizes, and fuses knowledge from heterogeneous sources
for improving process innovation. For this, it uses a semantic relationship-
based knowledge fusion technique. Liu et al. [39] stressed that semantic
information associated with multi-source data drives the development of in-
telligent monitoring systems (e.g., digital twins). Ullah [10] presented a
semantic model of sensor signal-based digital twins. The author also rep-
resented the underlying knowledge from the viewpoint of the semantic web
(Web 3.0/4.0) [32], which is most likely to dominate in the upcoming days
and functionalize the CPS. Likewise, Fenza et al. [40] described manufactur-
ing knowledge representation from the viewpoint of the semantic web. They
articulated that the knowledge must be semantically enriched and machine-
readable for the sake of knowledge-sharing among heterogeneous indepen-
dent industrial environments. They also proposed a method that collects,
processes, and represents the semantic data, using the SOSA ontology and
C-SPARQL queries. Ullah [41] argued that knowledge representation must be
both human-comprehensible and machine-readable, incorporating syntax and
user-defined semantics. Pomp et al. [42] stressed the importance of seman-
tics for reducing data-analytic-time. They also introduced a semantic data
platform called Evolving Semantic Knowledge Aggregation and Processing
Engine (ESKAPE) to semantically annotate raw data (collected from hetero-
geneous sources), resulting in a continuously evolving knowledge graph. Fill
[43] proposed a semantic annotation-driven enterprise modeling architecture
for the sake of risk management. Ullah [13] emphasized the importance of
interpreting manufacturing knowledge before its digitization and representa-
tion. Accordingly, the author interpreted manufacturing knowledge by three
elements called knowledge claim, provenance, and inference. The author also
articulated that knowledge representation mechanisms must be scalable and
user-friendly instead of domain-specific and esoteric.
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In sum, knowledge must be both human-comprehensible and machine-
readable. For this, its representation must incorporate semantics on top of
syntax. The representation must follow a scalable ontology for integrating
contents from heterogeneous sources, handling the discrete nature of data,
creating linked data, and sharing it among heterogeneous independent manu-
facturing environments. However, in reality, the representation mechanisms
are mostly domain-, strict ontology-, and query language-dependent (e.g.,
SOSA ontology, SPARQL/C-SPARQL queries, and alike). Thus, the repre-
sentation mechanisms are esoteric by nature. For this, a flexible and user-
friendly human and machine comprehensible representation mechanism is
presented in this study, as follows.

3.3 Proposed Representation Mechanism

As seen in Figure 3.2, whenever a manufacturing activity (e.g., a machining
experiment) happens, it entails different entities (e.g., sensors, cutting tool,
machining tool, machining condition, workpiece material, signal datasets,
and alike). The entities collectively build up the knowledge underlying the
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Figure 3.2: Outline of semantic annotation-based knowledge representation
mechanism.
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experiment. Hence, the knowledge representation mechanism must reflect
rational relationship among the entities.

One pragmatic way to achieve this is to create linked data by incorporat-
ing user-defined semantics among the entities’ syntax. As such, the semantic
annotation process must be flexible and easy-to-comprehend considering the
heterogeneous structure of Industry 4.0. Afterwards, the semantically an-
notated linked data can be shared in the form of XML (Extensible Markup
Language) data in a data storage facility (e.g., cloud) so that other stake-
holders can access, understand, reuse a piece of experimental results (e.g.,
sensor signal datasets), whenever required. This scenario is also schemati-
cally illustrated in Figure 3.2. For the sake of better understanding, consider
an example as described below.

3.4 Use of the Proposed Mechanism

3.4.1 Machining Experiment

As seen in Figure 3.3, consider a machining experiment, where a bimetallic
workpiece is machined for understanding the cutting torque behavior. The
workpiece is made of commercially pure Titanium and aluminum (Japanese
Industrial Standards or JIS: A1070), denoted as ‘Ti’ and ‘Al’, respectively.
The corresponding cutting conditions (e.g., cutting velocity, spindle speed,
feed rate, axial depth of cut, and alike) are also mentioned in Figure 3.3 in
detail. The corresponding machining equipment (e.g., cutting tool, machine
tool, sensor, and alike) and cutting directions are summarized in Table 3.1.
Here, the cutting conditions are pieces of definitional knowledge [13], because
these are well-defined in the manufacturing domain. On the other hand, the
numerical values of the conditions and the machining equipment are pieces of
inductive knowledge [13], because one may formulate these in different ways
based on experience or requirements.

As mentioned in Table 3.1 (can also be seen in Figure 3.3), the workpiece
is machined from two directions: hard-to-soft material direction, i.e., Ti to Al,
and soft-to-hard material direction, i.e., Al to Ti. Say, the former direction
is denoted as ‘direction-1’ and the latter one is denoted as ‘direction-2’. As
such, a rotary dynamometer (see Table 3.1 for details) is used for measuring
cutting torque signals, while machining the workpiece from both directions.
Figure 3.4 shows the time series plots of the measured torque signals.
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Figure 3.3: A machining experiment and underlying cutting conditions.

Table 3.1: Conditions for the machining experiment.

Item Description

Machine tool

Vertical machining center

Make: Mori Seiki

Model: NV5000

Cutting tool

Carbide Φ6 solid end mill

Make: Mitsubishi Hitachi

Model: EPP4060-P-CS

Sensor

Rotary dynamometer

Make: Kistler

Type: 9170A

Workpiece material

Bimetallic material made of

commercially pure Titanium (Ti) and

Aluminum, JIS: A1070 (Al)

Cutting directions Ti to Al, Al to Ti
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As seen in Figure 3.4a, for direction-1 (Ti to Al), the torque signals first
remain stable, then go downward, and finally increase continuously while
machining the Ti, joint area (heat-affected area while joining Ti and Al, see
Figure 5), and Al, respectively. On the other hand, as seen in Figure 3.4b, for
direction-2 (Al to Ti), the torque signals remain somewhat stable all through
the machining region. Since unstable cutting torque is undesired in machin-
ing, it can be contemplated that the machining of the given workpiece must
follow direction-2 (Al to Ti) instead of direction-1 (Ti to Al), considering the
given cutting conditions. As such, the abovementioned contemplation is a
piece of inductive knowledge [13], because it is experimental data-dependent
and made by analyzing the obtained results.

Ti JA* Al

Machining Region

*JA = Joint Area
t [ms]

T
o
rq

u
e 

[N
-m

]

0 50 100 150 200 250 300 350 400 450

-0.1

0

0.1

0.2

0.3

0.4

Ti to Al

(a)

Al JA* Ti

Machining Region

t [ms]

T
o
rq

u
e 

[N
-m

]

0 50 100 150 200 250 300 350 400 450

-0.1

0

0.1

0.2

0.3

0.4

Al to Ti

*JA = Joint Area

(b)

Figure 3.4: Measured cutting torque signals. (a) cutting direction: Ti to Al, (b)
cutting direction: Al to Ti.
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Figure 3.5: Outline of knowledge-type-aware concept mapping.

Now, the abovementioned knowledge underlying the experiment are rep-
resented in the form of linked data incorporating all the entities (e.g., cut-
ting conditions, sensor signal datasets, observations, and alike) associated
with some user-defined semantics. One straightforward way to do this is
knowledge-type-aware-concept mapping [10, 13, 41], as follows.

3.4.2 Knowledge-Type-Aware Concept Mapping

A concept map consists of at least one focus question Q , a set of semantic
relationships or propositions P = {Pi | i = 1, 2, ...}, a set of concepts C =
{Cj | j = 1, 2, ...}, a set of linking phrases L = {Lk | k = 1, 2, ...}, and a set of
resources R = {Rl | l = 1, 2, ...}. A semantic relationship is constructed by
relating at least two concepts via one linking phrase. Figure 3.5 schematically
illustrates this scenario. As seen in Figure 3.5, a concept may or may not
be resource-embedded. Here, resource means datasets, documents, images,
URL(s), and alike. The resources provide the provenance (a guide to the
truthiness) for the constructed relationships. As such, the sets P , C , and L
can never be empty, but R can.

Now, recall the abovementioned machining experiment (see Section 3.4.1).
A concept map is constructed (using CmapTools, developed by Florida Insti-
tute for Human & Machine Cognition (IHMC), available from the following
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Figure 3.6: A concept map for the machining experiment.

url: https://cmap.ihmc.us/) for representing the knowledge underlying the
experiment, as shown in Figure 3.6.

As seen in Figure 3.6, the constituents of the concept map are as fol-
lows: Q = “Behavior of cutting torque in end milling operations”, C =
{experiments, understand, cutting torque, end milling operations, cutting
directions, here, cutting conditions, time series data, direction-1, direction-
2, cutting tool, machine tool, sensor, bimetallic workpiece, stable}, L =
{have been conducted to, the behavior of, in, entail, are described, as shown,
include, measured by the, in form of, are stored, is not, is somewhat, is
described, for}, and R = {R1, ...,R6}.

As such, the concept map shown in Figure 3.6 boils down to 9 (nine)
propositions, P = {P1, ...,P9}, as follows:

(P1) experiments have been conducted to understand the behavior of cutting
torque in end milling operations.

https://cmap.ihmc.us/
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(P2) end milling operations entail cutting conditions, cutting tool, machine
tool, bimetallic workpiece, sensor and cutting directions.

(P3) cutting conditions are described here.

(P4) cutting tool, machine tool, bimetallic workpiece and sensor are de-
scribed here.

(P5) cutting directions are described here.

(P6) cutting directions include direction-1 and direction-2.

(P7) cutting torque for direction-1 is not stable as shown here.

(P8) cutting torque for direction-2 is somewhat stable as shown here.

(P9) cutting torque measured by the sensor in form of time series data are
stored here.

In P3,P4,P5,P7,P8, and P9, the concept called ‘here’ is embedded with
R1, ...,R6, respectively. Here, R1 refers to a document describing the cutting
conditions (see Figure 3.3). R2 refers to a document describing the machining
equipment (see Table 3.1). R3 refers to a document describing the cutting
directions (see Figure 3.3 and Table 3.1). R4 refers to the time series plot
of torque signals for direction-1 (see Figure 3.4a). R5 refers to the time
series plot of torque signals for direction-2 (see Figure 3.4b). R6 refers to a
document (format: text document, .txt) storing the numerical datasets of the
measured torque signals. One may view the concept map from the following
url: https://cmapscloud.ihmc.us/viewer/cmap/1XBZFP7CV-NCSQ86-G9.

One remarkable thing about concept mapping is that the sets P , C ,
and L are user-defined. For example, one can use different sets of P , C ,
and L for constructing the same concept map shown in Figure 3.6. This
makes knowledge representation using a concept map highly flexible and
user-friendly. In addition, one can embed R with P for the sake of user
comprehensibility and meaningful representation.

Now, this concept map (see Figure 3.6) is essentially a high-level descrip-
tion of a machining experiment (see Figure 3.3), which is human compre-
hensible. However, in Industry 4.0 environments, other enablers and stake-
holders (machines and systems) are also expected to access the concept map
and make sense of it. For this, the concept map can be shared among all
the stakeholders in various forms over the web. One straightforward way is
sharing in the form of extensible Markup Language or XML, as shown in
Figure 3.7. This functionalizes other stakeholders to understand the overall
context underlying a manufacturing experiment in a more effective manner,

https://cmapscloud.ihmc.us/viewer/cmap/1XBZFP7CV-NCSQ86-G9
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Concept Map
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<semantics>

<proposition_no>1</proposition_no>

<proposition>experiments have been conducted to understand the behavior of cutting torque in end milling 

operations</proposition>

<resource_location>N/A</resource_location>

</semantics>

<semantics>

<proposition_no>2</proposition_no>

<proposition>end milling operations entail cutting conditions, cutting tool, machine tool, bimetallic 

workpiece, sensor and cutting directions</proposition>

<resource_location>N/A</resource_location>

</semantics>

<semantics>

<proposition_no>3</proposition_no>

<proposition>cutting conditions are described here</proposition>

<resource_location>https://cmapscloud.ihmc.us:443/rid=1XBZFNCPR-S47NNV-

F1/cutting%20conditions.pdf</resource_location>

</semantics>

<semantics>

<proposition_no>4</proposition_no>

<proposition>cutting tool, machine tool, bimetallic workpiece and sensor are described here</proposition>

<resource_location>https://cmapscloud.ihmc.us:443/rid=1XBZFP1WG-28WS6L9-

G0/conditions%20for%20machining%20experiment.pdf</resource_location>

</semantics>

<semantics>

<proposition_no>5</proposition_no>

<proposition>cutting directions are described here</proposition>

<resource_location>https://cmapscloud.ihmc.us:443/rid=1XBZFP4LP-16PJTNV-

G4/cutting%20directions.pdf</resource_location>

</semantics>

…

XML Data

Data Storage

Industry 4.0 Environments

10

Reuse (analysis, 

monitoring,…)

Figure 3.7: XML data of the concept map.

before reusing a piece of the experimental results (here, numerical datasets
of cutting torque signals).

3.5 Summary

This chapter presents a semantic annotation-based knowledge representa-
tion mechanism for a machining experiment. It (mechanism) semantically
annotates the relevant entities (e.g., cutting conditions, machine tool, cut-
ting tool, sensor, workpiece, sensor signal datasets, and alike) for represent-
ing different knowledge-types underlying the experiment, and results in hu-
man and machine comprehensible linked data (concept map and XML data).
The mechanism is highly flexible and user-friendly compared to the conven-
tional domain-specific and esoteric representation mechanisms. Its use is also
demonstrated in detail considering a real-life machining experiment.

As such, the findings suggest that the semantic annotation-based rep-
resentation helps other stakeholders (e.g., human resources and monitoring
systems) understand the overall context underlying the experiment, before
reusing a piece of experimental results (e.g., sensor signal datasets). This
is particularly significant for developing DTs of machining phenomena (e.g.,
cutting force, cutting torque, surface roughness, and alike). The DTs need
phenomenon-relevant historical sensor signal datasets for modeling the phe-
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nomenon and generating simulated signals. As such, the DTs first need to
understand the usability of the available signal datasets for acquiring the
right piece of signal dataset among many from the web. The proposed rep-
resentation mechanism solves this issue in an effective way.

Nevertheless, after acquiring the appropriate sensor signal dataset from
a data storage facility, the dynamics underlying the signal dataset must be
encapsulated for developing the DT. This means an appropriate sensor sig-
nal processing method must be incorporated in the DTCS. Since Industry
4.0-relevant communication networks face time latency or delay while trans-
mitting sensor signals among different systems, its (time latency or delay)
effect on sensor signals needs detailed investigation for identifying the appro-
priate signal processing method. The following chapter describes this issue
in detail.



Chapter 4
Delay and Its Significance

As described in Chapter 1, sensor signals are subjected to time latency or
delay [11, 12] while being transmitted among different systems in the CPS.
As such, the interplay of delay must be considered and investigated in detail
for developing systems (DTCS and DTAS), required for constructing and
adapting a sensor signal-based DT of machining phenomenon in the CPS.

When delay is considered, the signal analyses (e.g., time and frequency
domains-based analyses) may not adequately capture the dynamics of the
underlying phenomenon. Instead, a domain called the delay domain [44, 45]
can be considered for capturing the dynamics of the underlying phenomenon.
Based on this consideration, this chapter presents the effect of delay on sensor
signal processing in detail, proving some guidelines showing how to accom-
modate delay in developing sensor signal-based DTs.

For better understanding, the rest of this chapter is organized as follows.
Sections 4.1 and 4.2 describe some state-of-the-art studies on delay and sensor
signal processing methods, respectively. Section 4.3 describes delay domain-
based signal processing. Section 4.4 presents the implications of delay using
an arbitrary signal and also some real-life machining signals, where delay
domain-based processing is deployed to make sense of the signals. Section
4.5 presents the efficacy of delay domain-based processing where it is shown
that the delay domain can distinguish different machining situations more
effectively than the frequency domain. Finally, Section 4.6 summarizes this
chapter.

27
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4.1 Studies on Time Latency or Delay

Many researchers active in communication and control engineering have been
working on delay from the context of Industry 4.0-relevant communication
networks, focusing on its impacts and compensation mechanisms. Some of
the recent articles are briefly described below.

Raptis et al. [46] reviewed the data delivery delay and its compensation
for the sake of data management (coordination and computation of data)
in Industry 4.0. Zoppi et al. [47] developed a Quality of Service (QoS)
framework for mitigating end-to-end delay in industrial Wired/Wireless Sen-
sor Networks (WSN). Mo et al. [48] focused on the performance of the
Networked Control Systems (NCS) due to delay. They showed how delay
impedes the reliability of NCS. Zhang et al. [49] proposed a delay compensa-
tion algorithm for the NCS using a method called Controller Area Network
(CAN)-buses. Guck et al. [50] introduced a Software-Defined Networking
(SDN)-based function split framework for reducing delay. It (SDN-based
framework) meets the end-to-end delay requirements, guaranteeing the real-
time QoS of data exchange. Yagi and Sawada [51] articulated that delay
underlying a communication network is random. It causes instability in the
feedback systems. They also designed a Kalman filter to reduce the effect of
the random delay. Fan et al. [52] articulated that a random delay underlying
the NCS degrades the control performance and makes the system unstable.
In this regard, they presented a control scheme called Networked Predictive
Control (NPC). It mitigates the effects of transmission delay and achieves
desired control performance using two components: Network Delay Compen-
sator (NDC) and Control Prediction Generator (CPG), respectively. Wu et
al. [53] described sensor-to-actuator and controller-to-actuator delays using
Markov chains. They also proposed a control scheme that compensates these
delays and makes the NCS stable. Sun and Huo [54] developed a switching
control approach called Markovian Jump Linear System (MJLS). It models
the random delays as a Markov process for making the NCS stable. Guo and
Gu [55] described that random time delay is the cause of instability and poor
performance in the NCS. They also suggested a model to improve stability.
Baillieul and Antsaklis [56] described that delay is unavoidable and one of
the challenges of modern NCS composed of heterogeneous systems and ap-
plications. They also mentioned that the sensors might fail to transmit data
immediately, and data loss might occur due to communication delays. They
considered that distributed control systems perform better in overcoming
delay-related issues compared to the centralized ones. Bijami and Farsangi
[57] described that communication delay—underlying distributed networked
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systems composed of heterogeneous sub-systems—causes random data loss
and makes the system unstable. They also developed a control framework
for stabilizing the networked systems. Zunino et al. [58] mentioned that
delay compensation is needed to transmit data at a higher update rate for
materializing the real-time behavior of Industry 4.0. They also emphasized
that systems and applications in Industry 4.0 need to be delay-aware for ad-
dressing the time-related performance and reliability requirements. Ferrari
[12] identified different types of delays in an IoT-based environment, such as
end-to-end delay, round-trip-time, and jitter. These delays cause low data de-
livery rate, data loss, and failure of the control systems. The author provided
a hardware-independent method for measuring delays in an industrial IoT-
based environment. Jhaveri et al. [11] presented a delay-aware framework
to measure end-to-end delay in real-time SDN-based networks. Kontogian-
nis and Kokkonis [59] proposed a protocol called Fuzzy Real-Time haPticS
Protocol (FRTPS) for alleviating the impacts of delay in real-time applica-
tions. It (FRTPS) alleviates data loss and low data delivery for achieving
better synchronization and reliability of the systems. Xia et al. [60] proposed
an algorithm called Mixed-Criticality Relative-execution Deadline (MCRD)
for managing delay, scheduling of data transmission, and reducing data loss
in the Industrial Internet of Things (IIoT)-based environments. Basir et al.
[61] mentioned that fog computing performs better than cloud computing for
compensating delay-related issues. It also achieves low latency data delivery
and reliable real-time communication among heterogeneous systems in the
IIoT-based environments. They also mentioned that the systems and appli-
cations in the IIoT need to be delay-aware to limit different types of delays
(e.g., processing, propagation, transmission, and computation delays) while
communicating in real-time. Wang et al. [62] emphasized that communica-
tion delay needs to be considered while designing controllers to monitor and
control in the NCS.

In sum, delay causes data loss and system instability in a given communi-
cation and data transmission network. This is true for the networks in CPS.
For this, its effect on sensor signal processing needs to be understood. In
this respect, first some of the recent works on sensor signal processing are
studied, as follows.
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4.2 Studies on Signal Processing Methods

Sensor signal processing is a mainspring for machine- and process-condition
monitoring in manufacturing. Its role has been intensified due to the advent
of Industry 4.0-centric embedded systems (CPS and DTs). Numerous re-
searchers have been working on implementing the existing signal processing
techniques or even developing new ones. For the sake of better understand-
ing, some of the recent articles on signal processing are briefly described
below.

First, consider the techniques used in sensor signal processing for man-
ufacturing. Some of the recent works are summarized in Table 4.1. As
seen in Table 4.1, the signals are commonly processed in the time, fre-
quency, and time-frequency (e.g., WPT and WTMM) domains for extracting
domain-relevant features (attributes of signal data). Since this provides an
overwhelming number of features, the most relevant ones are selected us-
ing some computational arrangements (e.g., Pearson’s correlation coefficient
[70], Spearman’s correlation coefficient [74], and alike). The enablers (human
and intelligent systems) use the relevant features for machine learning and
monitoring purposes (e.g., chatter monitoring, tool condition monitoring,
roughness assessment, and alike). Nevertheless, numerous authors have also
studied the technical problems and limitations of the abovementioned sen-
sor signal processing techniques. Some of the noteworthy studies are briefly
described as follows.

Mahata et al. [67] articulated that time or frequency domain-based sig-
nal processing is not effective for analyzing non-linear signals (e.g., signals
underlying grinding wheel wear). In this respect, they proposed a modified
method defined as Hilbert-Huang Transform (HHT). Espinosa et al. [75]
articulated that traditional frequency analysis is not effective for unfolding
the characteristics of non-linear signals, compared to the alternative analyt-
ics such as Approximate Entropy (ApEn) and Sampling Entropy (SampEn).
Bayma et al. [76] proposed a Non-linear Output Frequency Response Func-
tions (NOFRFs)-based approach for analyzing non-linear systems from the
contexts of condition monitoring, fault diagnosis, and non-linear modal anal-
ysis. Bernard et al. [77] articulated that in the machine and process-condition
monitoring research areas, the methods used or introduced highly depend on
high data acquisition rates. They emphasized the need for alternative meth-
ods that can perform with low data acquisition rates to meet some chal-
lenges of intelligent manufacturing, such as fast computation and low data
storage. They also proposed a data-driven KDE function-based method for
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Table 4.1: A summary of recent studies on signal processing methods in
manufacturing.

Article Process Purpose Signal Method

[63] Milling
Tool Condition
Monitoring
(TCM)

Cutting force,
Vibration

Frequency,
Time-Frequency

[64] Milling TCM Sound
Wavelet Transform
Modulus Maxima

(WTMM)

[65] Milling
Chatter

monitoring
Cutting force

Time,
Time-Frequency

[66] Grinding
Grinding wheel

condition
monitoring

Acoustic
Emission
(AE)

Time-Frequency

[67] Grinding
Grinding wheel

wear
identification

Vibration,
Power

Frequency,
Time-Frequency

[68] Milling TCM
Cutting force,
Vibration, AE

Time, Frequency,
Time-Frequency

[69] Milling
Chatter

identification

Cutting force,
Acceleration,
Image ripple
distance

Time, Frequency

[70] Turning
Tool wear
estimation

Cutting force,
AE, Vibration
acceleration

Wavelet Packet
Transform (WPT)

[71] Milling
Tool failure
detection

Current,
Vibration, AE

Time, Frequency

[72] Grinding
Roughness
prediction

Grinding
force,

Vibration, AE
Time, Frequency

[73] Polishing
Roughness
assessment

AE, Strain,
Current

Time, WPT

[74] Drilling
Tool health
monitoring

Thrust force,
Torque

Time, Frequency,
Fractal
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tool condition monitoring (TCM). Cerna and Harvey [78] demonstrated that
processing a signal dataset—associated with low sampling frequency—in the
frequency domain results in a misleading representation due to aliasing. Du
et al. [79] demonstrated that time latency (or time delay) and sampling rate
underlying the sensor signals must be synchronously optimized for improving
the control performance in a feedback control system. Lalouani et al. [80]
described that acquiring data at higher sampling rates and its (data) trans-
mission cause significant energy dissipation from a sensor system. They also
articulated that suppressing energy dissipation is a prime requirement for the
sustainable operation of a sensor system. They developed an energy opti-
mization method, which deploys in-network processing to reduce the number
of data transmissions. Halgamuge et al. [81] presented an overview of the
sources of sensor power consumption. Some sources are: sensing signals at
a sampling rate, signal conditioning, Analog to Digital Conversion (ADC),
reading/writing the sensed data in memory, and data transmitting. They
also developed an energy model for estimating the life expectancy of WSN.
Wang and Chandrakasan [82] articulated that both the communication and
computing energy need to be suppressed for prolonging the lifetimes of the
wireless sensors in a multi-sensory network. For this, they stressed the need
for an efficient signal processing method to extract meaningful information
from the sensed data. McIntire et al. [83] described the requirements of
Embedded Networked Sensor (ENS) systems from the viewpoint of critical
environment monitoring. They articulated that the ENS must consume low
energy. At the same time, the ENS must satisfy complex information process-
ing to select proper sensor sampling. Marinkovic and Popovici [84] developed
a method for suppressing the communication energy dissipation in a Wire-
less Body Area Network (WBAN) sensor node. The method adapts wireless
wake-up functionality enabled by a Wake-Up Receiver (WUR). Brunelli et
al. [85] articulated that computational tasks in a monitoring environment
should consume less energy to guarantee an energy-efficient sensor network
and data center.

However, in reality, sensor signals underlying manufacturing phenomena
are mostly non-linear and stochastic. Also, a low data acquisition rate is
a possible outcome due to time latency (or delay) in complex communica-
tion networks underlying smart manufacturing systems [56, 57, 58]. As de-
scribed above, the conventional signal processing methods (time, frequency,
and time-frequency-based methods) do not perform well under the abovemen-
tioned restraints. In particular, the methods are inadequate for understand-
ing the nature underlying non-linear and stochastic signals. They (methods)
depend on a higher data acquisition rate and complex computational ar-
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rangements, which create difficulties in storing the sensed data, consume
more time to process the data, and cause energy dissipation from the sensor
network. Therefore, apart from the conventional methods, alternative meth-
ods must be investigated and incorporated for signal processing and handling
the abovementioned difficulties from the smart manufacturing context. One
alternative method might be delay domain-based signal processing, as pre-
sented in the following section.

4.3 Delay Domain-Based Signal Processing

As mentioned in the previous section (Section 4.2), alternative signal process-
ing methods are needed for unfolding the effect of time latency. For this, one
straightforward way might be to adapt delay domain-based signal process-
ing [44, 45]. Few authors have embarked on this issue—delay domain-based
signal processing and its implication in smart manufacturing. For example,
Ullah [86] used delay domain-based processing for unfolding the dynamics
underlying surface roughness signal datasets. Ullah and Harib [87] proposed
a rule-based knowledge extraction process for simulating surface roughness
where the rules are derived from the delay domain-based processing of histor-
ical roughness datasets. Wang and Li [88] used delay domain-based process-
ing for the correlation analysis while developing a chaotic image encryption
algorithm.

By definition, delay domain-based signal processing means transferring a
dataset (time series) to a space called delay map [44]. The map considers a
series of forward or backward values from the dataset based on a forward or
backward delay parameter (a non-zero integer), respectively. For example, let
{A(t) ∈ ℜ | t = 0,∆t , 2∆t , ...} be a signal dataset, where ∆t is the sampling
interval. Thus,

(
t ,A(t)

)
is the corresponding time series. Now, let d be a

non-zero integer to define the value of delay or time latency, i.e., d ∈ Z+.
As such, the dataset of ordered pairs

{(
A(t),A(t ± D)

)
|D = d × ∆t , t =

0,∆t , 2∆t , ...
}
becomes the corresponding delay map. The time series can

be represented by indexing its elements using a pointer, if preferred. In this
case, A(t) is replaced by A(i)

(
= A(t)

)
, where t = i×∆t and i is the pointer,

i = 0, 1, .... As such,
(
A(i),A(i ± d)

)
becomes the corresponding delay map.

For better understanding, consider an example to illustrate its (delay
domain) significance as follows. Let S1 and S2 be the time series of two
arbitrary signals, where the signal values are S1(i), S2(i) ∈ [0, 1], i = 0, 1, ...,
as shown in Figure 4.1. Thus, the plots shown in Figure 4.1 are the time
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Figure 4.1: Time series. (a) S1, (b) S2.

domain representations of the signals. Eight quantifiers (features) (F0, ...,F7)
= (Mean, Root Mean Square (RMS), Standard Deviation (SD), Peak, Crest
Factor (CF), Shape Factor (SF), Impulse Factor (IF), Peak to Peak (PTP))
are used to quantify S1 and S2 in time domain. The values of the features
are plotted in Figure 4.2 for both signals.

As seen in Figure 4.2, the values of all features of S1 and S2 are almost
the same. Therefore, as far as the time domain is concerned, S1 and S2 are
two very similar signals. Let us quantify the signals in frequency domain.
For this, the Fast Fourier Transform (FFT) is performed on the datasets
shown in Figure 4.1 and the amplitude-frequency diagrams of S1 and S2 are
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Figure 4.2: Quantifying S1 and S2 in time domain.

constructed, as shown in Figure 4.3. As seen in Figure 4.3, the frequencies
underlying S1 (Figure 4.3a) and S2 (Figure 4.3b) also exhibit a very similar
pattern.
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Figure 4.3: Frequency domain representations (FFT). (a) S1, (b) S2.

Finally, consider delay domain-based analysis of S1 and S2. For this, two
delay maps as shown in Figures 4.4a-4.4b for S1 and S2, respectively, are
constructed. The d (delay parameter) is set to be 1. Consider the delay
map of S1 (Figure 4.4a). In this case, the points are randomly distributed on
the delay map revealing the fact that the value of signal at a point of time,
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S1(i), can change to a value taken from the interval [0,1] randomly in the
next point of time,

(
S1(i + 1)

)
. On the other hand, consider the delay map

shown in Figure 4.4b. A systematic pattern (the points are organized on
parabolic curve) is shown in the delay map. This means that value of signal
at a point of time, S2(i), cannot change to a value taken from the interval
[0,1] randomly in the next point of time,

(
S2(i + 1)

)
; it follows an order.
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Figure 4.4: Delay maps (for d = 1). (a) S1, (b) S2.

From the above time domain, frequency domain, and delay domain analy-
ses, it is clear that delay domain-based analysis is more informative compared
to time domain and frequency domain-based analyses for understanding the
dynamics underlying S1 and S2. Thus, the delay domain is a powerful means
to process signals. However, let us describe the implication of time latency
on signal processing using an arbitrary signal and some real-life machining
signals, as follows.

4.4 Implications of Delay

4.4.1 Arbitrary Signal

First, consider an arbitrary signal denoted as S (i) | i = 0, 1, ..., that follows
Equation 4.1. In Equation 4.1, a1, ..., a4 and f1, ..., f4 are the amplitude and
frequency components, respectively, where a1 = 15, a2 = 10, a3 = 5, a4 =
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10, f1 = 0.08, f2 = 0.03, f3 = 0.06, and f4 = 0.045. As seen in Figure 4.5,
S (i) (denoted as A) is the source signal. When S (i) is transmitted from
the source and received at a receiver-end, how delay impacts it (S (i)) is the
research question here. Say, a constant delay is occurred in this process,
denoted as c, where c = 5. As a result, the receiver-end receives a constant
delay-driven signal denoted as T (j ), where T (j ) = S (i + c) | j = 0, 1, ..., as
shown in Figure 4.5 (denoted as B). On the other hand, say, a random delay
is occurred, denoted as rl, where rl=1,...,5 ∈ {1, 2, 3, 4, 5}. As a result, the
receiver-end receives a random delay-driven signal denoted as U (k), where
U (k) = S (i + rl) | k = 0, 1, ..., as shown in Figure 4.5 (denoted as C).

S (i) = a1 sin(2πf1) + a2 cos(3× 2πf2) + a3 sin(2πf3) + a4 cos(3× 2πf4) (4.1)

As seen in Figure 4.5, when a delay occurs whether it is constant or ran-
dom, the characteristic of the source signal (here S (i)) gets affected. How-
ever, from visual inspection, the time series of the signals (S (i), T (j ) and
U (k)) are not so insightful for understanding the underlying dynamics. For
this reason, the abovementioned signals (S (i), T (j ) and U (k)) are processed
in the frequency domain (using Fast Fourier Transformation (FFT)). The
corresponding results are shown in Figures 4.6a-4.6c, respectively.

As seen in Figure 4.6a, the frequency domain represents the frequencies
underlying S (i) as expected. As seen in Figure 4.6b, the frequencies under-
lying T (j ) are not the same compared to that of S (i) (see Figure 4.6a). This
means that the constant delay can change the frequency information asso-
ciated with the source signal, S (i). As seen in Figure 4.6c, the frequencies
underlying U (k) are jumbled. This means that the random delay can change
the frequency information associated with the source signal, S (i) (see Figure
4.6a), significantly.

In addition, the abovementioned signals (S (i), T (j ) and U (k)) are trans-
ferred to the delay domain, which is often recommended for chaotic signals.
The corresponding results are shown in Figure 4.7a-4.7c, respectively. Fig-
ure 4.7a shows the delay map of S (i) consisting of points

(
S (i), S (i +1)

)
. It

is seen that the returns from one point to another follow a very systematic
pattern. This means S (i) is not chaotic. As seen in Figure 4.7b, the delay
map of T (j ) consisting of points

(
T (j ),T (j + 1)

)
, is somewhat distorted

compared to that of S (i) (see Figure 4.7a). This means that the constant
delay has affected the systematic behavior of the S (i). As seen in Figure
4.7c, the delay map of U (k) consisting of points

(
U (k),U (k + 1)

)
, is dis-
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Figure 4.5: Implications of delay on S (i).
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Figure 4.6: Frequency domain representations (FFT). (a) S (i), (b) T (j ), (c)
U (k).
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Figure 4.7: Delay maps. (a) S (i), (b) T (j ), (c) U (k).
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torted compared to that of S (i) (see Figure 4.7a) and T (j ) (see Figure 4.7b).
The returns from one point to another does not follow a systematic pattern
anymore. This means that the random delay makes the signal chaotic.

4.4.2 Real-Life Machining Signals

The previous sub-section (Section 4.4.1) shows the significance of signal pro-
cessing in the delay domain using an arbitrary signal. Now, let us consider
some real-life machining signals to see whether or not the delay domain re-
mains significant in real-life settings. In particular, cutting force signals ob-
tained by performing machining experiments according to the settings shown
in Table 4.2 are considered.

Table 4.2: Conditions for the machining experiment.

Item Description

Machine tool

Vertical machining center

Make: Mori Seiki

Model: NV5000

Cutting tool

Carbide Φ6 solid end mill

Make: Mitsubishi Hitachi

Model: EPP4060-P-CS

Sensor

Rotary dynamometer

Make: Kistler

Type: 9170A

Workpiece material

Stainless Steel (JIS: SUS304)

Mild Steel (JIS: S15CK)

Ductile cast iron (JIS: FCD)

Cutting velocity (Vc) 220 m/min

Spindle speed (N ) 11677 rpm

Feed per tooth (f ) 0.1 mm/tooth

Feed rate (Vf ) 4671 mm/min

Depth of cut (ap) 1.0 mm

Width of cut (ae) 0.5 mm

Consider a machining experiment, where a set of workpiece specimens de-
noted as W ,∀W ∈ {W1,W2,W3} undergo end milling. Here, W1, W2, and
W3 refer to the workpiece specimens made of Stainless Steel (JIS: SUS304),
Mild Steel (JIS: S15CK), and Ductile Cast Iron (JIS: FCD), respectively. Ta-
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ble 4.2 summarizes corresponding machining conditions (e.g., spindle speed
N (rpm), feed per tooth f (mm/tooth), depth of cut ap (mm), width of cut
ae (mm), and alike) in detail. Figure 4.8 schematically illustrates the outline
of the experiment and relative conditions (see the segment denoted as A).
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Figure 4.8: Outline of the machining experiment and signal acquisition.

As seen in Figure 4.8, the corresponding cutting force signals are obtained
using a sensor called rotary dynamometer (see Table 4.2 for details) while
machining W . Let, FW (t), t = 0,∆t , 2∆t , ...,m × ∆t , be the force signals
while machining W , as shown in the segment ‘B’ in Figure 4.8. Here, ∆t
denotes a sampling period of 0.02 ms. The goal is to analyze the FW under
time latency or delay. For this, two cases are considered, (1) a short sampling
window and (2) a low sampling rate due to varying delay. The FW is analyzed
considering both the abovementioned cases, as described below.

Analyzing Sensor Signals Under Different Sampling Windows

In Industry 4.0-centric systems, the sensor signal sampling windows may vary
due to physical limitations and suppressing energy dissipation . Therefore,
signals sampled using different sampling windows must be considered. Each
piece of sampled signals can then be analyzed in the time, frequency, and
delay domains, respectively.
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Consider the cutting force signal obtained while machining Stainless Steel
(JIS: SUS304), i.e., FW1 . Figure 4.9 shows its time series. As seen in Figure
4.9, the sample size of FW1 is denoted as LW1 , where LW1 = 7501. FW1 is
sampled four times using four different sampling windows (light blue colored
regions in the time series of FW1 shown in Figure 4.9). This results in four
new signals denoted as FW1S1 , ...,FW1S4 . The corresponding sample sizes are
denoted as LW1S1 , ...,LW1S4 , where LW1S1 = 5001,LW1S2 = 2501,LW1S3 =
1501, and LW1S4 = 501.
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Figure 4.9: Sampling the cutting force signal for machining Stainless Steel.

For the sake of analysis, the signals FW1 and FW1S1 , ...,FW1S4 are trans-
ferred to the frequency domain (using FFT) and delay domain (using d = 1,
as described in Section 4.3). As such, Figure 4.10 shows the time series, FFT,
and delay map for FW1 . Figures 4.11-4.14 show the time series, FFT, and
delay map for FW1S1 , ...,FW1S4 , respectively.

As seen in Figure 4.10b, the prominent frequencies underlying FW1 are 0
Hz, 780 Hz, 1560 Hz, 2333.333 Hz, 3113.333 Hz, 3893.333 Hz, and 4673.333
Hz. As seen in Figure 4.11b, the prominent frequencies underlying FW1S1 are
0 Hz, 780 Hz, 1560 Hz, 2340 Hz, 3110 Hz, 3890 Hz, and 4670 Hz. As seen
in Figure 4.12b, the prominent frequencies underlying FW1S2 are 0 Hz, 780
Hz, 1560 Hz, 2340 Hz, and 3120 Hz. As seen in Figure 4.13b, the prominent
frequencies underlying FW1S3 are 0 Hz, 766.6667 Hz, 1566.667 Hz, 2333.333
Hz, and 3133.333 Hz. As seen in Figure 4.14b, the prominent frequencies
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Figure 4.10: FW1 . (a) Time series, (b) Fast Fourier Transformation (FFT), (c)
Delay map (d = 1).
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Figure 4.11: FW1S1 . (a) Time series, (b) Fast Fourier Transformation (FFT), (c)
Delay map (d = 1).
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Figure 4.12: FW1S2 . (a) Time series, (b) Fast Fourier Transformation (FFT), (c)
Delay map (d = 1).
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Figure 4.13: FW1S3 . (a) Time series, (b) Fast Fourier Transformation (FFT), (c)
Delay map (d = 1).
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Figure 4.14: FW1S4 . (a) Time series, (b) Fast Fourier Transformation (FFT), (c)
Delay map (d = 1).

underlying FW1S4 are 0 Hz, 800 Hz, 1600 Hz, 2300 Hz, and 3100 Hz. This
means that the frequency information varies with the sampling window. In
addition, the FFT pattern gets affected when the sampling window is shorter
(see Figure 4.14b compared to Figure 4.10b).

On the other hand, the delay maps shown in Figure 4.10c and Figures
4.11c-4.14c exhibit similar characteristics under different sampling windows.
In particular, the returns of points from one to another are identical. This
means that the underlying nature of the FW1 and FW1S1 , ...,FW1S4 are the
same, regardless of the sample size. In addition, the density of points under-
lying the delay maps provides meaningful insight into the sample size of the
signal. For example, the density of the delay map shown in Figure 4.14c is
lighter compared to that of in Figure 4.10c, which mean the corresponding
signal FW1S4 (see Figure 4.14a) undergoes a low sampling window compared
to the FW1 (see Figure 4.10a).
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Nevertheless, similar outcomes are observed for the other two workpiece
specimens, i.e., W2 = Mild Steel (JIS: S15CK) and W3 = Ductile Cast Iron
(JIS: FCD), as described in Appendix A.1 and Appendix B.1, respectively.

Analyzing Sensor Signals Under Different Delays

Again, consider the cutting force signal obtained while machining Stainless
Steel (JIS: SUS304), i.e., FW1(t), t = 0,∆t , 2∆t , ...,m×∆t (can also be seen
in Figure 4.8). As mentioned before, here ∆t is the sampling period of 0.02
ms. To incorporate time latency or delay, ∆t is increased using the delay
parameter d (non-zero integer), such as d ×∆t . For example, for d = 1, the
sampling period remains 1× 0.02 = 0.02 ms; for d = 2, the sampling period
becomes 2× 0.02 = 0.04 ms; and alike. As mentioned in Section 4.3, d ×∆t
is simplified using D , where D = d × ∆t . As such, a set of time series is
generated using D where d = 1, 2, ....

The goal here is to understand the dynamics underlying the cutting
force signals due to varying delay. For this, the time series datasets are
transferred to the frequency domains (using FFT) and corresponding de-
lay domains. Table 4.3 shows the outcomes for some of the delays, i.e.,
d = 1, 5, 10, 20, 30, 40, 50, and 60.

As seen in Table 4.3, when d increases, the frequency information under-
lying the FW1 gets affected. The prominent frequencies (see the FFT diagram
for d = 1) are gradually lost due to aliasing [78] when d > 5 (see the FFT
diagrams for d = 10, 20, 30, 40, 50, and 60).

On the other hand, consider the delay maps consisting of the points(
FW1(t),FW1(t + D)

)
shown in Table 4.3. When d = 1, the delay map

exhibits a very systematic pattern. When d increases, the delay maps get
more and more scattered (see the delay maps for d = 5, 10, 20, 30, 40, and 50).
This means that the signal gets more and more chaotic due to the presence
of delay. However, when d = 60, the corresponding delay map is somewhat
systematic and similar to that of d = 5. This means that the underlying
natures of these two signals are similar, regardless of the difference in the
sampling rate. It is worth mentioning that the corresponding FFTs (see the
FFTs for d = 5 and for d = 60 shown in Table 4.3) are different and do
not preserve the nature of the source signal. As such, delay domain-based
representation is more informative for understanding the underlying nature
of FW1 under a low data acquisition rate due to time latency or delay.
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Table 4.3: Cutting force signal (FW1) in the form of time series, FFT, and delay
map under varying delay (d).

Time series(s) FFT(s) Delay maps
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Table 4.3: Cutting force signal (FW1) in the form of time series, FFT, and

delay map under varying delay (d) (continued from previous page).

Time series(s) FFT(s) Delay maps
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Nevertheless, similar outcomes are observed for the other two workpiece
specimens, i.e., W2 = Mild Steel (JIS: S15CK) and W3 = Ductile Cast Iron
(JIS: FCD), as described in Appendix A.2 and Appendix B.2, respectively.

To summarize, as seen in Table 4.4, real-life cutting force signals collected
while machining different materials (Stainless Steel, Mild Steel, and Ductile
Cast Iron) are analyzed in the frequency and delay domains. This time, both
the signal window and the amount of delay are varied to see their effect on
signal processing.

Table 4.4: Summary of observations from real-life signal processing.

Analyzing the signals under different sampling windows

Sample size
Observations (O)

Frequency domain Delay domain

Larger

O1. Meaningful frequency
information is prominent.

O1. Point clouds’ density is
higher.

O2. Effective for unfolding
signals’ original nature.

O2. The density signifies the
sample size.

O3. Effective for unfolding
signals’ original nature.

Smaller

O1. Frequency information
varies with the sample size.

O1. Point clouds’ density
becomes lower.

O2. Frequency information
gets lost or distorted.

O2. The density signifies the
sample size.

O3. The FFT exhibits a
different pattern than the
FFT for larger sample.

O3. Regardless of the sample
size, the delay maps retain

the dynamics.

O4. Inadequate for unfolding
signals’ original nature.

O4. Effective for unfolding
signals’ original nature.

Analyzing the signals under different delays

Delay, Observations (O)

d = 1, ...,100 Frequency domain Delay domain

d < 5

O1. Meaningful frequency
information is prominent.

O1. Delay map exhibits very
systematic patterns.

O2. Effective for unfolding
signals’ original nature.

O2. Effective for unfolding
signals’ original nature.

(continued on next page)
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Table 4.4: Summary of observations from real-life signal processing

(continued from previous page).

Analyzing the signals under different delays

Delay, Observations (O)

d = 1, ...,100 Frequency domain Delay domain

d = 5

O1. Meaningful frequency
information is somewhat

prominent.

O1. Delay map exhibits
somewhat systematic

patterns.

O2. Effective for unfolding
signals’ original nature.

O2. Effective for unfolding
signals’ original nature.

O3. Delay map starts getting
scattered.

d > 5

O1. Frequency information is
gradually lost due to aliasing.

O1. Delay map gets more
and more scattered.

O2. Inadequate for unfolding
signals’ original nature.

O2. The signal starts to get
more and more chaotic.

O3. The chaotic delay map
signifies the presence of delay.

d = 60 Same as above.

O1. Delay maps’ pattern is
found similar to the pattern

for d = 5.

O2. This signifies that delay
domain guarantees signals’
original nature for some

critical values of delay (e.g.,
here 5 and 60).

O3. This also signifies that
delay domain is more robust
in unfolding the nature of a
signal subjected to a high

delay.

60 < d ≤ 100 Same as above.
Delay map gets scattered

again.

In the case of the signal window, it is found that both frequency and
delay domains are effective for understanding the signals’ original nature for
a larger window. On the other hand, the delay domain is more effective
for smaller windows than the frequency domain. This is because frequency
information gets lost or distorted when the sample size is smaller, whereas
the delay domain retains the dynamics associated with the signals regardless
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of the sample size. On the other hand, in the case of varying delay, it is
found that when delay increases, the frequency spectrum gets affected. The
prominent frequencies of the original signal are gradually lost due to aliasing
when the delay exceeds a critical value.

On the other hand, when the delay increases, the delay domain gets more
and more scattered. Furthermore, for some critical values of delay (one may
be very high and the other may be very low), the delay domains exhibit sim-
ilar characteristics, which is not the case for the frequency domains. Thus,
when a very short window or low sampling rate (high delay) is used to an-
alyze a signal, delay domains guarantee its (signal’s) original nature. This
means that the delay domain-based representation is more robust in under-
stating the nature of a sensor signal subjected to high time latency, a common
phenomenon in Industry 4.0-relevant manufacturing environments.

However, let us consider another example, where it is shown that the
delay domain can distinguish different machining situations more effectively
than the frequency domain, as described in the following section.

4.5 Distinguishing Machining Situations

When machining is performed, the whole process undergoes different stages
or situations. For example, at the onset and completion of machining, the
cutting tool remains idle. Between the onset and completion, the tool ma-
chines the workpiece using a set of predefined cutting conditions. During
cutting, the cutting conditions can be changed depending on the geometry
or material of the workpiece. This creates the following situations: idle,
idle to cutting, cutting with different cutting conditions/materials, cutting
to idle, and idle. During this situation, an abnormality may happen (e.g.,
breakage of a tool, chatter vibration, and so on), adding other situations in
the whole process.

The Industry 4.0-centric systems must understand these situations on a
real-time basis from sensor signals. Furthermore, the systems must coordi-
nate among all machines under consideration and decide the right courses
of action. Otherwise, the safety, economy, and quality of the other planning
activities (e.g., maintenance scheduling) cannot be ensured [89]. Since delay
maps effectively understand a signal’s hidden characteristics even though the
signals are subjected to time latency and the signal sampling window is a
short one (as shown in Section 4.4.2), these maps can be employed to dis-
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tinguish different machining situations. This section explores this possibility
showing the efficacy of the delay domain.

For the sake of better understanding, Section 4.5.1 describes the machin-
ing experiment and sensor signal acquisition. Section 4.5.2 describes the
pre-processing of the acquired signal. Finally, Section 4.5.3 describes the fre-
quency and delay domain-based signal processing, and the obtained results.

4.5.1 Sensor Signal Acquisition

As seen in Figure 4.15, a multi-material workpiece made of Stainless Steel
(JIS: SUS304) and Mild Steel (JIS: S15CK) is machined following an end
milling process. The machining conditions are summarized in Table 4.5.
The reasons for choosing a multi-material workpiece over a mono-material
workpiece are as follows: (1) The usage of multi-material objects is increasing
because these perform better in terms of material efficiency compared to their
mono-material counterparts [90, 91], and (2) Machining a multi-material ob-
ject underlies more complex machining situations compared to machining a
mono-material object.

33

SUS304 S15CK

Joint Area

Cutting Tool

Machining Direction

Sensor (Rotary Dynamometer)

Machining Experiment

MS1 MS2 MS3 MS4 MS5 MS6 MS7

Machining Situations (MS)

MS1 = Idle

MS2 = Idle to Machining

MS3 = Machining SUS304

MS4 = Machining Joint Area

MS5 = Machining S15CK

MS6 = Machining to Idle

MS7 = Idle

Figure 4.15: Machining situations underlying the machining experiment.
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However, the multi-material workpiece is machined from the hard-to-soft
material direction (i.e., SUS304 to S15CK), as shown in Figure 4.15 (also
reported in Table 4.5). As such, the machining involves a set of machining
situations, denoted as MS ,∀MS ∈ {MS 1, ...,MS 7}. Here, MS 1 denotes the
situation when the cutting tool is idle just before the machining. MS 2 denotes
the transition from an idle state to a machining state. MS 3 denotes the
machining of SUS304 segment. MS 4 denotes the machining of the joint
area (heat-affected area while joining SUS304 and S15CK). MS 5 denotes the
machining of S15CK segment. MS 6 denotes the transition from a machining
state to an idle state. Finally, MS 7 denotes the situation when the tool is
idle after completing the machining.

Table 4.5: Conditions for machining a multi-material workpiece.

Item Description

Machine tool

Vertical machining center

Make: Mori Seiki

Model: NV5000

Cutting tool

Carbide Φ6 solid end mill

Make: Mitsubishi Hitachi

Model: EPP4060-P-CS

Sensor

Rotary dynamometer

Make: Kistler

Type: 9170A

Workpiece material

Bimetallic material made of

Stainless Steel (JIS: SUS304) and

Mild Steel (JIS: S15CK)

Cutting velocity (Vc) 220 m/min

Spindle speed (N ) 11677 rpm

Feed per tooth (f ) 0.2 mm/tooth

Feed rate (Vf ) 9341 mm/min

Depth of cut (ap) 2.0 mm

Width of cut (ae) 0.5 mm

Machining direction SUS304 to S15CK

While the cutting tool is passed through the abovementioned situations,
the corresponding machining force signals are recorded using a rotary dy-
namometer (as reported in Table 4.5). Let Fo be the raw force signals,
∀o ∈ {x , y , z}. Here, Fx , Fy , and Fz refers to the force signals along the
x -axis, y-axis, and z -axis, respectively. The force signal in the x -axis, i.e.,
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Figure 4.17: Sampling Fx (t) based on machining situations (MS ).
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Fx , is reported here. Figure 4.16 shows its time series, such as Fx (t), t =
0,∆t , 2∆t , .... Here, ∆t is a sampling period of 0.02 ms.

4.5.2 Signal Pre-Processing

As seen in Figure 4.17, Fx (t) is sampled to seven (7) fragments based on the
abovementioned machining situations (MS ). The fragments are denoted as
Fx1(t1), ...,Fx7(t7) corresponding toMS 1, ...,MS 7, respectively. The sampling
spans for Fx1(t1), ...,Fx7(t7) are as follows: t1 = [t start,tend] = [1000,1050], t2
= [t start,tend] = [1440,1490], t3 = [t start,tend] = [1490,1540], t4 = [t start,tend]
= [1530,1580], t5 = [t start,tend] = [1570,1620], t6 = [t start,tend] = [1620,1670],
and t7 = [t start,tend] = [1700,1750]. Note that each fragment consists of 2501
samples.

Nevertheless, the sampled fragments (Fx1(t1), ...,Fx7(t7)) are analyzed in
the frequency and delay domains for distinguishing the corresponding ma-
chining situations (MS 1, ...,MS 7), as described in the following sub-section.

4.5.3 Analysis in Frequency and Delay Domains

First, consider the frequency domain-based analysis. Figures 4.18a-4.18g
show the frequency domain representations (FFT) of Fx1(t1), ...,Fx7(t7) cor-
responds to MS 1, ...,MS 7, respectively.

As seen in Figures 4.18a and 4.18g, the frequency components underlying
Fx1(t1) and Fx7(t7) are same, respectively. These frequency components are
different from the frequency components underlying Fx2(t2), ...,Fx6(t6), as
shown in Figures 4.18b-4.18f, respectively. In addition, the frequency com-
ponents underlying Fx2(t2), ...,Fx6(t6) are the same (see Figures 4.18b-4.18f,
respectively). This means that the frequency domain-based analysis is effec-
tive only for distinguishing the situations MS 1 (underlying Fx1(t1)) and MS 7

(underlying Fx7(t7)) from others (MS 2, ...,MS 6 underlying Fx2(t2), ...,Fx6(t6),
respectively). It (frequency domain-based analysis) is not effective for distin-
guishing the situations MS 2, ...,MS 6 (underlying Fx2(t2), ...,Fx6(t6), respec-
tively) from each other.

Now, consider the delay domain-based analysis. For this, a set of delay
maps are constructed for each signals Fx1(t1), ...,Fx7(t7) by varying the delay
parameter d = 1, ..., 100. Note that the delay maps are generated following
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Figure 4.18: Frequency domain representations (FFTs) of the sampled signals.
(a) Fx1(t1), (b) Fx2(t2), (c) Fx3(t3), (d) Fx4(t4), (e) Fx5(t5), (f) Fx6(t6), (g)

Fx7(t7).

the methodology described in Section 4.3 (can also be seen in Section 4.4.2).
Table 4.6 shows the delay maps corresponding to d = 1, 2, 5, 50, and 100.

As seen in Table 4.6, the delay maps of Fx1(t1), ...,Fx7(t7) exhibit similar
patterns when d is very small (d = 1 and 2). The maps become more
and more chaotic with the increase in d , as observed in Table 4.6. For
some specific delay parameter values, a delay map corresponding to a given
machining situation exhibits a distinct pattern, though it is not the case in
most cases. Nevertheless, the specific values of delay for which each delay
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Table 4.6: Delay maps for Fx1(t1), ...,Fx7(t7) (corresponds to MS 1, ...,MS 7)
when d = 1, 2, 5, 50, and 100.

Sampled signals

Fx1(t1) Fx2(t2) Fx3(t3) Fx4(t4) Fx5(t5) Fx6(t6) Fx7(t7)

Delay maps for varying d
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Table 4.7: Delay maps for Fx1(t1), ...,Fx7(t7) (corresponds to MS 1, ...,MS 7)
when d = 43.

Sampled signals
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Delay maps for d = 43
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map exhibits a distinct pattern are valuable for Industry 4.0-centric systems.
In this case, the systems make one-to-one correspondence between a given
machining situation and its delay map, which is ideal for pattern recognition.
This means that a delay map can be a signature of a machining situation.
For example, for the signals reported in Figure 4.17, the delay maps exhibit
unique patterns when d = 43, as shown in Table 4.7. In other words, the
delay maps corresponding to d = 43 are the signatures of the machining
situations MS 1, ...,MS 7.

4.6 Summary

In this chapter, as a first step, two arbitrary chaotic signals are studied that
look alike in the time and frequency domains, but their differences can be
clearly understood in the delay domain. This means that the delay domain
must be incorporated to make sense of chaotic sensor signals.

In the next step, another arbitrary and real-life sensor signals relevant to
manufacturing, particularly cutting force signals collected while machining
three different materials (Stainless Steel, Mild Steel, and Ductile Cast Iron),
are analyzed in frequency and delay domains. It is found that when the delay
increases, the frequency spectrum gets affected. The prominent frequencies
of the original signal are gradually lost due to aliasing when the delay exceeds
a critical value. On the other hand, when delay increases, the delay domain
gets more and more scattered. For some critical values of delay (one may be
very high and the other may be very low), the delay domains exhibit similar
characteristics, which is not the case for the frequency domains. Thus, when
a very short window or low sampling rate (high delay) is used to analyze a
signal, the delay domains guarantee its (signal’s) original nature. This means
that the delay domain-based representation is more robust in understating
the nature of a sensor signal subjected to high time latency or delay.

Lastly, the potential of the delay domain becoming a signature of a ma-
chining situation is studied using real-life signals. For this, sensor signals
are sampled exhibiting seven different machining situations representing the
onset and completion of machining, machining different materials, and the
transitions among the aforementioned situations. For some specific delays,
the delay maps make one-to-one correspondence with machining situations.
This means that a delay domain of a machine situation is different from the
delay domains of other machining situations for a critical delay. As a result,
a delay domain can be used as a signature of a machining situation.
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The abovementioned examples show that the dynamics underlying a sig-
nal becomes complex due to delay. In such cases, the delay domain is more in-
formative than the time and frequency domains. However, in CPS, a random
delay is most likely to be associated with the sensor signals. As a result, while
constructing and adapting the sensor signal-based DTs (phenomena twins),
the relevant systems (DTCS and DTAS, as shown in Figure 1.3) must ac-
commodate delay domain-based signal processing technique. Based on this
consideration, this study proposes an architecture of the sensor signal-based
DTs where the sensor signal is processed in the delay domain subjected to a
random delay, as follows.





Chapter 5
Sensor Signal-Based Digital Twin

This chapter presents the proposed systems called Digital Twin Construction
System (DTCS) and Digital Twin Adaptation System (DTAS) for developing
Digital Twins (DTs) of machining phenomena based on semantic annotation
(see Chapter 3 for details) and time-delayed (see Chapter 4 for details) sen-
sor signals. For better understanding, this chapter is organized as follows.
Section 5.1 describes the interplay of DTCS and DTAS in a Cyber-Physical
System (CPS). Section 5.2 presents the requirements underlying the systems
(DTCS and DTAS). Section 5.3 presents the modular architectures of the
systems. Finally, Section 5.4 summarizes this chapter.

5.1 Systems’ Context

As seen in Figure 5.1, the interplay between the systems (DTCS and DTAS)
undergoes two phases. In the first phase, the DTCS constructs the DT. In the
other phase, the DTAS injects the constructed DT into the knowledge base.
As seen in Figure 5.1, the injected DT produces outcomes (a simulated sensor
signal) whenever necessary. On the other hand, the machine tool produces
a sensor signal while operating. These two signals (simulated and real) are
compared to decide the course of action while performing the intelligent
machine tool’s monitoring and troubleshooting activities.

As described before, when the DT is in the use phase (in this case mon-
itoring phase, as shown on the left-hand side in Figure 5.1), it is subjected
to delay as denoted by “d” in Figure 5.1. Therefore, the DT must be con-
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Figure 5.1: Interplay between the Digital Twin Construction System (DTCS)
and Digital Twin Adaptation System (DTAS).

structed based on a delay-embedded signal processing method. Otherwise,
the comparison does not make any sense. Based on this contemplation, this
study proposes a DTCS and DTAS, as described in the following sections.

5.2 Systems’ Requirements

As seen on the right-hand side in Figure 5.1, the DTCS consists of five
modules: (1) Input Module, (2) Modeling Module, (3) Simulation Module,
(4) Validation Module, and (5) Output Module. The modules are intertwined
and they collectively constitute the DT. The fundamental purposes of these
modules are: (1) Acquiring the right piece of sensor signal data from a given
data repository, (2) Extracting knowledge underlying the acquired sensor
signal, (3) Simulating sensor signal(s) relevant to the acquired one based on
the extracted knowledge, (4) Comparing the characteristics between the real
(acquired) and simulated signals, and (5) Transferring the constructed DT
to the DTAS, respectively.

For this, these modules collectively carry out the functional requirements
called Data Management, Ontology, Modeling, Machine Learning, Simula-
tion, Validation, Real-Time Response, and Semantic Web Compatibility.
Here, the function called Data Management means to collect and manage
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data from a data storage system (e.g., cloud-based data storage system, can
be seen in Figures 1.3 and 5.1). Ontology means the high-level descriptions of
the datasets and associated entities (e.g., machining process, machining con-
ditions, sensor, sensor signal, work-piece, cutting tool, machines, and alike)
in the form of user-defined semantic annotations, making the contents com-
patible with semantic web and concept maps. Modeling means to model the
relevant phenomenon, making the machine learning from sensor signal pos-
sible. Machine Learning means to learn rules for simulation using a suitable
machine learning approach (e.g., neural networks, deep learning, DNA-based
computing, Markov chain, and alike). Simulation means to simulate a sig-
nal on demand using a suitable approach (e.g., discrete event-based Monte
Carlo simulation and deterministic simulation). Validation means to validate
the simulation outcomes using a suitable approach (e.g., possibility distribu-
tion [92], entropy [86], DNA-based computing [93], Decisional DNA [94], and
alike), ensuring the trustworthiness of the simulation process. Real-Time
Response means re-configuring the relevant modules responding to real-time
signal data updates [8, 29]. Semantic Web Compatibility means to make the

Table 5.1: Functional requirements and fundamental purposes of the modules
underlying the Digital Twin Construction System (DTCS).

Modules underlying the DTCS

Functional
requirements

Input
Module

Modeling
Module

Simulation
Module

Validation
Module

Output
Module

Ontology • •
Semantic Web
Compatibility

• •

Real-Time
Response

• • • • •

Data
Management

• •

Modeling •
Machine
Learning

•

Simulation •
Validation •

Fundamental purposes of the modules

Signal
acquisition

Knowledge
extraction

Signal
recreation

Comparison
DT

transfer
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whole process of digital twining compatible with the semantic web. The rela-
tionship among the abovementioned functional requirements and the modules
of the DTCS are shown in Table 5.1.

As seen in Table 5.1, Real-Time Response is associated with all the mod-
ules. Apart from it (Real-Time Response), the Input Module is associated
with the Ontology, Semantic Web Compatibility, and Data Management
functional requirements. Similarly, the Modeling Module is associated with
the Modeling and Machine Learning functional requirements. The Simula-
tion Module is associated with the Simulation functional requirement. The
Validation Module is associated with the Validation functional requirement.
The Output Module is associated with the Ontology, Semantic Web Compat-
ibility, and Data Management functional requirements. If the modules can
execute the abovementioned functional requirements, then the DT is said to
be constructed properly. This means that the relationships shown in Table
5.1 are the design guidelines for constructing a sensor signal-based DT of a
machining phenomenon.

Recall the functional requirement called Real-Time Response, which is
involved with all the modules. In particular, this functional requirement is
subjected to time latency or delay (see Chapter 4 for details). Therefore,
it (delay) needs careful consideration. Otherwise, when the DT is in use
(see the left-hand side scenario shown in Figure 5.1), it may not produce the
desired outcome.

Nevertheless, based on the abovementioned requirements, the modular
architectures of the systems (DTCS and DTAS) are presented as follows.

5.3 Modular Architectures

The modular architectures of the abovementioned systems, i.e., DTCS and
DTAS, are presented in the following sub-sections (Sections 5.3.1 and 5.3.2,
respectively).

5.3.1 Digital Twin Construction System (DTCS)

First, consider the computerized system called DTCS. As mentioned in the
previous section (Section 5.2), the proposed DTCS consists of five modules:
Input Module, Modeling Module, Simulation Module, Validation Module,
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and Output Module. These modules collectively construct the DT. The
modular architectures of these modules are presented below.

Input Module

The Input Module is the first module of the proposed DT. The associated
functional requirements are Ontology, Semantic Web Compatibility, Data
Management, and Real-Time Response. Therefore, the Input Module must
deal with semantically annotated contents. The ideal case would be to link it
to a semantic web-embedded data repository. In reality, this may not be the
case. As such, the Input Module must be linked to an ontology-embedded
repository. Besides, it must respond to any content update in real-time.
Since the goal here is to create a DT based on sensor signal data, the Input
Module must provide a facility to search and select the relevant sensor signal
data.

Data Import Data ExportUser Domain

Input Module

Repository

Semantically 

Annotated Datasets 

(XML)

Search

Show Contents

Select Contents

Relevant?

No

Yes

Keywords

Select Dataset

Export

Concept Map, 

Propositions, Source 

URL(s), Datasets 

Display Contents

Sub-module 1 Sub-module 2

Start End

Figure 5.2: Modular architecture of the Input Module.

Based on the abovementioned consideration, a repository is created where
signal data of different machining phenomena (e.g., cutting force, cutting
torque, surface roughness, and alike) are stored using the Extensible Markup
Language (XML) file format. The contents are semantically annotated where
the relevant concepts (e.g., machining process, cutting conditions, sensor,
sensor signal datasets, cutting tool, and alike) and their relationships are
defined. Thus, the content takes the form of concept maps. The relevant
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node of each concept map contains the numerical datasets of a phenomenon.
For better understanding, see the semantic annotation-based knowledge rep-
resentation mechanism described in Chapter 3. However, the Input Module
interacts with the repository using two sub-modules, denoted as Data Im-
port and Data Export sub-modules. Figure 5.2 schematically illustrates the
modular architecture of this module.

As seen in Figure 5.2, the Data Import sub-module imports semantically
annotated contents from the repository based on a user-defined keyword and
delivers the contents to the Data Export sub-module. For this, it operates
based on ‘search-show-select’ functions. The Data Export sub-module ex-
ports the imported contents to the desired location (e.g., Modeling Module).
For this, it operates based on ‘display-select-export’ functions.

Modeling Module

The Modeling Module is the second module of the proposed DT. The asso-
ciated functional requirements are Modeling, Machine Learning, and Real-
Time Response. It (Modeling Module) first acknowledges the signal data (ex-
ported by the Input Module) and then models the underlying phenomenon
using a predefined machine learning approach. One of the approaches (e.g.,
neural networks, deep learning, semantic modeling, DNA-based computing,
or Markov chain) can be used to create a model. Besides, the module must
rebuild the model responding to any update in the exported signal in real-
time. Since the delay is an inherent characteristic of the systems where the
DT is supposed to work (see Figure 5.1), a model created from a given delay
map of a signal is perhaps the best option. As such, the Modeling Module
uses Markov chain-based modeling approach since it highly correlates with
delay maps [95, 96].

Based on the abovementioned consideration, a modular architecture of
the Modeling Module is proposed. Figure 5.3 schematically illustrates the
modular architecture. As seen in Figure 5.3, the Modeling Module consists
of three sub-modules, denoted as Data Import, Delay Settings, and Markov
Chain-Based Modeling sub-modules. The Data Import sub-module imports
the dataset exported by the Input Module, and displays its (dataset) time
series and delay map. The Delay Settings sub-module allows the user to
set a delay out of three choices (default, constant, random), and thereby,
constructs delay-driven dataset. It also displays the delay-driven dataset
(time series and delay map) for the sake of user comprehensibility. As such,



Sensor Signal-Based Digital Twin 65

Delay Settings Markov Chain-Based ModelingUser DomainData Import

Modeling Module

Sub-module 2 Sub-module 3Sub-module 1

Import 

Dataset

Display 

Dataset

Time Series, 

Delay Map

Set Delay
• Default

• Constant

• Random

Display Dataset

Reset?

Yes

Start Modeling

No

Modeling

Default?

Default 

States

Customize

States

Yes No

Build Markov 

Chain

Display Chain

Start End

Figure 5.3: Modular architecture of the Modeling Module.

the user may reset the delay if required. The Markov Chain-Based Modeling
sub-module extracts knowledge underlying the delay map (obtained from the
Delay Settings sub-module) in the form of a Markov chain. For this, the user
may use a set of default or customized latent states. Note that the Markov
chain-based modelling approach and relevant mathematical formulations are
described in Appendix C.

Simulation Module

The Simulation Module is the third module of the proposed DT. The as-
sociated functional requirements are Simulation and Real-Time Response.
It (Simulation Module) first acknowledges the model created by the Model-
ing Module and then simulates the phenomenon using a predefined simula-
tion approach (discrete event-based Monte Carlo simulation or deterministic
simulation). Besides, the module must respond to the model update on a
real-time basis. Since the Modeling Module uses the Markov chain, the Simu-
lation Module uses a discrete event-based Monte Carlo simulation approach.
The module first simulates the latent states (states defined in the Model-
ing Module) and translates the states into their numerical counterpart based
on a predefined probability distribution. Note that the relevant simulation
algorithm is described in Appendix D.

Based on the abovementioned consideration, a modular architecture of
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Figure 5.4: Modular architecture of the Simulation Module.

the Simulation Module is proposed. Figure 5.4 schematically illustrates the
modular architecture. As seen in Figure 5.4, the module operates based
on ‘define-execute-display’ functions. The user defines the Monte Carlo
simulation approach by selecting a probability distribution and setting the
distribution-relevant parameters. The user also decides how many times the
same simulation process should run. Based on these, the module executes
the simulation process and displays the simulation outcomes in the form of
time series and delay maps.

Validation Module

The Validation Module is the fourth module of the proposed DT. The asso-
ciated functional requirements are Validation and Real-Time Response. It
(Validation Module) verifies the simulation outcomes’ appropriateness, using
one or more predefined validation approaches (e.g., possibility distribution
[92], entropy [86], DNA-based computing [93], Decisional DNA [94], and
alike). Note that the module can also adapt phenomenon-dependent param-
eters (e.g., average surface height or Ra, a commonly used surface roughness
parameter) for the sake of verification, if required. However, it (module)
then selects and stores some of the validated simulation outcomes for reuse.
Besides, the module must respond to any update in the simulation outcomes
on a real-time basis.
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Figure 5.5: Modular architecture of the Validation Module.

Based on the abovementioned consideration, a modular architecture of
the Validation Module is proposed. Figure 5.5 schematically illustrates the
modular architecture. As seen in Figure 5.5, the module consists of two sub-
modules, denoted as Computation and Selection sub-modules. The Com-
putation sub-module is responsible for executing the validation process. In
this study, it (Computation sub-module) uses possibility distribution (fuzzy
numbers) [92] for the sake of validation. Note that other parameters can
be integrated if required. On the other hand, the Selection sub-module is
responsible for selecting and storing some of the validated outcomes based
on some user inputs.

Output Module

The Output Module is the last one. The associated functional requirements
are Ontology, Semantic Web Compatibility, Data Management, and Real-
Time Response. It (Output Module) acts as the connecting point between
the construction (DTCS) and adaptation (DTAS) systems. As such, it must
interact with the other modules (Input Module, Modeling Module, Simula-
tion Module, and Validation Module), acknowledge their contents, and ex-
port them to the DTAS whenever required. Besides, it must respond to any
update in any of the modules mentioned above in real-time.

Figure 5.6 schematically illustrates the modular architecture of this mod-
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Figure 5.7: Modular architecture of the DTAS.

ule. As seen in Figure 5.6, the module operates based on ‘select-export’
functions. As such, the module transfers the constructed DT to the DTAS
whenever required.

5.3.2 Digital Twin Adaptation System (DTAS)

Now, let us consider the other computerized system called DTAS. The DTAS
uses the constructed DT for real-time monitoring. As such, Figure 5.7
schematically illustrates the modular architecture of the DTAS.

As seen in Figure 5.7, the DTAS acknowledges the DT-generated signals
and uses the signals to monitor a real-life machining process in real-time.
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For this, it (DTAS) uses a user-defined error threshold (%). It displays the
monitoring results so that the user can decide the right course of action.

5.4 Summary

This chapter describes two computerized systems denoted as Digital Twin
Construction System (DTCS) and Digital Twin Adaptation System (DTAS),
required for constructing and adapting sensor signal-based DTs (or digital
twins of machining phenomena) in a Cyber-Physical System (CPS). The
systems’ context, requirements, and modular architectures are elucidated in
detail.

Based on the abovementioned architectures, the DTCS and DTAS are
developed using a JavaTM-based platform. The efficacy of the developed
systems is also demonstrated considering a real-life machining experiment,
as presented in the following chapter.





Chapter 6
Use of the Digital Twin

This chapter presents the development of the sensor signal-based Digital
Twin (DT) of a machining phenomenon. As described in Chapter 5, the
DT consists of two systems: DTCS and DTAS. The systems are developed
using a JavaTM-based platform, following the proposed modular architectures
of the systems (see Chapter 5 for details). The developed systems (DTCS
and DTAS) are tested for demonstrating their efficacy in developing the DTs
from semantically annotated and delay-centric sensor signal datasets, and
monitoring the real-life machining experiments, respectively.

For better understanding, this chapter is organized as follows. Section 6.1
describes a machining experiment, followed by the findings from the efficacy
test described in Section 6.2. Finally, Section 6.3 summarizes this chapter.

6.1 Machining Experiment

Figure 6.1 shows an instance of the machining experiment (see Figure 6.1a)
and also schematically illustrates it (see Figure 6.1b). As seen in Figure 6.1b,
a bimetallic workpiece made of Stainless Steel (JIS: SUS304) and Mild Steel
(JIS: S15CK) is machined, following a material removal process called end
milling. The workpiece is machined from hard-to-soft material direction, i.e.,
from SUS304 to S15CK. The relative cutting conditions for machining, such
as depth of cut (ap), width of cut (ae), spindle speed (N ), and feed per tooth
(f ), are also depicted in detail in Figure 6.1b. The cutting conditions and
machining equipment (e.g., machine tool, cutting tool, sensor, workpiece,

71
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Figure 6.1: End milling of a bimetallic workpiece. (a) Real-life machining
experiment, (b) Schematic and relative cutting conditions.
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and alike) are also reported in Table 6.1.

As seen Table 6.1, the bimetallic workpiece is machined following three
sets of cutting conditions. For each set, relevant cutting torque signals are
sensed and acquired from the machining environment using a rotary dy-
namometer (as reported in Table 6.1, can also be seen in Figure 6.1).

As seen in Figure 6.2, the cutting torque signals—acquired from the ma-
chining environment—are stored in a cloud-based data repository. For this,
the semantic annotation-based representation mechanism (see Chapter 3) is
followed. In particular, a concept map is constructed by annotating the signal
datasets with other relevant entities (machine tool, cutting tool, workpiece,
sensor, cutting conditions, and alike), using some user-defined semantics.
Figure 6.3 shows the constructed concept map. One may view the concept
map from the following url: https://cmapscloud.ihmc.us/viewer/cmap/

1XNM0FC40-12MXDQ7-DS. Nevertheless, the concept map boils down to the

Table 6.1: Conditions for end milling.

Item Description

Machine tool

Vertical machining center

Make: Mori Seiki

Model: NV5000

Cutting tool

Carbide Φ6 solid end mill

Make: Mitsubishi Hitachi

Model: EPP4060-P-CS

Sensor

Rotary dynamometer

Make: Kistler

Type: 9170A

Workpiece material

Bimetallic material made of

Stainless Steel (JIS: SUS304) and

Mild Steel (JIS: S15CK)

Cutting direction SUS304 to S15CK

Cutting conditions Case 1 Case 2 Case 3

Cutting velocity (Vc) 180 m/min 180 m/min 180 m/min

Spindle speed (N ) 9554 rpm 9554 rpm 9554 rpm

Feed per tooth (f ) 0.1 mm/tooth 0.1 mm/tooth 0.2 mm/tooth

Feed rate (Vf ) 3822 mm/min 3822 mm/min 3822 mm/min

Depth of cut (ap) 1.0 mm 2.0 mm 1.0 mm

Width of cut (ae) 0.5 mm 0.5 mm 0.5mm

https://cmapscloud.ihmc.us/viewer/cmap/1XNM0FC40-12MXDQ7-DS
https://cmapscloud.ihmc.us/viewer/cmap/1XNM0FC40-12MXDQ7-DS
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Figure 6.2: Basic framework for the efficacy test of DTCS and DTAS.

Figure 6.3: A concept map for the machining experiment.

following propositions (P1, ...,P10).

(P1) Experiments have been conducted to understand the behavior of cut-
ting torque in end milling operations under different cutting conditions,

(P2) cutting conditions are described here,

(P3) Experiments have been conducted to understand the behavior of cut-
ting torque in end milling operations using bimetal workpiece,
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(P4) bimetal workpiece is described here,

(P5) Experiments have been conducted to understand the behavior of cut-
ting torque in end milling operations using cutting tool,

(P6) cutting tool is described here,

(P7) Experiments have been conducted to understand the behavior of cut-
ting torque in end milling operations using machine tool,

(P8) machine tool is described here,

(P9) cutting torque is recorded using a sensor in the form of time series data
stored in the cutting torque signal database, and

(P10) sensor is described here.

The concept/node called ‘here’ in the abovementioned propositions (can
also be seen in Figure 6.3) is embedded with relevant resources (e.g., docu-
ments, datasets, and alike) to support the semantic relationships among all
the entities. This way the concept mapping helps other enablers and stake-
holders (human resources, machines, and systems) understand the overall
context underlying a machining experiment in a more effective manner, be-
fore reusing a piece of the signal datasets (here, torque signal datasets). For
this, the concept map is shared over the web in the form of XML data as
described in Chapter 3.

Now, recall the scenario shown in Figure 6.2, where it is shown that the
abovementioned semantically annotated torque signal datasets are stored
in a cloud-based data repository in the form of XML data. The DTCS
acknowledges the annotated datasets from the repository among others, and
constructs the relevant DTs based on delay. On the other hand, the DTAS
performs real-time monitoring of a real-life machining experiment (here, end
milling) based on the constructed DTs. The following section describes this
in detail.

6.2 In-Process Monitoring

6.2.1 Digital Twins’ Construction

Consider the abovementioned machining phenomenon called cutting torque
created due to end milling (as described in Section 6.1). In this case, the user
can use the Data Import sub-module of the Input Module (see Figure 6.4)
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to search semantically annotated contents based on a keyword (here, cutting
torque). The sub-module provides a facility (‘Show’ button in Figure 31) to
visualize the fetched content. It also provides a facility (‘Select’ button in
Figure 6.4) to import the desired content and deliver it to the Data Export
sub-module of the Input Module.

49-u

Figure 6.4: Screen-print of Data Import sub-module of Input Module.

Figure 6.5 shows the user interface of the Data Export sub-module. It
first displays the imported content in the form of a concept map, a list of
propositions, and graphical plots of numerical datasets. The sub-module
then provides a facility (‘Plot’ button in Figure 6.5) to visualize and se-
lect the datasets. It also provides a facility (‘Export’ button in Figure 6.5)
to export the selected dataset to the Modeling Module or any other data
storage systems. One of the remarkable aspects of this Input Module is its
scalability with user-defined ontology. For example, the contents shown in
Figure 6.5 (concept map and underlying propositions) can be represented in
various ways in the repository. The module can respond to such variability.
This means that the module does not depend on strict ontological formal-
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ism. Rather, it provides a flexible way of annotating, and thereby, creating
machine and human-readable content.

50-u

Figure 6.5: Screen-print of Data Export sub-module of Input Module.

Figure 6.6 shows the user interface of the Modeling Module when a
Markov chain is created from a delay map of a cutting torque signal (im-
ported from the Input Module, see Figure 6.5). The map corresponds to
a random delay, that is, 1 ± 0.02 ms. Five latent states, namely Very Low
(VL), Low (L), Moderate (M ), High (H ), and Very High (VH ) are used. The
transition probabilities of these states are calculated and displayed. As such,
the transition matrix serves as the model (Markov chain) of the given torque
signal. If a user prefers, the other labels and the number of latent states can
be used for modeling. The preferences can be set using the user interface (not
visible in Figure 6.6). Note that the mathematical formulations for Markov
chain are described in Appendix C.

Figure 6.7 shows the user interface of the Simulation Module. Here the
user sets a probability distribution to simulate the numerical counterparts of



78 Use of the Digital Twin
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Figure 6.6: Screen-print of Modeling Module.

52-u

Figure 6.7: Screen-print of Simulation Module.
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latent states. The user can choose a probability distribution out of normal,
uniform, triangular distributions and set the corresponding parameters. In
addition, the user can set the number of simulations instances. In the case
shown in Figure 6.7, the user has chosen the normal distribution and set the
standard deviation equal to 0.02. Other values can be used if preferred. In
addition, the user has set the number of simulation instances equal to 100.
As such, the system runs the same simulation process 100 times and creates
100 sets of torque signals. The simulation outcomes (time series and delay
map) are shown in the user interface. The user can scroll the time series and
delay maps to see the consistency of the simulation process. Note that the
corresponding simulation algorithm is described in Appendix D.

Figure 6.8 shows the user interface of the Computation sub-module of
the Validation Module. It displays the time series and delay map used to
construct the model in the Modeling Module (black-colored plots). It also dis-
plays the simulated time series and delay map created in the Simulation Mod-
ule (blue-colored plots). (In Figure 6.8, the simulated time series and delay
map correspond to simulation number 96 out of 100 simulations.) Whether
or not the simulated outcomes correspond to the real one, the Computation
sub-module induces possibility distributions (fuzzy numbers) [92], quantify-
ing the uncertainty in the real and simulated outcomes. The sub-module
displays the corresponding possibility distributions for the visual inspection.
The user can scroll the number of simulations and see the corresponding re-
sults. In the graphs of possibility distributions, the induced triangular fuzzy
numbers are also displayed (purple-colored curves). Apart from visual in-
spection, four parameters, denoted as Area, Average, Core, and Support,
are used to quantify the similarity between the possibility distributions, as
shown on the right-hand side in Figure 6.8. This results in a single error
measure, defined as Error (see Appendix E for details). The instance shown
in Figure 6.8 corresponds to the Error of 3%.

Figure 6.9 shows the user interface of the Selection sub-module of the
Validation Module. It first displays the error summary in the form of a
scatter plot between the Error and the number of simulations (shown on the
left-hand side in Figure 6.9). It then provides a facility to select some of the
simulation outcomes based on a user-defined maximum allowable Error. The
case shown in Figure 6.9 corresponds to the maximum allowable Error of
10%. As such, the sub-module retrieves 39 simulation outcomes and displays
corresponding results in the form of time series and delay maps (shown on the
right-hand side in Figure 6.9). The user can scroll the retrieved outcomes
and see the corresponding results. The user can store all or some of the
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53-u

Figure 6.8: Screen-print of Computation sub-module of Validation Module.

54-u

Figure 6.9: Screen-print of Selection sub-module of Validation Module.
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retrieved outcomes in a repository for reuse. In the case shown in Figure
6.9, five (5) of the retrieved simulation outcomes are stored. As such, these
five simulation outcomes can be exported to other stakeholders (e.g., DTAS)
on-demand via the Output Module.

Figure 6.10 shows the user interface of the Output Module. The module
exports the other module(s) to the DTAS based on user selection. In the
case shown in Figure 6.10, all the modules are exported. This means that
all the five torque simulation results (available in the Validation Module)
and the relevant contents (available in other modules) are exported to the
DTAS. Therefore, the DTAS utilizes those simulation results for monitoring a
real-life machining process in real-time, as presented in the next sub-section.

55-u

Figure 6.10: Screen-print of Output Module.

6.2.2 Digital Twins’ Adaptation

Figure 6.11 shows the user interface of the DTAS. The DTAS acknowledges
all the five DT-generated cutting torque signals (visible one signal at a time)
and uses them in monitoring. As seen in Figure 6.11, the interface displays
the time series of one of the DT-generated torque signals (blue-colored plot)
and the torque signal from a machine tool (black-colored plot). The user can
scroll to see the other DT-generated torque signals. The system measures
the errors between the signal from the machine tool and the DT-generated
signals to detect an abnormality. For this, the DTAS considers a user-defined
error threshold. In the case shown in Figure 6.11, an error threshold of 15%
is used. As seen on the top right-hand side in Figure 6.11, the maximum
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56-u

Figure 6.11: Screen-print of DTAS in performing real-time monitoring (when no
abnormality detected).

57-u

Figure 6.12: Screen-print of DTAS in performing real-time monitoring (when
abnormality detected).
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error (6%) lies under the threshold (green-colored region). This means that
the torque signal from the machine tool shows no abnormality. Apart from
the maximum error, the error distribution related to all the DT-generated
signals can also be seen in the form of a scatter plot, as shown on the bottom
right-hand side in Figure 6.11.

On the other hand, the system detects abnormality when any of the error
values exceed the threshold. This scenario is shown in Figure 6.12. Note
that the error computation follows the mathematical formulations described
in Appendix E.

6.3 Summary

This chapter presents the developed sensor signal-based DT and its efficacy
based on milling torque signals. Two systems called DTCS and DTAS col-
lectively develop the DT. The systems are developed using a JavaTM-based
platform. The systems (DTCS and DTAS) are deployed to construct sensor
signal-based DTs for milling torque signals, and monitor a real-life milling
process in real-time, respectively. It is seen that the DTs perform satisfac-
torily. Note that the systems are also deployed for other types of machining
process and relevant phenomena (e.g., cutting force in end milling and surface
roughness in grinding). The findings are reported in Appendix F. Neverthe-
less, the following chapter provides the discussions regarding the outcomes
of this study in detail.





Chapter 7
Discussion

Industry 4.0-relevant futuristic manufacturing systems need knowledge-bases
for performing high-level cognitive tasks such as monitoring, understand-
ing, predicting, decision-making, and adapting. The goal is to gain better
manufacturing experiences. The remarkable thing is different types of DTs
(object, process, and phenomenon twins) supply the required knowledge for
the abovementioned purposes. As seen in Figure 7.1, the DTs functionalize
virtualization of physical manufacturing environments. As such, the DTs
functionalize the abovementioned cognitive tasks, and thus, actuate mainte-
nance, planning, effective communication, process optimization, and so forth.

Among different types of DTs, the phenomena twins are the most diffi-
cult ones to develop. This is because most manufacturing phenomena (e.g.,
cutting force, cutting torque, surface roughness, and alike) are complex and
exhibit stochastic features. As such, modeling a phenomenon analytically for
developing the twin, is a cumbersome task. One alternative way is encap-
sulating the dynamics underlying the phenomenon-relevant historic sensor
signal datasets. Consequently, there are other relevant research questions
to deal with for developing such sensor signal-based phenomena twins: (1)
How to acquire the right piece of sensor signal dataset from a repository
(e.g., cloud), and (2) How to accommodate delay (or time latency) while
developing the DT. Also, the DT must be responsive in real-time changes.
This study proposes an architecture of the sensor signal-based DTs, answer-
ing the abovementioned issues in detail (see Chapter 5). The proposed DT
is also developed using a JavaTM-based platform. The efficacy of the DT
is demonstrated for monitoring a real-life machining process (milling). For
this, milling torque signals are used as example. The findings suggest that
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Figure 7.1: Context of Digital Twins (DTs) in Industry 4.0.

the proposed DT is effective for monitoring the process (see Chapter 6).

To elaborate, the DT acknowledges semantically annotated signal datasets
stored in a repository in the form of XML data. The corresponding semantic
annotation-based knowledge representation mechanism is also elucidated in
detail (see Chapter 3). This mechanism is user-friendly and highly flexible
compared to other conventional mechanisms, which are domain-specific and
esoteric by nature [40, 41, 42]. The semantic annotation-based mechanism
allows a user to put user-defined semantics (in the form of natural language)
for creating the linked data and making it highly comprehensible to the other
stakeholders (e.g., human resources and intelligent systems).

However, after acquiring the sensor signal dataset, the DT adapts delay
domain-based signal processing and Markov chain-based modeling approach
to accommodate delay. In this respect, detail investigation is conducted (see
Chapter 4). It is seen that, when delay occurs (random or constant), it im-
pacts sensor signals’ characteristic significantly. As such, delay domain-based
signal processing (in form of delay maps) is found more informative than
other signal processing analyses (time and frequency domain-based analyses).
Therefore, a Markov chain-based modeling approach is deployed to encapsu-
late the characteristic from the delay map. (The mathematical formulations
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underlying the Markov chain-based modeling approach are described in de-
tail in Appendix C.) This indicates that the delay domain-Markov chain
combination is promising to handle sensor signals, especially when low data
acquisition rate is concerned because of delay [56, 57, 58, 77]. This is sig-
nificant from the aspect of sensor data volume and energy-intensive sensor
network [80] because conventional signal processing methods and machine
learning techniques depend on high data volume and, in turn, occupy an
appreciable amount of storage, create difficulties in storing the sensed data,
consume more time to process the data, and cause energy dissipation from
the sensor network, which is not desirable from the futuristic smart manu-
facturing context.

Based on the modeling outcome (here, Markov chain), the DT deploys
a stochastic simulation approach (Monte Carlo simulation) (see simulation
algorithm in Appendix D) for recreating (or simulating) the phenomenon-
relevant sensor signals. To ensure the trustworthiness of the simulated sen-
sor signals, the DT performs validations compared to the real signals (the
historical signals used for modeling). For this, this study uses possibility
distribution (fuzzy numbers) [92]. Other validation parameters (e.g., DNA-
based computing [93]) can also be used, if preferred. Based on the validation
outcomes, some (or all) of the simulated outcomes are used for monitoring
purpose. It is seen that the DT performs satisfactorily in monitoring different
machining processes (see Chapter 6 for details, can also be seen in Appendix
F).

Although the proposed DT provide reliable results, there are areas to in-
vestigate and improve. Consider the Markov chain-based modeling approach
adapted for developing the DT. It performs well when the sensor signals are
stochastic by nature. However, it does not perform well when the sensor
signals exhibit some exclusive patterns or features. For example, consider a
piece of sensor signals associated with a manufacturing phenomenon called
surface roughness, denoted as x (i), i = 0, 1, ..., as shown in Figure 7.2a. As
seen in Figure 7.2a, x (i) entails three stochastic features: (1) Trend, (2)
Burst, and (3) Noise. As such, let us deploy Markov chain-based modeling
and semantic modeling [10] for encapsulating the dynamics underlying x (i),
and thereby, simulating.

Figure 7.2b shows the simulated roughness based on Markov chain-based
modeling, denoted as s ′(i), i = 0, 1, .... Figure 7.2c shows the simulated
roughness based on semantic modeling, denoted as s ′′(i), i = 0, 1, .... From
the time series(s) of the real roughness (x (i) in Figure 7.2a) and simulated
roughness (s ′(i) and s ′′(i) in Figures 7.2b-7.2c, respectively), it is evident
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Figure 7.2: Simulation of a feature-based signal. (a) Real signal (x (i)), (b)
Simulated signal (s ′(i)) using Markov chain-based modeling, (c) Simulated signal

(s ′′(i)) using semantic modeling.

that Markov chain-based modeling does not model the roughness satisfacto-
rily. On the other hand, another modeling method called semantic modeling
performs better.

For better understanding, let us validate or compare the simulation out-
comes with the real ones using possibility distribution [92] and DNA-based
computation [93, 97]. In this respect, Figures 7.3a-7.3b show the validation
outcomes for comparing x (i) and s ′(i), using possibility distributions and
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DNA-based computations, respectively. It is seen that the possibility dis-
tributions (see Figure 7.3a) do not resemble with each other. Similarly, the
frequency distributions underlying the DNA-based computations (see Figure
7.3b) do not resemble each other.
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Figure 7.3: Comparison between x (i) and s ′(i). (a) possibility distribution, (b)
DNA-based computation.
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Figure 7.4: Comparison between x (i) and s ′′(i). (a) possibility distribution, (b)
DNA-based computation.
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On the other hand, Figures 7.4a-7.4b show the validation outcomes for
comparing x (i) and s ′′(i), using possibility distributions and DNA-based
computations, respectively. It is seen that the possibility distributions (see
Figure 7.4a) highly resemble with each other. Similarly, the frequency dis-
tributions underlying the DNA-based computations (see Figure 7.4b) highly
resemble each other.

The abovementioned example illustrates that Markov chain-based mod-
eling is inadequate for encapsulating sensor signals’ characteristics when ex-
clusive features (e.g., trend, burst, and noise) are present in signal datasets.
To solve this issue, other kind modeling approach such as semantic modeling
might be considered. As such, several modeling approaches must be consid-
ered for developing a universal DT so that the DT can handle different types
of sensor signals more effectively. Further research can be conducted in this
direction.

Having said that, based on the findings of this study, some other future
research directions can also be contemplated, as described below.

1. The DTs of machining phenomena provide meaningful insight into a
machining process in real-time (monitoring, understanding, and pre-
dicting) and functionalize decision-making. A relative research ques-
tion is that how to adapt the made decisions in real-time. This means
that what should be the pragmatic approach for setting the right course
of actions given that there is anomaly in the process. Further research
can be conducted in this direction for making autonomous DT-driven
machine tools from the context of Industry 4.0.

2. Since real-time connectivity is a prime spring in Industry 4.0, different
sensors perform continuously for sensing and transmitting tremendous
amount of signal data. This evolves two issues: (1) need of high data
storage capacity and time-consuming computational arrangements [77],
and (2) energy-intensive sensor networks [80, 84, 85]. These issues must
be taken care of from the context of fast communication and longevity
of the sensors. Since the findings of this study suggests that the delay
domain-based signal processing is capable of handling less amount of
data while unfolding signals’ nature, further research can be directed
to investigate the abovementioned issues in detail based on the delay
domain.

3. Since content sharing and reusing is significant in Industry 4.0, Big
Data (BD) of manufacturing must be present in the CPS. The BD
supply the relevant content to other stakeholders. Nevertheless, there
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is a lack of a steadfast procedure to construct the BD. Further research
can be conducted in this direction based on the semantic annotation-
based representation mechanism presented in this study.





Chapter 8
Conclusion

The concluding remarks of this study are described as follows:

• The recent literature review on digital twins (DTs) relevant to Indus-
try 4.0 or smart manufacturing suggests that all three types of DTs
(object, process, and phenomenon twins) must populate the Cyber-
Physical Systems (CPS) to functionalize the futuristic manufacturing
systems. This means that the DTs are the contents on which the sys-
tems associated with futuristic manufacturing systems (e.g., CPS) act
to perform high-level cognitive tasks such as monitoring, understand-
ing, predicting, decision-making, and adapting.

• Although several works have been conducted on the development of
DTs, the works mostly concentrate on the development of object and
process twins. Significant studies are yet to be conducted on phe-
nomena twins. Phenomena twins assist futuristic machine tools for
performing monitoring and troubleshooting tasks autonomously. How-
ever, developing a phenomenon twin is a cumbersome task since most
manufacturing phenomena (e.g., cutting torque, cutting force, surface
finish, and alike) are stochastically non-linear. This study addresses
this issue by developing phenomena twins from historical sensor signal
datasets associated to the relevant phenomena.

• Since the twin is developed from the extracted knowledge underlying
historical sensor signal datasets, the issues related to acquiring the
right piece of sensor signal dataset stored in a repository (e.g., cloud)
and time latency (or delay) while transmitting signals among different

93
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systems are two essential research questions. As such, the sensor signal-
based DTs must be able to deal with the abovementioned issues. This
study investigates and answers the abovementioned questions in detail,
followed by proposing an architecture of the sensor signal-based DTs.
The DT is developed by using a JavaTM-based platform and its (DT)
efficacy in monitoring a real-life machining experiment is also elucidated
in this study.

• In particular, two systems called Digital Twin Construction System
(DTCS) and Digital Twin Adaption System (DTAS) are proposed.
DTCS constructs the DTs, while DTAS adapts the constructed DTs
for monitoring. The functional retirements and modular architectures
underlying the systems (DTCS and DTAS) are elucidated in Chapter
5 in detail.

• The DTCS consists of five modules: Input, Modeling, Simulation, Vali-
dation, and Output Modules. These modules collectively construct the
DT. These modules’ functional requirements are Data management,
Ontology, Machine learning, Modeling, Simulation, Validation, Real-
time response, and Semantic web compatibility (see Chapter 5).

• The Input Module can search semantically annotated datasets stored
in a remote data storage facility and select the appropriate signal
datasets. This module handles both human-comprehensible contents
(concept maps) and machine-readable contents (XML format). This
arrangement ensures effective data mining because signal datasets ac-
company other relevant information (e.g., machining process, machine
tools, machining conditions, sensors, and alike), making it meaningful
to different stakeholders. Note that, in reality, most data representa-
tion mechanisms are domain-dependent and esoteric by nature. For
this, this study proposes a flexible and user-friendly semantically an-
notated representation mechanism. The proposed mechanism is eluci-
dated in Chapter 3 in detail. The Input Module is developed based on
the proposed mechanism.

• The Modeling Module machine learns the dynamics underlying the
Input Module-supplied sensor datasets. In this case, numerous machine
learning methods can be used. In this article, a Markov chain-based
machine learning method. (The method is described in Appendix C in
detail). This method works well when the signal datasets are sampled
from a delay map, acknowledging the underlying delay (random or
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deterministic). Note that, delay (or time latency) is unavoidable and
affects sensor signals’ characteristic significantly (see Chapter 4).

• The Modeling Module supplies the machine-learned model of the sig-
nal datasets to the Simulation Module. This module simulates the
signal using the modeling information received. In this case, a discrete
event stochastic simulation process is recommended. (The simulation
algorithm is elucidated in Appendix D).

• Whether or not the Simulation Module has simulated the signal datasets
faithfully can be tested in the Validation Module. Thus, the Valuation
Module is equipped with some quantitative measures. In this article, a
possibility distribution-based approach is used for validation. (The pos-
sibility distribution-based validation process is described in Appendix
E).

• The Output Module transfers the contents generated in other modules
for reuse (say, monitoring). The user can select the contents of the
Input, Modeling, Simulation, and Validation Modules for transferring
them to a data storage facility in the XML format. One of the default
locations is DTAS. Thus, the Output Module is the connecting point
between the DTCS and DTAS.

• Though the DTAS can adapt all the contents generated in the DTCS, it
uses only the simulated signal datasets tested positive by the Validation
Module while monitoring a process in real-time. It receives real-time
signals from a machine tool for monitoring purposes. Therefore, it is
equipped with a user interface showing the monitoring results. Any
update in the DTCS will change the contents. Therefore, DTAS also
updates itself, acknowledging the changes made in DTCS in real-time.
These real-time updating capabilities make these two systems highly
coupled.

• In this study, milling torque signals are used as an example for testing
the efficacy of the abovementioned systems (DTCS and DTAS), as
demonstrated in Chapter 6. Other signals (cutting force and surface
roughness) also show promising results as reported in Appendix F.
Thus, the DTCS and DTAS can be used to ensure machine tools’ ability
to perform their monitoring and troubleshooting tasks autonomously.
This way, the finding of this study contributes to the advancement of
Industry 4.0 or smart manufacturing.
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• Nevertheless, a DT can improve the cyber-physical integration of in-
dustrial IoT. In most cases, the twin must machine-learn the required
knowledge from the historical sensor signal datasets and seamlessly
interact with the real-time sensor signals. While doing so, the DTs
must handle the semantically annotated datasets stored in clouds and
accommodate the data transmission delay. The presented DTCS and
DTAS fulfill these requirements of DTs. Therefore, these can be used
as general tools for information integration in smart manufacturing.



Appendix A
Signal Analyses (Mild Steel)

A.1 Different Sampling Windows

Consider the cutting force signal obtained while machining Mild Steel (JIS:
S15CK), i.e., FW2 . Figure A.1 shows its time series. As seen in Figure A.1,
the sample size of FW2 is denoted as LW2 , where LW2 = 7501. FW2 is sampled
four times using four different sampling windows (light blue colored regions in
the time series of FW2 shown in Figure A.1). This results in four new signals
denoted as FW2S1 , ...,FW2S4 . The corresponding sample sizes are denoted
as LW2S1 , ...,LW2S4 , where LW2S1 = 5001,LW2S2 = 2501,LW2S3 = 1501, and
LW2S4 = 501.

For the sake of analysis, the signals FW2 and FW2S1 , ...,FW2S4 are trans-
ferred to the frequency domain (using FFT) and delay domain (using d = 1,
as described in Section 4.3). As such, Figure A.2 shows the time series,
FFT, and delay map for FW2 . Figures A.3-A.6 show the time series, FFT,
and delay map for FW2S1 , ...,FW2S4 , respectively.

As seen in Figure A.2b, the prominent frequencies underlying FW2 are 0
Hz, 780 Hz, 1560 Hz, 2333.333 Hz, 3113.333 Hz, 3893.333 Hz, and 4673.333
Hz. As seen in Figure A.3b, the prominent frequencies underlying FW2S1 are
0 Hz, 780 Hz, 1560 Hz, 2340 Hz, 3110 Hz, 3890 Hz, and 4670 Hz. As seen
in Figure A.4b, the prominent frequencies underlying FW2S2 are 0 Hz, 780
Hz, 1560 Hz, 2340 Hz, and 3120 Hz. As seen in Figure A.5b, the prominent
frequencies underlying FW2S3 are 0 Hz, 766.6667 Hz, 1566.6667 Hz, 2333.333
Hz, and 3100 Hz. As seen in Figure A.6b, the prominent frequencies underly-
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Figure A.1: Sampling the cutting force signal for machining Mild Steel.

ing FW2S4 are 0 Hz, 800 Hz, 1600 Hz, 2300 Hz, and 3100 Hz. This means that
the frequency information varies with the sampling window. In addition, the
FFT pattern gets affected when the sampling window is shorter (see Figure
A.6b compared to Figure A.2b).

On the other hand, the delay maps shown in Figure A.2c and Figures
A.3c-A.6c exhibit similar characteristics under different sampling windows.
In particular, the returns of points from one to another are identical. This
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Figure A.2: FW2 . (a) Time series, (b) Fast Fourier Transformation (FFT), (c)
Delay map (d = 1).
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Figure A.3: FW2S1 . (a) Time series, (b) Fast Fourier Transformation (FFT), (c)
Delay map (d = 1).
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Figure A.4: FW2S2 . (a) Time series, (b) Fast Fourier Transformation (FFT), (c)
Delay map (d = 1).
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Figure A.5: FW2S3 . (a) Time series, (b) Fast Fourier Transformation (FFT), (c)
Delay map (d = 1).
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Figure A.6: FW2S4 . (a) Time series, (b) Fast Fourier Transformation (FFT), (c)
Delay map (d = 1).

means that the underlying nature of the FW2 and FW2S1 , ...,FW2S4 are the
same, regardless of the sample size. In addition, the density of points under-
lying the delay maps provides meaningful insight into the sample size of the
signal. For example, the density of the delay map shown in Figure A.6c is
lighter compared to that of in Figure A.2c, which mean the corresponding
signal FW2S4 (see Figure A.6a) undergoes a low sampling window compared
to the FW2 (see Figure A.2a).

A.2 Different Delays

Again, consider the cutting force signal obtained while machining Mild Steel
(JIS: S15CK), i.e., FW2(t), t = 0,∆t , 2∆t , ...,m × ∆t (can also be seen in
Figure 4.8). As mentioned before, here ∆t is the sampling period of 0.02
ms. To incorporate time latency or delay, ∆t is increased using the delay
parameter d (non-zero integer), such as d ×∆t . For example, for d = 1, the
sampling period remains 1× 0.02 = 0.02 ms; for d = 2, the sampling period
becomes 2× 0.02 = 0.04 ms; and alike. As mentioned in Section 4.3, d ×∆t
is simplified using D , where D = d × ∆t . As such, a set of time series is
generated using D where d = 1, 2, ....

The goal here is to understand the dynamics underlying the cutting
force signals due to varying delay. For this, the time series datasets are
transferred to the frequency domains (using FFT) and corresponding de-
lay domains. Table A.1 shows the outcomes for some of the delays, i.e.,
d = 1, 5, 10, 20, 30, 40, 50, and 60.
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Table A.1: Cutting force signal (FW2) in the form of time series, FFT, and delay
map under varying delay (d).

Time series(s) FFT(s) Delay maps
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Table A.1: Cutting force signal (FW2) in the form of time series, FFT, and

delay map under varying delay (d) (continued from previous page).

Time series(s) FFT(s) Delay maps
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As seen in Table A.1, when d increases, the frequency information under-
lying the FW2 gets affected. The prominent frequencies (see the FFT diagram
for d = 1) are gradually lost due to aliasing [78] when d > 5 (see the FFT
diagrams for d = 10, 20, 30, 40, 50, and 60).

On the other hand, consider the delay maps consisting of the points(
FW2(t),FW2(t + D)

)
shown in Table A.1. When d = 1, the delay map

exhibits a very systematic pattern. When d increases, the delay maps get
more and more scattered (see the delay maps for d = 5, 10, 20, 30, 40, and 50).
This means that the signal gets more and more chaotic due to the presence
of delay. However, when d = 60, the corresponding delay map is somewhat
systematic and similar to that of d = 5. This means that the underlying
natures of these two signals are similar, regardless of the difference in the
sampling rate. It is worth mentioning that the corresponding FFTs (see the
FFTs for d = 5 and for d = 60 shown in Table A.1) are different and do
not preserve the nature of the source signal. As such, delay domain-based
representation is more informative for understanding the underlying nature
of FW2 under a low data acquisition rate due to time latency or delay.





Appendix B
Signal Analyses (Ductile Cast Iron)

B.1 Different Sampling Windows

Consider the cutting force signal obtained while machining Ductile Cast Iron
(JIS: FCD), i.e., FW3 . Figure B.1 shows its time series. As seen in Figure B.1,
the sample size of FW3 is denoted as LW3 , where LW3 = 7501. FW3 is sampled
four times using four different sampling windows (light blue colored regions in
the time series of FW3 shown in Figure B.1). This results in four new signals
denoted as FW3S1 , ...,FW3S4 . The corresponding sample sizes are denoted
as LW3S1 , ...,LW3S4 , where LW3S1 = 5001,LW3S2 = 2501,LW3S3 = 1501, and
LW3S4 = 501.

For the sake of analysis, the signals FW3 and FW3S1 , ...,FW3S4 are trans-
ferred to the frequency domain (using FFT) and delay domain (using d = 1,
as described in Section 4.3). As such, Figure B.2 shows the time series, FFT,
and delay map for FW3 . Figures B.3-B.6 show the time series, FFT, and
delay map for FW3S1 , ...,FW3S4 , respectively.

As seen in Figure B.2b, the prominent frequencies underlying FW3 are 0
Hz, 780 Hz, 1560 Hz, 2333.333 Hz, 3113.333 Hz, 3893.333 Hz, and 4673.333
Hz. As seen in Figure B.3b, the prominent frequencies underlying FW3S1 are
0 Hz, 780 Hz, 1560 Hz, 2340 Hz, 3110 Hz, 3890 Hz, and 4670 Hz. As seen
in Figure B.4b, the prominent frequencies underlying FW3S2 are 0 Hz, 780
Hz, 1560 Hz, 2340 Hz, and 3120 Hz. As seen in Figure B.5b, the prominent
frequencies underlying FW3S3 are 0 Hz, 766.6667 Hz, 1566.6667 Hz, 2333.333
Hz, and 3100 Hz. As seen in Figure B.6b, the prominent frequencies underly-
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Figure B.1: Sampling the cutting force signal for machining Ductile Cast Iron.

ing FW3S4 are 0 Hz, 800 Hz, 1600 Hz, 2400 Hz, and 3100 Hz. This means that
the frequency information varies with the sampling window. In addition, the
FFT pattern gets affected when the sampling window is shorter (see Figure
B.6b compared to Figure B.2b).

On the other hand, the delay maps shown in Figure B.2c and Figures B.3c-
B.6c exhibit similar characteristics under different sampling windows. In
particular, the returns of points from one to another are identical. This means
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Figure B.2: FW3 . (a) Time series, (b) Fast Fourier Transformation (FFT), (c)
Delay map (d = 1).
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Figure B.3: FW3S1 . (a) Time series, (b) Fast Fourier Transformation (FFT), (c)
Delay map (d = 1).
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Figure B.4: FW3S2 . (a) Time series, (b) Fast Fourier Transformation (FFT), (c)
Delay map (d = 1).

b-5-1

t [ms]

F
W

3
S

3
(t

) 
[N

]

60 66 72 78 84 90
0

50

100

150

200

FW3S3

(a)

b-5-2

Frequency [Hz]

A
m

p
li

tu
d
e

-500 1000 2500 4000 5500
0

20

40

60

80

FW3S3

(b)

b-5-3

FW3S3
(t)

F
W

3
S

3
(t

+
D

)

0 50 100 150 200
0

50

100

150

200

FW3S3

(c)

Figure B.5: FW3S3 . (a) Time series, (b) Fast Fourier Transformation (FFT), (c)
Delay map (d = 1).
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Figure B.6: FW3S4 . (a) Time series, (b) Fast Fourier Transformation (FFT), (c)
Delay map (d = 1).

that the underlying nature of the FW3 and FW3S1 , ...,FW3S4 are the same,
regardless of the sample size. In addition, the density of points underlying
the delay maps provides meaningful insight into the sample size of the signal.
For example, the density of the delay map shown in Figure B.6c is lighter
compared to that of in Figure B.2c, which mean the corresponding signal
FW3S4 (see Figure B.6a) undergoes a low sampling window compared to the
FW3 (see Figure B.2a).

B.2 Different Delays

Again, consider the cutting force signal obtained while machining Ductile
Cast Iron (JIS: FCD), i.e., FW3(t), t = 0,∆t , 2∆t , ...,m × ∆t (can also be
seen in Figure 4.8). As mentioned before, here ∆t is the sampling period of
0.02 ms. To incorporate time latency or delay, ∆t is increased using the delay
parameter d (non-zero integer), such as d ×∆t . For example, for d = 1, the
sampling period remains 1× 0.02 = 0.02 ms; for d = 2, the sampling period
becomes 2× 0.02 = 0.04 ms; and alike. As mentioned in Section 4.3, d ×∆t
is simplified using D , where D = d × ∆t . As such, a set of time series is
generated using D where d = 1, 2, ....

The goal here is to understand the dynamics underlying the cutting
force signals due to varying delay. For this, the time series datasets are
transferred to the frequency domains (using FFT) and corresponding de-
lay domains. Table B.1 shows the outcomes for some of the delays, i.e.,
d = 1, 5, 10, 20, 30, 40, 50, and 60.
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Table B.1: Cutting force signal (FW3) in the form of time series, FFT, and delay
map under varying delay (d).

Time series(s) FFT(s) Delay maps
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Table B.1: Cutting force signal (FW3) in the form of time series, FFT, and

delay map under varying delay (d) (continued from previous page).

Time series(s) FFT(s) Delay maps
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As seen in Table B.1, when d increases, the frequency information under-
lying the FW3 gets affected. The prominent frequencies (see the FFT diagram
for d = 1) are gradually lost due to aliasing [78] when d > 5 (see the FFT
diagrams for d = 10, 20, 30, 40, 50, and 60).

On the other hand, consider the delay maps consisting of the points(
FW3(t),FW3(t + D)

)
shown in Table B.1. When d = 1, the delay map

exhibits a very systematic pattern. When d increases, the delay maps get
more and more scattered (see the delay maps for d = 5, 10, 20, 30, 40, and 50).
This means that the signal gets more and more chaotic due to the presence
of delay. However, when d = 60, the corresponding delay map is somewhat
systematic and similar to that of d = 5. This means that the underlying
natures of these two signals are similar, regardless of the difference in the
sampling rate. It is worth mentioning that the corresponding FFTs (see the
FFTs for d = 5 and for d = 60 shown in Table B.1) are different and do
not preserve the nature of the source signal. As such, delay domain-based
representation is more informative for understanding the underlying nature
of FW3 under a low data acquisition rate due to time latency or delay.





Appendix C
Markov Chain-Based Modeling

The computing power of hidden Markov models has been playing an impor-
tant role in studying the complex phenomena underlying design and manufac-
turing. For example, Liao et al. [98] have developed a heuristic optimization
algorithm using hidden Markov model coupled with simulated annealing for
condition monitoring of machineries. Li et al. [99] have developed a data-
driven bearing fault identification methodology using an improved hidden
Markov model and self-organizing map. Mba et al. [100] have developed a
hidden Markov model-based methodology for condition monitoring of gear-
box. Zhang et al. [101] have developed a methodology for predicting the
residual life of the rolling machine elements using hidden Markov model.
Xie et al. [102] have described a hidden Markov model-based methodology
for recognizing the machining states ensuring safe operations. Bhat et al.
[103] have developed a hidden Markov model-based tool condition monitor-
ing methodology ensuring the economical usages of cutting tools. Liao et
al. [104] have developed a grinding wheel condition monitoring methodology
where a hidden Markov model-based clustering approach was used to rec-
ognize the patterns found in the acoustic emission signals. Cai et al. [105]
have developed a methodology using a hidden Markov model to identify the
energy efficiency states while removing materials by milling ensuring eco-
friendly machining operation. Kumar et al. [106] have integrated hidden
Markov model with polynomial regression for predicting the useful life of
cutting tools.

This study adapts hidden Markov modeling for encapsulating knowledge
underlying phenomena-relevant sensor signals from its (sensor signal) delay
map. As such, the fundamental idea of modeling is schematically illustrated
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in Figure C.1. As seen in Figure C.1, a hidden Markov model consists of
three segments. The first segment is called a Markov chain. The second
segment is called a time series of latent variables. The last segment is called
a time series of observations. The descriptions of the three segments are as
follows.

States

M H VHVL L

0.75

0.383

0.11

0.45

M = Moderate

H = High

VH = Very High

VL = Very Low

L = Low

C-1
Markov Chain (Example)

lv(i-1) lv(i) lv(i+1)
Latent 

Variables

ob(i-1) ob(i) ob(i+1)
Observations

Figure C.1: Concept of hidden Markov modeling.

As seen in Figure C.1, a Markov chain forms a network showing both
a set of discrete states (which later appear as latent variables) and their
transitions. Each state and its possible transitions are associated with the
probabilities, which are also the parts of the Markov chain. For example,
the Markov chain shown in Figure C.1 consists of five discrete states having
the probabilities p(Very Low) = 0.02, p(Low) = 0.17, p(Moderate) = 0.45,
p(High) = 0.31, and p(Very High) = 0.05. The transitions to states denoted
as Very Low, Low, Moderate, High, and Very High from the state Very Low
exhibit the following transition probabilities: p(Very Low | Very Low) =
0.125, p(Very Low | Low) = 0.75, p(Very Low | Moderate) = 0.125, p(Very
Low | High) = 0, and p(Very Low | Very High) = 0. The summation of the
state probabilities or the transition probabilities from a given state to other
possible states is unit. There are other issues related to the hidden Markov
chain (e.g., the order of the Markov chain). The case shown in Figure C.1
corresponds to the first order Markov chain because the probability of the
previous state determines the current state. This study adopts this strategy.
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See the articles in [107] and [108] for more details regarding the order of a
Markov chain and other relevant issues.

Regarding the segment called time series of the latent variables (see Fig-
ure C.1), the following remarks can be made. The latent variables are the
results of a stochastic simulation process (i.e., Monte Carlo simulation of
discrete states associated with the Markov chain). Thus, for the case shown
in Figure C.1, the latent variables belong to the set of discrete states, that is,
lv(0), ..., lv(i− 1), lv(i), lv(i+1), ... ∈ {Very Low, Low, Moderate, High, Very
High}. These are called latent because one cannot observe (or not inter-
ested in observing) these variables, that is, they are simulated for the sake of
computation. The probabilities (in reality, relative frequencies) of the latent
variables must be consistent with the transition probabilities associated with
the Markov chain. This means that for the case shown in Figure C.1, when
lv(i) = Very Low, then the probability of lv(i + 1) = Very Low is equal to
0.125, lv(i+1) = Low is equal to 0.75, lv(i+1) = Moderate is equal to 0.125,
lv(i+ 1) = High is equal to 0, and lv(i+ 1) = Very High is equal to 0.

Lastly, regarding the segment called the time series of the observations
(see Figure C.1), the following remarks can be made. The observations
ob(0), ..., ob(i − 1), ob(i), ob(i + 1), ... are simulated using the information of
the corresponding latent states, lv(0), ..., lv(i − 1), lv(i), lv(i + 1), .... The
observations are the outputs of the hidden Markov model, which is used to
solve a problem.

When one constructs a hidden Markov model to encapsulate the dynamics
underlying a given time series, the scenario shown in Figure C.2 evolves. The
scenario entails the following steps, namely, (1) data acquisition (defining the
time series, delay map, and latent variables), (2) Markov chain construction,
(3) simulation of latent variables and observations, and (5) a comparison
between the simulated observations and given time series. For the sake of
better understanding, a set of mathematical entities and their relationships
are required, which are described as follows.

Let the manifestation of a phenomenon be a piece of time series denoted
as X = {x(t) ∈ ℜ | t = 0,∆t, 2∆t, ...,m × ∆t} where ∆t is known as delay
or interval. The parameter t underlies a temporal or spatial entity, that is, a
point of time or a distance. If preferred, the time series can be represented
by indexing its elements using a pointer. In this case, x(t) is replaced by
x(i)

(
= x(t)

)
where t = i × ∆t and i is the pointer, which is a positive

integer including 0, that is, i = 0, 1, ....
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Figure C.2: Integration among Markov chain, time series, and delay map.

Let U = [umin, umax] ∈ ℜ, defined as the universe of discourse, be an
interval so that X ⊇ U . Let xmin be the minimum value of X, that is,
xmin = min

(
x(t) | ∀t ∈ {0,∆t, 2∆t, ...}

)
. Let xmax be the maximum value of

X, that is, xmax = max
(
x(t) | ∀t ∈ {0,∆t, 2∆t, ...}

)
. If U = [umin, umax] =

[xmin, xmax], then it is defined as the exact interval case.

Let U1, ..., Un be n number of mutually exclusive intervals that partition
U so that the following proposition denoted as P is true.

P =
(
(U1 ∪ ... ∪ Un = U) ∧ (Uj < Uj+1 | ∀j ∈ {1, ...n− 1})∧
(Uk ∩ Ul = ∅ | ∀k ∈ {1, ..., n},∀l ∈ {1, ..., n} − {j})

) (C.1)

The partitions are the states (or latent states or variables) of X resulting
in a state vector SV = (U1, ..., Un). One can define the states in many
ways making the proposition P true. One of the straightforward ways is
to consider a state interval ∆u = (umax − umin)/n and use it for defining
the states in the following manner: U1 = [umin, umin + ∆u), U2 = [umin +
∆u, umin + 2∆u), ..., Un =

[
umin + (n− 1)×∆u, umin + n×∆u

]
.

Let p(Uj) ∈ [0, 1] be the probability of j -th state Uj in SV with respect
to X, j = 1, ..., n. Thus, the following relationships hold.
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Φ
(
x(i), Uj

)
=

{
1, x(i) ∈ Uj

0, otherwise
(C.2)

p(Uj) =

∑m
i=0Φ

(
x(i), Uj

)
m+ 1

(C.3)

Thus, p(Uj) is defined as the state probability of the j -th state Uj. As
such, the summation of all state probabilities is equal to unit, that is,

p(U1) + ...+ p(Un) = 1 (C.4)

For the sake of computation (e.g., simulation), the state probabilities can
be used to calculate the cumulative state probability. The cumulative state
probability of the j -th state Uj in SV is defined as follows.

pc(Uj) = p(U1) + ...+ p(Uj) (C.5)

As such pc(Un) is 1. The cumulative state probability can be used to
calculate the state probability interval denoted as pcin(Uj). The state prob-
ability interval of the first state U1 in SV is as follows.

pcin(U1) =
[
0, pc(U1)

)
(C.6)

The state probability interval of the last state Un in SV is as follows.

pcin(Un) =
[
pc(Un−1), pc(Un)

]
(C.7)

The state probability intervals of the states other than U1 and Un in SV
are as follows.

pcin(Uj) =
[
pc(Uj−1), pc(Uj)

)
∀j ∈ {2, ..., n− 1} (C.8)

Let the set of tuples
{(

x(i), x(i+1)
)
| i = 1, 2, ...

}
or

{(
x(t), x(t+ i∆t)

)
| i

= 1, 2, ...
}
be the return or delay map of the time series X. Therefore, each

point
(
x(i), x(i + 1)

)
,∃i ∈ {1, 2, ...} of the delay map exhibits a transition.

As a result, a transition probability denoted as tp(Uo |Uj)
(
∀o,∀j ∈ {1, ..., n}

)
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means the likelihood of the transition of X to the state Uo from the state Uj.
Thus, the following relationships hold.

Φ
((

x(i), x(i+ 1)
)
,
(
Uo, Uj

))
=

{
1,

((
x(i) ∈ Uj

)
∧
(
x(i+ 1) ∈ Uo

))
0, otherwise

(C.9)

tp(Uo |Uj) =

∑m
i=0 Φ

((
x(i), x(i+ 1)

)
,
(
Uo, Uj

))∑m
i=0 Φ

(
x(i), Uj

) (C.10)

As such, the summation of all transition probabilities from a given state
is equal to unit, that is, tp(U1 |Uj)+ ...+ tp(Un |Uj) = 1,∃j ∈ {1, ..., n}. This
yields a transition probability matrix as follows.

Mtp =

tp(U1 |U1) . . . tp(Un |U1)
...

. . .
...

tp(U1 |Un) . . . tp(Un |Un)

 (C.11)

For the sake of computation (e.g., simulation), the transition probabilities
can be used to calculate the cumulative transition probability. The cumulative
transition probability is defined as follows.

tpc(Uo |Uj) = tp(U1 |Uj) + ...+ tp(Uo |Uj) (C.12)

As such, tpc(Un |Uj) = 1. This yields the cumulative transition probability
matrix, as follows.

Mtpc =

tpc(U1 |U1) . . . tpc(Un |U1)
...

. . .
...

tpc(U1 |Un) . . . tpc(Un |Un)

 (C.13)

The cumulative transition probability can be used to calculate the transi-
tion probability interval denoted as tpcin(Uo |Uj). The transition probability
interval of the first states U1 to any state Uj is as follows.

tpcin(U1 |Uj) =
[
0, tpc(U1 |Uj)

)
(C.14)
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The transition probability interval of the last state Un to any state Uj is
as follows.

tpcin(Un |Uj) =
[
tpc(Un−1 |Uj), tpc(Un |Uj)

]
(C.15)

The transition probability intervals of any states to Uj (other than U1 or
Un) are as follows:

tpcin(Uo |Uj) =
[
tpc(Uo−1 |, Uj), tpc(Uo |Uj)

)
∀o ∈ {2, ..., n− 1} (C.16)

Nevertheless, the abovementioned mathematical formulations encapsu-
late the dynamics in the form of a Markov chain, and thus, create transition
probability intervals so that simulations can be carried out following a sim-
ulation algorithm. The simulation algorithm is presented in Appendix D.





Appendix D
Simulation Algorithm

Using the mathematical entities and their relationships described in Ap-
pendix C, one can formulate a Monte Carlo simulation process to simulate
the latent variables lv(.) ∈ (U1, ...,Un) and the observations ob(.) ∈ ℜ. Note
that the simulated observations will be denoted as xs(.), not as ob(.), to
make the notation consistent with the time series, x (.). The simulation pro-
cess consists of the nine (9) steps as shown in Table D.1.

The first three steps mentioned in Table D.1, i.e., Steps 1, ..., 3, are re-
lated to the steps of the Markov chain formulation as shown in Figure C.2
in Appendix C. The other steps, Steps 4, ..., 9, are related to the steps of
the simulation of latent variables and observations as shown in Figure C.2
in Appendix C. Note that in Step 8, a function f (U(.)) is introduced. It
produces a value based on the state U(.). When any other information is
not available, f (U(.)) randomly generates a real number from a normally dis-
tributed variable denoted as rn(.)

(
µ(U(.)), σ(U(.))

)
. Here, µ(U(.)) and σ(U(.))

denote the mean and standard deviation, respectively. As such, the following
formulation holds.

f (U(.)) = rn(.)

(
µ(U(.)), σ(U(.))

)
(D.1)

The formulation of f (U(.)) defined in Equation D.1 is used in this study.
However, other formulations of f (U(.)) can be used, as preferred.

It is worth mentioning that even though a simulated value xs(i) belongs
to one of the states say Uj , the next state xs(i + 1) may not belong to the
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same state. This means that the simulation process continues similar to a
dynamical system [86].

Table D.1: Simulation algorithm.

Step 1
Define the time series X = {x (i) ∈ ℜ | i = 0, ...,m}, universe of
discourse U , state vector SV = (U1, ...,Un), and the number of
iteration N ∈ ℵ+0.

Step 2
Calculate the state probabilities p(Uj ), cumulative state proba-
bilities pc(Uj ), and state probability intervals pcin(Uj ) so that
∀j ∈ {1, ..., n}.

Step 3
Calculate transition probabilities tp(Uo |Uj ), cumulative transi-
tion probabilities tpc(Uo |Uj ), and transition probability intervals
tpcin(Uo |Uj ) so that ∀o ∈ {1, ...,n} and ∀j ∈ {1, ...,n}.

Step 4
Initialize the simulation process by assigning xs(i = 0) ∈ U ran-
domly.

Step 5

Determine the state of xs(i) → S (i) as follows:
For j = 1, ...,n

If xs(i) ∈ Uj Then S (i) = Uj

End For

Step 6 Generate a random number ri ∈ [0, 1].

Step 7

Determine the transition state S (i + 1) as follows:
For o = 1, ...,n

If ri ∈ tpcin(Uo |Uj ) Then S (i + 1) = Uo

End For

Step 8
Simulate xs(i + 1) as follow:

xs(i + 1) = max
(
min

(
umax, f (Uo)

)
, umin

)
Step 9

Redefine the pointer i = i + 1.
If i ≤ N − 1 Then Go To Step 5. Otherwise Stop.



Appendix E
Quantifying Possibility Distribution

Let {x(t) ∈ ℜ | t = 0,∆t, 2∆t, ..., n × ∆t} be a real sensor signal collected
from a manufacturing process. Here, ∆t is the delay. As such, the delay
map of the real signal consists of the ordered pairs

{(
x(t), x(t + ∆t)

)
| t =

0,∆t, 2∆t, ..., (n − 1) × ∆t
}
. Let {s(t) ∈ ℜ | t = 0,∆t, 2∆t, ..., n × ∆t} be

a DT-generated signal (i.e., simulated signal). As such, the delay map of
the simulated signal consists of the ordered pairs

{(
s(t), s(t + ∆t)

)
| t =

0,∆t, 2∆t, ..., (n−1)×∆t
}
. From a given return map, a possibility distribu-

tion (fuzzy number) can be induced following the mathematical formulations
described in [92]. Thus, the point cloud of the real signal induces a possi-
bility distribution denoted as Poss(x) ∈ [0, 1] and a triangular fuzzy number
(TFN), as schematically illustrated in Figure E.1a. The core of the TFN
is one of the cores of Poss(x). The support of the TFN is the support of
Poss(x). Similarly, the point cloud of the simulated signal induces a possi-
bility distribution denoted as Poss(s) ∈ [0, 1] and a triangular fuzzy number
(TFN), as schematically illustrated in Figure E.1b.

Now, a set of four parameters denoted as Pi | i = 1, ..., 4, can be considered
to quantify a possibility distribution and a TFN. Here, P1 is the area under
the possibility distribution, and P2 is the average possibility, as schematically
illustrated in Figure E.2a. On the other hand, P3 and P4 are the core and
the range calculated from the support of TFN, respectively, as schematically
illustrated in Figure E.2b. In Figures E.2a-E.2b, ∃X ∈ {x, s} and ∃Y ∈
{Poss(x),Poss(s)}.

Let {(Xj, Yj) | j = 1, ..., N + 1} be the points on the possibility distribu-
tion. Therefore, P1 and P2 can be calculated using the following expressions.
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Figure E.1: Possibility distributions and triangular fuzzy numbers. (a) Real
signal (x (t)), (b) Simulated signal (s(t)).
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P1 =
N∑
j=1

Aj (E.1)

P2 =

∑N
j=1Aj

(
Xj+1 +Xj

2

)
∑N

j=1 Aj

(E.2)

Here, the expression of Aj is as follows.

Aj =
|(Xj+1 −Xj)|(Yj+1 + Yj)

2
(E.3)

Let (uX , wX) and vX be the core and support of TFN, respectively. There-
fore, P3 and P4 can be calculated using the following expressions.

P3 = vX (E.4)

P4 = wX − uX (E.5)

Let Pi(real) denote the values of Pi | i = 1, ..., 4, for the possibility distri-
bution and TFN corresponding to the real signal. Let Pi(simulated) denote the
values of Pi | i = 1, ..., 4, for the possibility distribution and TFN correspond-
ing to the simulated signal. This results in a measure of error denoted as ei.
This error can be calculated as follows.

ei =

∣∣∣∣Pi(simulated) − Pi(real)

Pi(real)

∣∣∣∣ (E.6)

The effect of ei can be aggregated by calculating the average error denoted
as Error (E). Thus, the following expression holds.

E =

∑4
i=1 ei
4

(E.7)

The simulated signal exhibiting the minimal E matches the real signal as
closely as possible. Therefore, E can be used in monitoring a manufacturing
process. This is implemented in the presented DT in this thesis.





Appendix F
Monitoring Results for Other Processes

The presented systems, Digital Twin Construction System (DTCS) and Digi-
tal Twin Adaptation System (DTAS) (see Chapter 5 and Chapter 6), are also
deployed for performing real-time in-process monitoring of a milling process
and a grinding process.

f-1

Figure F.1: Screen-print of DTAS in performing real-time monitoring of a milling
process (when no abnormality detected).
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f-2

Figure F.2: Screen-print of DTAS in performing real-time monitoring of a milling
process (when abnormality detected).

f-3

Figure F.3: Screen-print of DTAS in performing real-time monitoring of a
grinding process (when no abnormality detected).
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f-4

Figure F.4: Screen-print of DTAS in performing real-time monitoring of a
grinding process (when abnormality detected).

As such, Figures F.1-F.2 show two instances while monitoring the milling
process, when there is no abnormality and there is abnormality, respectively.
In this case, cutting force signals are considered. Note that the experimen-
tal setup and machining conditions for the milling process are the same as
described in Section 6.1 in Chapter 6.

On the other hand, Figures F.3-F.4 show two instances while monitoring
the grinding process, when there is no abnormality and there is abnormality,
respectively. In this case, surface height signals from the ground surface area
are considered. Note that the experimental setup and machining conditions
for the grinding process are described in [109] in detail.
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