AN IMPROVED BLIND SOURCE SEPARATION
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In this paper, based on the linear instantaneous mixed blind source separation mathematical model, we
propose an improvement to the traditional complex maximization of non-Gaussianity algorithm (CMN),
introduce the augmented Lagrangian multiplier to fuse FastICA's inequality constraints with the CMN
algorithm, and use the Quasi-Newton algorithm to update iterations. Compared with the existing blind
source separation algorithms the bounded component analysis (BCA) and the Quasi-Newton complex
maximization of non-Gaussianity algorithm (NCMN), the experimental simulation results show that the
improved NCMN algorithm (n-NCMN) has a better separation effect, especially under the condition of

lower signal-to-noise ratio (SNR).
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1. INTRODUCTION

Blind source separation algorithms have been
widely used in various fields such as communication
countermeasures”, speech recognition”, and Elec-
troencephalogram (EEG)*. The so-called blind
source separation is to recover the source signal from
the multi-channel received signal without knowing
or less knowing the prior information of the source
signal. According to different mathematical models,
blind source separation problems are divided into
two categories, one is the linear blind source separa-
tion problem in which the source signal is linearly
mixed, and the other is the nonlinear blind source
separation problem. The linear blind source separa-
tion problem is divided into linear instantaneous
blind source separation and convolution blind source
separation.

Bounded Component Analysis (BCA) and Inde-
pendent Component Analysis (ICA) algorithms are
two types of unsupervised learning methods to solve
the problem of blind source separation. The BCA
algorithm® uses the observation vector to project into
a one-dimensional linear space to estimate the source
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signal. The algorithm does not have strong require-
ments on the source signal, and only needs to meet
the bounds of the source signal, but its convergence
speed is very slow. There are two main categories of
commonly used ICA algorithms. One is based on
high-order cumulants. For example, the Fourth-order
Blind Indentification algorithm (FOBI)”, although
this method is very effective, it requires different
kurtosis values; the Joint Approximate Diagonaliza-
tion of Eigenmatrices algorithm (JADE)Y, because
the algorithm uses a fourth-order cumulant, it is very
simple to expand the complex situation, but when the
number of sources increases, the performance will be
affected. The other is based on non-linear functions.
In the framework of maximum likelihood (ML),
information maximization (Infomax)'”, mutual in-
formation maximization or non-Gaussian (negative
entropy) frame maximization'?, the nonlinear func-
tion is used to implicitly generate high-order statis-
tics. And in the case of real values, the maximum
convergence and accuracy of the non-Gaussian
method are better, such as FastICA, but the algorithm
is not ideal for separation in the complex domain.
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Fig.1 Mathematical Model of Blind Source Separation.

In order to overcome the shortcomings of the
above blind source separation algorithm, the Com-
plex Maximization of Non-Gaussianity (CMN) al-
gorithm came into being'?. CMN algorithm mainly
uses the complex analytic function under the
non-Gaussian framework, and introduces the com-
posite maximization of two non-Gaussian algo-
rithms. It realizes the blind source separation in the
complex domain by connecting the maximization of
non-Gaussian (negative entropy) with mutual in-
formation. Although the classic CMN algorithm is a
very effective method in complex ICA, it is based on
a noiseless linear instantaneous mixture model.
When there is noise in the channel, the separation
performance will deteriorate. However, in many
practical situations, the mixed signal will be con-
taminated by noise. In response to the above prob-
lems, we add Lagrangian constraints to remove the
influence of noise on the separation effect, and use
the Quasi-Newton method to update iteratively. After
a lot of experimental simulations, the results show
that the separation performance of improved NCMN
algorithm (n-NCMN) is better in various scenarios,
especially in the environment of low signal-to-noise
ratio.

The rest of this article is organized as follows:
Section 2 introduces the blind source separation
model and blind source separation algorithm, Section
3 verifies the superiority of the n-NCMN algorithm
through simulation, and Section 4 gives the conclu-
sion.

2. THEORETICAL FRAMEWORK

The linear instantaneous mixed blind source sep-
aration model is shown in Fig.1. m source signals
passes through the instantaneous linear mixing sys-
tem, the signals which is interfered by noise is
transmitted to the receiving end to obtain n obser-
vation signals. Then the BSS algorithm is used to

separate the observed signal, and finally we can ob-
tain the estimation of the source signal.

According to Fig.1, build a mathematical model of
blind source separation, the observations meet the
familiar linear mixing model

X=A4S+N (1)
where S =[s,,s,,...,s,,]' € F"** denotes m source
signals, each source signal includes 7 sample points,
i=1,2,....m . [|'
pose, F = R denotes the set of real domain, F=C
denotes the set of complex domain.

A e F™"is the hybrid matrix, which denotes the
linear instantaneous hybrid system in the Fig.1.
X =[x,x,,...x,]' €F™" is the observation matrix,

. .
S, =[S1:8,50058, | €F is trans-

b

which represents n observation signals, and the
number of sample points in each signal is L .

N e F"* is additive white Gaussian noise with the
same dimension as X .

(1) Whitening pretreatment
In most blind source separation algorithms, the
source signal must first be whitened. For the sake of
generality, the source signals need to meet the con-
ditions of =zero mean, unit variance, and
non-correlation. The whitening pretreatment process
is spatial decorrelation, which can further simplify
the problem of blind source separation. The observed
signal after whitening preprocessing is defined as:
Y=BX )
where, B is the pre-whitening matrix satisfying
B=A"U" , y is the observation matrix after
pre-whitening, A is the matrix composed of m the

largest eigenvalues of R,=E {(X —u ) (X —p, )H} >

u#, =E{X} is the expectation of the source signal,

and U is the matrix composed of the corresponding
eigenvectors.

Therefore, the estimate of the source signal can be
defined as:
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S=w"y 3)
where W e F™" is the separator matrix.

(2) Objective function
The objective function of the classic blind source
separation algorithm (ICA) is:

J(W) :E{G(\W”Y\Z)} @)

where G(v)is a smooth non-linear function. You can
choose from the following three expressions:

G, (v)=1log(0.1+v) (5)
G, (v) =tanh (v) (6)
G, (v)=+ (7)

We update the traditional objective function by
introducing the Lagrangian factor, and use the ine-
quality constraints to maximize the application of
known prior knowledge, thereby improving the ef-
fect and the stability of blind source separation. The
updated objective function is defined as:

J(w) =E{G(|WHX|2)}

| I . (3
+Z((max th(W,c) + a,O}) —-a )

among them, ha(W,c)=p-¢(W,c)<0 , and
f(W)=ww" -1=0, they are respectively inequality
constraints and equality constraints for the blind
source separation model. ¢ is th g(v) e learning
rate, ¢ augmented

Lagrangian  multiplier,

2 .
g(W,c)=|WH c| , ¢ is the reference column vector,

/3 is the threshold of the inequality.

(3) Algorithm iteration
By using the Quasi-Newton methods, we derive
the oneunit iteration of n-NCMN as:

a < max(6h(W ,c)+a,0) ©9)
W' =-E{G" (v)g(v)x}
+E{g(v)g*(v)} w'
+E(YYVE[G (v)g (v} (10)
+sign(a)*20 (Wi)H c 2 ((W‘ )H c)* *c

where, v=W"Y , we select the non-linear function
G(v)=v*, g(v) and g'(v) denote the first-order
and second-order derivative of G(v) and i repre-

sent the number of iterations. Schmidt orthogonali-
zation is performed on the obtained separation ma-

trix jy , namely W « (WWH )1/2 w.
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3. EXPERIMENTAL RESULT

In order to quantify the separation performance of
the blind source separation algorithm, the similarity
coefficient is selected as the algorithm performance
evaluation index. The similarity coefficient is de-
fined as:

(11

35005, (8)

e
Jgs? (k)gﬁ» (k)

where, §, is the j, estimated source, i=1,2,...,m,
s, is the /, original source, j=1,2,...,m, [ repre-
sents the number of sample points of the source, &, is
any constant within the range [0,1]. When¢&, =1, the

separated signal §; is consistent with the original
signal s, or satisfies a constant multiple relationship
in amplitude; if &, = 0, the separated signal §, and the
original signal s, are independent of each other. The

closer the similarity coefficient is 1, the better the
separation performance.

The matrix composed of similarity coefficients is
recorded as the similarity coefficient matrix I :

FeR™, [, =¢ (12)

In order to remove the influence of the permuta-
tion uncertainty caused by the algorithm, this paper
chooses the improved average similarity coefficient
£ as the evaluation index of the separation perfor-
mance. The similarity coefficients of all signals and
the corresponding estimated signals are added and
averaged to obtain the average similarity coefficient

¢
(13)

EzE(imax(Fj)}, i=1,....,m

where, I'; represents the /, column of the matrix T .

After many Monte Carlo simulations, it is found
that the source power ratio and the number of sample
points have little effect on the separation effect of the
separation algorithm, which can be almost ignored(as
shown in Fig.2 and Fig.3). Therefore, the source
power ratio and the number of sample points are
fixed during the comparison experiment. This article
mainly compares three algorithms (BCA, n-NCMN,
NCMN) in different domains (real domain and
complex number domain) and related source signals
in Gaussian distribution and non-Gaussian distribu-
tion (binomial distribution) scenarios, and proves the
improved separation effect of n-NCMN algorithm is
better. It is worth noting that in the algorithm com-
parison experiment of related signal sources
SNR = 20dB -
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Table 1 Gaussian distributed signal simulation parameters

Parameter Value
Monte Carlc.) 100
simulation times

Number of sources 2

Sample points 1000
Source power ratio 0dB
Signal-to-noise ratio -8dB~30dB

Source type

real/complex/correlated
Gaussian signals

Similarity Coefficient

0.2 : 1
—¥— BCA Algorithm
0.1 —#—n-NCMN Algorithm
o ; : ; NCMN Algorithm

10 15 20 25 30

SNR(dB)

Fig.4 Real Gaussian signal comparison of three algorithms

(1) Algorithm simulation comparison of subject to
Gaussian distribution

The experimental

simulation parameters

of

Gaussian distributed signals are shown in Table 1,
and the experimental results are shown in Fig.4,
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Fig.6 Correlated Gaussian signal comparison of three algorithms

Fig.5, and Fig.6. The experimental results show that
the effect of the n-NCMN algorithm is obviously
more advantageous than the other two algorithms for
separating source signals that obey the Gaussian

distribution.



(2) Algorithm simulation comparison of signals
subject to binomial distribution

The experimental simulation parameters of signals
subject to non-Gaussian distribution (binomial dis-
tribution) are shown in Table 2. The experimental
results are shown in Fig.7, Fig.8, and Fig.9. In the
experiment of this section, the source signal satisfies
S~B(1,0.5). The experimental results show that un-
der the condition of low signal-to-noise ratio, the
n-NCMN algorithm is better than the other two al-
gorithms in separating signals that obey the binomial
distribution.

4. CONCLUSION
According to the comparison results of
experimental simulations, it is concluded that no

matter what distribution the source signal obeys,

Table 2 Binomial distributed signal simulation parameters

Parameter Value

Monte Carlq 100

simulation times

Number of sources 2

Sample points 1000

Source power ratio 0dB

Signal-to-noise ratio -8dB~30dB

Source type real/complex/correlated
P binomial signals
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Fig.7 Real Binomial distributed signal comparison of three
algorithms
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