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This paper proposes a fast algorithm of the moment method based on the centroid cutting method. We
use the centroid cutting method to solve the singularity problem which has always plagued the matrix be-

havior. At the same time this paper uses the Adaptive Cross Approximation algorithm (ACA) to compress

the matrix. Numerical result demonstrates this new method owns a high accuracy. Compared with the tra-
ditional method of moments, this method has higher efficiency without reducing the accuracy.

Key Words : Method of moments(MoM); Adaptive Cross Approximation algorithm(ACA);

Radar Cross Section (RCS),

1. INTRODUCTION

Electromagnetic scattering problem has always
been a focus issue of calculation in computational
electromagnetic[ 1-2]. Method of moments (MoM) is
a representative method that has a high accuracy
and it used to solve the electromagnetic scattering
problem.

However, the calculation of the method of
moments will have the singularity problem caused
by the Green function[3]. And the calculated matrix
is a huge matrix with a very dense feature, which

directly causes our calculations to become very slow.

The centroid method of moments can be used to
solve the electromagnetic scattering of electrically
large objects. This method does not need to solve
the complex basis function and Green's function
directly and it can convert the integral operation
equation in the impedance matrix elements into a
summation operation. Further more, it will sparse
the matrix and improve the calculation efficiency
while keeping the accuracy at a high standrad. The
adaptive cross approximation (ACA)[4] method is
fully algebraic, and it can be easily inserted into
existing MoM codes. Finally the calculation time
will be reduced effectively by using this method[5].

This paper introduces a kind of method which
uses the centroid method of moments to solve the
singularity problem of Green's function, and then
uses the adaptive cross approximation algorithm to
speed up the calculation of the matrix, and finally
obtain the accurate calculation results and it is
confirmed that it can greatly reduce the calculation
time.

2. FORMULATION

The MoM is based on Stratton-Chu formulations.
When using the method of moments to calculate
electromagnetic scattering, we usually use electric
field integral equation to analyze the problem. And
we use to apply the RWG basis function to generate
the impedance matrix by using the electric field

integral equation[6], the formulation will be
obtained:
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In the above formulation, 72 and # correspond to two si-
de elements. "-" represents dot product, 7  is the side length

of m . The p°* is the vector between the free vertex v* and
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the center point »<* of the two triangles 7 of the edge ele-

ment m .Where 4 is the magnetic vector potential and
¢ 1s the scalar potential:
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Both of the above two formulations contain Green
function, which is defined as follows:
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When ;* and r' are almost equal, the singularity

problem will arise.

Here, we use a centroid cutting method to solve the
singularity problem which is a very efficient and
convenient way. The principle diagram of the
centroid cutting method is shown in the figure 1 as
below:

Fig.1 Schematic diagram of centroid cutting method

The principle of the centroid cutting method is:
use the RWG basis function to triangulate the
surface of the conductor, and the integral of the

function g(7) on the original triangle can be
expressed as:

[ stryas =7
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7 represents the center of each sub angle, 4,

represents the area of the original triangle, the
magnetic vector position and electrical standard
position can be simply rewritten as:

A(r) = -éG(R)Z)J(r;)

(4)
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Finally, the matrix equation can be expressed in the
following formulation[7]:
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In this way, the impedance matrix is divided and
reformed by the centroid cutting method. The matrix
filled by this method has no singularity problem.
However, how to quickly solve the matrix is still a
problem[8]. Next, we will use a fast algorithm to
solve the matrix problem[9].

The adaptive cross-approximation algorithm is a
fast and effective method. It is generally used by
people for fast calculation of the matrix. It has a great
effect on the fast calculation of the matrix.

Using this algorithm can quickly decompose the
dense impedance matrix and speed up the final
calculation[10-11].

The process of this algorithm is given as follows:

m

Initialization:
1) Initialize the index value of the first row /, =1,

Z=0.

2) Define an error matrix R of intermediate
variables and initialize the first row of the
approximate error matrix:

R(Il’:) = Z(Il’:)

3) Find the maximum value in the first row to

determine the first column index J, :

| R(Z,,J,) |=max (| R(Z,, /) D
4) Get the first row of the matrix:
v, =R(I,,))/ R(,,J,)

5) Initialize the first column of the approximate
error matrix:

R, J)=Z(,J)
6) Get the first column of the matrix:
u, =R(,J))
IZV 1= Z N+ Ny Plwy 1P
7) Find the maximum value in the first column to

determine the second row index 7, :

| R(1,,J,) [= max, (| R(, j,) ),i # I,
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The kth cycle:
1) Update the [, row of the approximate error

matrix:

- k-1
R(1L»)=Z(15) =2 ), v,
2) Find the maximum value in the I, row to

determine the kth column index J, :

......

3) Get the kth row of the V' matrix:
v, =R(;,))/ R(I,,J,)
4) Update the J, column of the approximate error

matrix:
- k-1
R(.J)=Z(J) =20 ()
5) Get the £ column of the U matrix:
u, =R(:,J,)
~(k (k-1 k=1
1ZO P 207 2 ufu Vv + e [P v P
6) Judge convergence error:
if ||u, || v, I< €| Z“ ||,and the iteration ends.

Otherwise, it starts to find the next line.

7) Find the next row index L :

|R({,,,,J,) |Fmax,(|RE,J,)|),i #1,.... 1,
After the algorithm is completed, the principle is

+1°

to construct two low-order matrices U™* and V%"

so that their product Z " s approximately equal to

the original matrix:

men ~ men — Umkakxn (7)

3. NUMERICAL RESULTS

In this paper, all the computations were finished
on a computer of 2.60GHz and 8 GB for Inter(R)
Core(TM) 17-4720HQ. The terminating tolerance of

ACA s selected as =107 . This paper simulates
and gives the results. We have considered two
examples. The first example is a metal ball made of
perfect electrical conductor(PEC),and the second
one is a Seam metal ball cone which Made of PEC.

In the first example, we set the sphere with a
radius of 2m, the incident wave is incident vertically
from top to the bottom with 300MHz. And finally
there are 17590 metallic triangles in free space.

Fig.2 Conductor Metal Ball

As shown in Figure 2 above, it is a schematic
diagram of the modeling of the sphere.

The feko software is a professional software
for calculating electromagnetics with powerful
functions. The data compared in this article are
all compared with the results of feko. The
following figure 3 shows the comparison of the
radar cross section (RCS) calculated by the
sphere. As shown in the following schematic
diagram, the comparison of the algorithm in this
article is the simulation result of feko software.

“Theta” represented by the abscissa is the
observation angle, and the ordinate is RCS.
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Fig.3 RCS of the metal ball

In the second example, due to a gap, our
parameters have become more. In order to facilitate
simulation and testing, the radius of each of our
objects is set to be much smaller. The radius of the
sphere is 0.08m and the length of the cone is about
0.6m. In order to ensure accuracy, we set the
frequency to 3000MHz and obtain 17600 metal
triangles in free space by setting the grid size.

Similar to Figure 2 and Figure 3, Figure 4 is the
modeling diagram of the metal cone with seams, and
Figure 5 is the RCS calculation result.
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Fig.4 Seam metal ball cone
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Fig.5 RCS of the Seam metal ball cone

Figures 3 and 5 show that the new method has a
high degree of fit with the traditional method of
moments, indicating the accuracy of the method, and
the obtained data are shown below. The unknowns in
the table are the number of unknown triangle pairs
obtained when modeling the object. All data are
accurate to single digits.

Table 1 Memory

Example Unknowns MoM New method

sphere 17590 2739MB 873MB
Seam

metal 17600 2342MB 679MB
ball

cone

Table 2 Total time(s)

Example  Unknowns MoM New method

sphere 17590 1388s 481s
Seam

metal 17600 2568s 925s
ball

cone

It can be seen from the above two tables and
simulation examples that the new method greatly
reduces the memory and analysis calculation time
compared to the moment method while ensuring the
calculation accuracy.
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CONCLUSION

The new method proposed in this article is
relatively effective. Based on the method of
moments, the new method in this paper further uses
the centroid cutting method to solve the singularity
problem of electrically large sizes., and accelerates
the calculation of the matrix through ACA. The final
result shows that this method greatly reduces the
calculation time and CPU usage of memory.
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