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Usually, real-world observed data are sampled from low-dimensional subspaces with sample-specific
corruptions (known as outliers) and random noises. The task of recovering low rank matrix from its
noisy measurement plays a central role in data science. Our goal is to recover low rank component from
highly corrupted data, and to correct the possible errors as well. In this paper, we propose a new method
termed Low Rank Matrix Estimation (LRME) by augmented Lagrangian multiplier, which seeks the
low rank component from highly corrupted observation. Our algorithm is to reduce not only the outliers,
but also the random corruptions. Theoretical analysis on convergence and optimality, and experimental
result on synthetic data are provided to demonstrate the efficacy of our proposed method.
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1. INTRODUCTION

Recovering a low rank matrix from its noisy
measurements plays a central role in computational
science and large-scale data analysis. The superior-
ity of Low Rank Matrix Recovery (LRMR) has
been tested and applied in many research areas,
such as covariance matrix estimation [1], [2], robust
principal component analysis [3], [4], collaborative
filtering [5], signal and image processing [6],[7],
photometric stereo [8]. In those areas, the data to be
analyzed often have high dimensionality, which
brings great challenges to data analysis. Fortunately,
the high dimensional data are observed to have low
intrinsic dimension.

In order to recover the low rank component ma-
trixL. € R™"™ from the given observation matrix
Y € R™"™ which highly corrupted by error E €
R™*™_ 1t is straightforward to consider the follow-
ing regularized rank minimization problem :

()

where ||E||, indicates certain regularization strat-

r{liEn rank(L)+A|E|l, s.t. Pp(Y) = Po(L +E)

egy, such as squared Frobenius norm ||-||% used

for modeling the random noise [9], whereas the [
norm adopted by [4] for modeling the outlier. The
A >0 is a regularization parameter balancing the
tolerance in training error. Furthermore, p,(+) is
orthogonal projection operator onto the linear space
of matrices on the support of binary valued £2;; €
{0’1}m><n'

As one of the two pivotal factors in LRMR, the
rank constraint in (1) makes the problem combina-
torically hard [10], due to its discreteness. Other
widely using low rank matrix approximation is Nu-
clear Norm Minimization (NNM) [4], [11]. The nu-
clear norm of a matrix L is denoted by ||L]||, ,i.e.,
the sum of its singular values. However, their ap-
plicability is often limited by the necessity of exe-
cuting expensive Singular Value Decomposition
(SVD) for multiple times [12].

Another widely using scheme is Matrix Factori-
zation (MF) method, i.e., the Bilinear Factorization
(BF) [13], [14]. The BF method aims to find two
smaller low rank factor matrices U € R™" and
V € R™™ whose product is equal to low rank ma-
trix L € R™*" e.g L = UV, the rank of approxi-
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mation typically satisfies r <« min(m,n) . Alt-
hough, BF method has computational superiority
when the target rank is given, it is not necessarily
the best choice when the target rank is unknown.

In the present paper, we design new method to
solve LRMR problem with outlier. Unlike existing
robust LRMR approaches, our method takes into
account not only additive outlier or missing data,
but also incomplete and random corrupted measure-
ment. The key contributions of this paper are sum-
marized as follows:

1. We used general Tikhonov type of regulariza-
tion with Frobenius norm penalty to obtain sta-
ble approximate solutions to LRMR problems
by means of a stabilizing functional.

2. We used maximum entropy term to model the
discreteness problem and increase our prior
knowledge (weights) on missing data.

3. Finally, we perform experiments on both syn-
thetic and real data and demonstrate its correct-
ness, efficiency, and effectiveness.

2. PROBLEM FORMULATION

A low rank matrix L € R™™ can be recovered
from noisy measurements Y € R™™ via the fol-
lowing nuclear norm minimization model:

min LI, +5100¢ - DIF (@)
where O is Hadamard product, the £ is index set
of observed entries, the 4 = 0 is regularization pa-
rameter controlling the nuclear norm of the mini-
mizer. In large data case, to mitigate the computa-
tional pressure, Theorem 1 is a best choice between
NNM and bilinear factorization:

Theorem 1: For any matrix L € R™*", the fol-
lowing relationship holds [10]:

L—'1U21V2 t. L=U0V
Ll = minZNUIE +5 VIR st L=

if rank(L) < min(m, n), then the minimum solu-
tion above is at a factor decomposition L=UV,
where U € R™" and V € R™" .

As aresult, applying Theorem 1 on (2), we obtain
the following Tikhonov type of regularization
which impose smoothness on the solution for ill
conditioned problems.

. A A 1
min SILUIE +2IVE I + 31000 - UNIE ©)

For the purpose of increase applicability of our

algorithm, we use Generalized Tikhonov regulari-
zation, and our problem becomes the form:

A 2 A 2 1 2
TZ”Vn E”I—'UU”F +E”VFV“F+E”-Q®(Y_UV)”F

s.t. zyTIyzy >0 and z,"L,z, > 0;
V zy €Iy and zy €Iy, 4)

where I; and [, are used to enforce certain ap-
plication dependent characteristics of the solution.
If I' is equal to identity matrix I, (3) and (4) are
same problem in standard form, however, these ma-
trices are typically I' # [ or discrete approxima-
tions to some derivative operators. Compared to di-
rectly minimizing (2), (4) inherits some advantages
and avoids overfitting when the target rank larger
than ground truth rank.

In practice, we may combine several regulariza-
tion terms to satisfy specific constraints together. To
enforce sparsity, we can use L;-norm regulariza-
tion terms and combine them. It is worth noting that
L,-norm also used for modeling the outlier.

. A A 1
min  ZIGUIE+IVE I +3 1200 - Un)E

+By Ul + BvlIVIly
ZUFUZUT >0 and ZVFVZVT > 0,
V zy €Iy and zy €1, 5)

s.t.

where Sy =0 and By = 0 parameters control-
ling the degree of sparsity of the matrices.

In many situations, the data are polluted by, be-
sides random noises, sample-specific corruptions,
which may prevent our algorithm efficacy. To re-
duce the negative effect of such pollution, we used
real valued weight matrix, such as:
(W and W) € [0,1]™*". Real valued weight ma-
trices are required to tell which elements are pol-
luted by random noises W and which by sample-
specific corruptions W. We employ maximum en-
tropy term to combine with real valued weight ma-
trices as probability of current state of knowledge.
The definition of entropy is — Y¥_, p;logp; with
Z{-;l p; = 1. Maximizing the entropy is equivalent
to minimizing its negative log function. Finally, our
problem can be formulated as follows:

. /1 2 /’{ 2 1 2
%" E ”rUU“F + E ”VFV“F + E WO - UV)”F
+BullUlly + ByllVIlL + VZ(WUIOQWU + wi;logwy;)
ij

W+W=1, W and W € [0,1]™"

zylyzyT >0 and z,L,z,T > 0;
V zy €Iy and zy €I,

S.t.

(6)

where the y > 0 is non-negative coefficient and 1
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represents an all-one matrix with comparable size.
w;; and w;; are represent (ij)-th elemet of W, w,
respectively. The support {2 is replaced by a
weight matrix ¥ containing both the given support
and the estimated outlier support.

3. METHOTHOLOGY

(1) Optimization

Recently, it has been shown in the literature [15],
[16] that alternating direction method of multipliers
(ADMM) is very efficient for some convex or
nonconvex programming problem. To apply
ADMM on our problem, the objective function is
required to be separable. Hence, we introduce the
constraint L = UV into (6), and obtain the
following equivalent problem formulation:

P A 2 A 2 1 2

”l']l,lvn 2 LUz + 2 Wz + 2 Iwo - Lz
+ BullUlly
BVl +7 )
ij

L=UV, W+W=1, W and W €
[0'1]m><n; ZUFUZUT >0 and ZVFVZVT > 0,
V zy €Iy and zy €Iy, @)

The Augmented Lagrangian Multiplier of (7) is
defined as:

(Wijlogwij + M_/UlogvT/U)

s.t.

L{ W+W=1,W,W E[O,l]mxn}(Ul V,L,W, M) =
I B ,
I VIR + SIVE I + S IWew - LI

+BullUllL + BrllVIlL + VZ(WilegWij + wijlogw;;)
ij

+2lIL = UV + (M, L — UV) (8)

where (-) denotes the inner product between two
matrices of equal size, the a > 0 is positive pen-
alty parameter, and M € R™" is a Lagrangian
multipliers. Notice that the constraints on W, W
and I' are enforced as hard constraints. The solver
updates the variables in an iterative manner. We will
derive our scheme for solving the following sub-
problems with respect to U, V, L and W, W, re-
spectively:

VD « (AR T, + a@UuOTy®) 7 (@u®TLO

+UOTy@ — ‘[2_3)

U(t+1) - [(a(t)L(t)V(t+1)T _ E + M(t)v(t+1)T)
2
(AI—'UI—'UT + a(t)V(t+1)V(t+1)T)_1]
w®OEY+a®yt+D)yE+1)_p )

(t+1)
L < WO O]

€

We update U,V,L via equating the derivatives
of (8) with respect to U,V and L to zero respec-
tively with the other variables fixed. The division in
updating L is elementwise.

We are picking out the terms related to W, W
and the result in the following optimization prob-
lem:

1 2
P _ 7 (t+1)
Wi 2 Iwoy = L),

ij
sstW+W=1; Wand W € [0,1]™™ (10)
This problem is also separable, thus, we can solve
this problem without loss of generality. The La-
grange Multiplier gives the following Lagrange
function:

9wy, wy, 4;) = wy[Y — L(Hl)]?j +

where subscript ij denotes that (i,j)-th element,
the A; is Lagrange multiplier. Taking the deriva-
tive of Q(w;, w;, 4;) to w;,w; and A; respec-
tively and setting them to zero. We obtain the fol-
lowing optimal solution of w;:

(t+1) 1

W, « 12

Y 1+exp{[(y—L(f+1))fj/2]/y} (12

which is standard sigmoid function form. Its com-
: _(t+1)
plementary is equal to w; i

w Y e 1-wit (13)

We updated the Lagrange multipliers M and «
via:

M1« Mt 4 @t (LED — gDy ey (14)
(15)

It is worth noting that the Tikhonov matrices Iy
and [}, requires no iteration. We used [ < &yl
and [}, « eyl to setting them. &; and &y are
non-negative parameters.

For clarity, the customized solver to (6) is out-
lined in Algorithm 1. The procedure should not be
terminated until the equality constraint L = UV is
satisfied up to a given tolerance, that is ||L —
UVl < @lIY|lr. We chose the tolerance factor ¢
is 1e-7 in all our experiment.

a*l e« atp, p>1

(2) Complexity Analysis
The computational cost of the existing algorithms
for nuclear norm regularization is dominated by the
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computation of SVD in each iteration. The com-
plexity of SVD for a matrix of size M X N is
O(MN min(MN)). In contrast, our algorithm does
not need to compute SVD, and its computational
cost is mainly spent on matrix multiplication for
updating U, Vand wight matrix W with complexity
O(NlogN). Our algorithms have much lower com-
putational complexity than the existing algorithms.
Furthermore, our algorithms converge very fast,
much more reducing the computational time.

Algorithm 1: solving LRMR problem (6)

Input: Y € R™", 0 € {0,1}™*", rank r, and parameters
(a,8,v)

Output: U*,V*or L* and W*

Initialize:U® € R™*"and V(©® € R™" (O ¢ RmMxn
W© € R™" « N1 are initialized randomly;t « 0
1.While not converged do:

2. Update VD, gE+D) [+ yia (9)

3 For V(ij) do:

4 Update w;™ via (12)

5 End For

6. Update the multiplier M**1, at*? via (14),(15)
7 t—t+1

8.End while

4. EXPERIMENTA L VERIFICATION

In this section, we perform extensive experiments
on LRMR to evaluate the effectiveness and effi-
ciency of our method. We compare our method with
state-of-the-art LRMR methods. The compared
methods include ROUTE [17], Active [18], AIS-
Impute [19], IRNN [20], RegL1[23], PCP [4],
PRMF [21], Unify [22]. The codes of which are
downloaded from the author’s websites. Their set-
tings follow the suggestions by the author or the
given parameters.

We generate a synthetic low-rank matrix Y as a
product of two matrices, such that Y = UV. The
rank of matrix satisfies v < min(im, n). Both ma-
trices U and V are randomly created by inde-
pendent identically distributed (i.i.d.) samples from
the Gaussian Distribution N'(0,1). Then we cor-
rupted the entries via replacing a fraction outlier ra-
tio (s) of Y with errors drawn from a uniform dis-
tribution over [-25, 25] at random, and the rest en-
tries are polluted by Gaussian noise N'(0,02). We
have used root mean square error (RMSE) and
mean absolute error (MAE) to measure the recovery
performance. In all the experiments, we fix the

noise level 6 = 0.1 and set the dimension of the ma-
trix larger than the ground-truth matrix rank. We re-
peat the experiments 20 times and calculate the av-
erage accuracy and CPU time.

We first test RMSE when the outlier ratio s
changes from 0.1 to 0.7 for all algorithms. In this
test we fix the data size m=n=500, rank=10 estima-
tion, each graph generated by averaging 20 inde-
pendent runs. From Fig. 1, we can see that our Low
Rank Matrix Estimation (LRME) method consist-
ently outperforms the compared algorithms in
RMSE.
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Fig.1 Performance comparison between RMSE and different
Outlier ratios s.

In Fig.2, we compare the tolerance to outlier be-
tween ROUTE and our LRME algorithm. We fix
the size of data m=r=600 and test the tendency by
changing outlier ratio s [0-0.7] and rank r [20, 40,
60].
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Fig.2 Convergence speed in the different outlier ratios s.

Fig. 3 shows that at the beginning, the RMSE of
our LRME algorithm smaller than ROUTE method.
When the outlier ratio increases, the margin be-
tween two algorithm enlarges in the case of =60
and s=0.7, our LRME algorithm also stays lower
RMSE than ROUTE method.
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5. CONCLUSION

In this paper, we recommended a new method for
low rank matrix recovering problem. We can
achieve a better control of the target rank of the low
rank component, even when the observed data is
limited and highly corrupted. In experimental anal-
ysis on both syndetic and real dataset, we further
showed that our recommended method can easily
construct LRMR problem. Our method is much less
time demanding and can converge quickly in a few
iterations. The generality and the effectiveness of
our method are supported through numerous and
extensive experiment, and the results verified that
our LRMR algorithm is an effective and efficient
approach for low rank matrix recovery, especially
for large-scale problems.
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