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Spectrum is a limited and non-renewable natural resource. The increasing demand for wireless
communication, along with spectrum scarcity, has triggered the development of efficient dynamic
spectrum access (DSA) schemes for emerging wireless network technologies. Deep Q network (DQN), as
a branch of machine learning, has shown good performance in solving dynamic spectrum access problems
in recent years. This paper presents the review of literature on applications of deep Q network in dynamic
spectrum access. In this survey, we first reviewed the development of DQN algorithm addressing
emerging issues in dynamic spectrum access. Furthermore, we categorized applications of optimized
DQN algorithms in dynamic spectrum access according to environment models, algorithm models and
learning models. Finally, we highlighted future prospects of applying DQN.
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1. INTRODUCTION

The wireless communication business has grown
exponentially due to the rapid development of
wireless communication, which needs to occupy a
wider spectrum of resources. However, the current
allocation of spectrum resources is statically
authorized. Although the static spectrum allocation
method can effectively avoid the conflict and
interference between different wireless services, it
cannot give full play to the distribution
characteristics of radio signals in the time domain,
frequency domain and airspace!-?.

Dynamic spectrum access (DSA) is the key to
realize efficient utilization of spectrum resources in
cognitive radio®. (In DSA, the term spectrum refers
to the bandwidth of frequency points in mobile
communication, which is divided in the form of
channels). It allows secondary users (SUs) to sense
the spectrum holes in the current frequency band
without affecting the service quality of the normal
communication of the primary user (PU), and to
change their own access parameters under certain
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conditions to gain access to the spectrum, so as to
improve the spectrum utilization*>.

The application of deep Q network (DQN) in
dynamic spectrum access can enable secondary
users to adapt and learn different channel
environments. Also, through modifying their own
access parameters under different conditions,
secondary users could achieve the optimal spectrum
access effect, which is consistent with the original
intention of dynamic spectrum access®. In this
paper, we present the survey with the development
of DQN algorithm and the literature review on the
applications of DQN to address issues in dynamic
spectrum access.

2. DQN ALGORITHM IN DYNAMIC

SPECTRUM ACCESS

(1) Deep Q network algorithm

DQN algorithm belongs to the category of deep
reinforcement learning (DRL). Proposed by Google
DeepMind, DRL is a creative combination of deep



learning method with strong perception and
reinforcement learning method with excellent
decision-making ability?. In 2013, DeepMind
presented DQN algorithm arousing wide concern®.
DQN algorithm is developed from Q learning
algorithm, and their overall algorithm framework is
similar. Q learning can deal with decision problems
well”’. An important recursive relation in
reinforcement learning is Behrman equation:

Q” (s,,at) :E|:I"+7/E|:Q” (St+1’a:+l)]:| (1)
Where y is the discount factor, which represents the

Q value obtained by taking action « in state s in the
case of applying strategy sz . From strategy 7 we
can see, the expectation will take the randomness of
future actions and the return state from the
environment into account. According to equation (1),
the next state is only related to the current state, which
is the Markov property. Most reinforcement learning
methods are based on this formula. The update rules of
Q learning algorithm are as follows:

Q(v a) Q(? a)+a r+maxQ(€ a) Q(s,a) (2)

a(r+1)

However, more time is needed to query the Q table to
obtain the optimal solution in large action and state
spaces. One possible approach is function
approximation. DQN uses neural networks to
approximate the Q value. The weights and offsets are
expressed in terms of @ . The loss function is as
follows:

L(s,a|Q)z(r+7maxQ(s',a|Q)—Q(s,a|9i))2 3)
Gradient update formula:
0.,=6+av,L(6) 4)

The training process of DQN is shown in the figure
below:

target network and copies the parameters of the
online Q network to the target Q network every
once in a while, reducing the correlation between
the current Q value and the target Q value.

(2) Development of DQN in

spectrum access

In this section, we reviewed the history and
development of DQN algorithm in dynamic
spectrum access. The reviewed approaches are
summarized along with the references in Table 1.

DQN algorithm belongs to reinforcement
learning. In this aspect, the theoretical basis is the
Markov ~ decision  process (MDP).  Most
reinforcement learning methods are modeling based
on MDP. Through modeling the problem of
dynamically choosing proper channels to access for
secondary users (SUs), the optimal solution would
be found.

Table 1 A summary of development for DQN in DSA.
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Fig.1 The training process of DQN.

Compared with the traditional Q learning
algorithm, DQN has the following advantages. First,
every data sample is likely to be extracted from the
experience replay of DQN when the weight
parameter is updated, which improves the utilization
rate of data. Second, every time a sample is
randomly selected, which makes the learning
process smoother and avoids parameter oscillation
and divergence. Third, DQN independently sets the
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The establishment of MDP model needs to
know the prior knowledge of the channels, which is
usually changing in fact and difficult to obtain. In
2008, a multi-channel access strategy based on
MDP was proposed'?. By adopting the short-sighted
perception strategy, the channel selection was
simplified to a cyclic process, which avoided the
need of channel transfer probability. In 2013, based
on the establishment of the partially observable
Markov decision process (POMDP), the different



observation strategies were evaluated, and the
proposed strategy that could achieve similar
performance under the condition of less
understanding of external signaling interference was
proved'V.

An important element of MDP is the transition
probability of the next action, but in reality this is
difficult to obtain. So more studies turn to Q
learning algorithm, which is a model-free algorithm
without the needs of the transition probability. In
2011, a bidding algorithm based on Q learning was
proposed'?. The proposed method enables
secondary users to learn from competitors and bid
for frequency bands automatically. In 2014, the
authors improved the reward function in Q learning
for the single-user access strategy in multiple
channels'®. In 2015, the distributed Q learning
algorithm was developed for the cognitive cellular
system to improve the access density of cognitive
users'?. Although Q learning algorithm can be
combined with other models (such as auction
model) or improved algorithm performance by
parameters (learning rate, conversion factor, reward
function), it cannot handle large state and action
spaces. Therefore, DQN algorithm is applied to
dynamic spectrum access.

Before the DQN algorithm was proposed in

2013, an algorithm similar to DQN was successfully
applied in DSA!®. The algorithm replaces the Q
table with a multilayer forward-propagation neural
network by combining Q-learning and back
propagation, which reduces the external signal
interference and improves the network performance
in cognitive wireless local area network with
fibre-connected distributed antennas
(CWLAN-FDA). In 2017, combining with DQN
algorithm, a cognitive channel selection method for
user service quality was presented. The access
efficiency of the proposed algorithm was proved
under the model of a single channel simplified
network!?).
Summary: DQN, developed from Q learning, uses
MDP theory to model the dynamic spectrum access
problem. However, DQN algorithm still has some
problems such as overestimation and low utilization
of excellent samples. In addition to the improvement
of algorithm models, existing research has also
optimized the environment models and learning
models. In the next section, we will summarize the
optimization of these models.

3. OPTIMIZED DQN MODELS

DYNAMIC SPECTRUM ACCESS

IN

In recent years, there are many researches
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based on DQN in dynamic spectrum access. These
investigations optimized the system performance of
cognitive radio networks. They can be divided into
environment models, algorithm models and learning
models.

(1) Environment models
The dynamic spectrum access models are

classified into the following categories according to

different ways in Table 4 (among which there is no
conflict between any two classifications).

+ Cooperative or non-cooperative (according to
whether there is information interaction
between cognitive users).

Overlay, underlay or inter-weave (according
to how secondary users share spectrum with
primary users).

Centralized or distributed (according to
whether the access parameters of secondary
users are determined by the central controller).
At present, the most common system model of

DSA algorithm is non-cooperative distributed model,

because it does not need a central controller, which

saves expensive overhead cost, and there is no need
for information interaction between users 2. This
can reduce the complexity of the algorithm for
scenes with complex models and a large number of

users. In 2019, Naparstek Oshri et al. presented a

centralized learning distributed access model, which

effectively improved the system throughput rate and

the network utilization efficiency could reach 80%'.

Here, we present a brief description according to the

system scenarios in this paper, because this paper

gives a comprehensive feasible analysis of the
dynamic spectrum access algorithm based on DQN.

In each time slot, cognitive users use DQN network

to map the current state to the spectrum access

action in order to maximize the objective function,
with a system model of centralized training and

distributed access.
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Table 2 A summary of environment and algorithm DQN models in dynamic spectrum access.

Models References Features
Distributive 18-22),26)-29) No central controller is required; SUs decide the
model access parameters by themselves
Centralized 23),25),28) The access parameters of the SUs are determined by
model T the central controller
. LTSN 28) Users can coordinate information online
Environment model
O Non—IcI(l)(c))gglr ative 19),21),22),26),27),29) Save the cost of information exchange process
Overlay model 19),21),22) SUs with the goal of minimizing disruption to PUs
Underlay model 25),27) To improve the efficiency of spectrum utilization
Intre;;)\g:? ve 23),29) Combine overlay with underlay ones
Double DQN 22),24),32) Deal with the problem of overestimation
Dueling DOQN 22),27),29),30),32) Improve the learning effect of SUs
PER-DQN 24-25) Take advantage of good samples
: DQN with .
Algorithm dvnamic learnin 31) To improve the convergence speed and reduce the
models Y — & curve jitter amplitude
Traditional DQN uses CNN. The combination of
DQON with RNN 21-22),25-30),32) recurrent neural network can improve the performance
of prediction for network.

As is shown in Figure 2, the cognitive users
select frequency points independently and
communicate with the cognitive base station. The
cognitive workstation collects the access knowledge
in the user's access process, trains the decision
module through this knowledge, and transmits the
trained decision parameters to the cognitive users
through the cognitive base station and updates the
decision module.

(2) Algorithm models

Algorithm models are classified according to
the optimization of the DQN algorithm models,
because there are advanced DQN models applied
into dynamic spectrum access continuously.
Table 3 The performance of advanced DQN algorithm models.

Advanced Key features Application
DQN models
Double DQN | Use 2 Q-value functions | Applicable to
to simultaneously select | almost MDPs
and evaluate action
values.

Dueling DQN Use 2 networks to For MDPs with
estimate the action and | large action and
state value functions state spaces

DQN with the Prioritize experiences in | For MDPs with

prioritized replay memory prioritized

experience experiences
replay

Averaged-DQN | The Q estimates are For steady
averaged to reduce the training process
error of the approximate | of DQN
variance

Distributed Distributive perspective | To observe the

DQN risks behind the

actions

The performance of advanced DQN models is
listed in Table 3. The first three advanced models
are often used in dynamic spectrum access
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algorithms.

+ Double DQN can deal with the problem of the
overestimated Q value well. In DSA
algorithms, although overestimation can
sometimes have positive effects, secondary
users cannot be effectively trained if the
overestimation is uneven and is not focused on
the desired state.

Dueling DQN divided the Q value output by
the neural network into two parts: the value of
the state and the advantage value of each
action. Therefore, the action value of the same
reward generated by the secondary user during
the access channel will be converted to the
value of the calculated state. The learning effect
of secondary users can be greatly improved.

DQN with the prioritized experience replay
(PER-DQN) can improve the role of important
samples by priority sampling in the training

process. In DSA algorithms, PER-DQN
achieve the goal of accelerating the
convergence speed and reducing the training
time.

The proposed DQSA algorithm applied for
general large and complex settings and does not
require online coordination or message exchanges
between users!®. Double DQN algorithm was used
to select the overestimated Q values which degrades
performance. To solve the problems of the low
frequency utilization rate, the insufficient important
experience utilization rate and the slow convergence
speed, a DSA algorithm based on dueling DQN with
prioritized experience replay was deployed 2. In
order to break the sample correlation and make full
use of the important experience samples, a
priority-based sampling method was adopted when



the SUs are sampling the experience database,
which improved the throughput of the cognitive
system.

The above optimized DQN models have shown
good results in dynamic spectrum access, but in
recent years, the method combining DQN and
recurrent neural network (RNN) has also been
widely used. In DQN algorithm, the neural network
means convolutional neural network (CNN).
However, a special type of RNN, called the
reservoir computing (RC) is proposed®). It is
utilized to realize DQN by taking advantage of the
underlying temporal correlation of the DSA
network. Results suggest that the RC-based
spectrum access strategy can help the SU to
significantly reduce the chances of collision with
PUs and other SUs. The author proposed a spectrum
resource allocation algorithm for long short term
memory (LSTM) with DQN?>. The LSTM layer is
used to for SUs to adaptively adjust the transmit

power while successfully accessing the channel and
the utilization of spectrum resources. Because
LSTM is a kind of RNN, which can handle time
sequence problems well. The combination of LSTM
and DQN makes SUs have the ability of predicting
channel states (Table 4).

(3) Learning models

Learning models refer to the model in which
agents learn methods from the external environment
in DQN algorithm. Different learning models of
agents have different effects on improving the
system performance of cognitive radio network.
Therefore, representative learning models are
selected for review in this section. From Table 4 we
observe that the problems are mostly modeled as an
MDP or POMDP. Channel state information (CSI)
is often used as states of the algorithm. The
difference is that reward functions instruct agents to
learn from the environment.

Table 4 A summary of DQN learning models.

Ref. | Model A]fearpilng Agent States Actions Rewards Networks
gorithms
DDQN and Previous access Spectrum Cor%glitéve
19) Game Dueling SUs actions and access Data rate network
DQN observations actions
(CRN)
LTE
: I, Traffic history of Spectrum (long
DQN with Cognitive > uStory p
20 Game : cognitive base access Throughput term
) LST™M base station gstation probability P evolutioll(l)
networ
: Spectrum Data rate o
DQN with Channel state of the Distribute
27) MDP echo state DSA users link and feedback acggiséarnd en};%r(lic%r[njent d DSA
networks from PUs control protections networks
] Channel occupancy the access
29) | POMD | DQNwin | gy | giFUsadthe T | cnncina | Revard +or | oy
(ACKs) of the SUs. | access mode
Transmission
: : based on
Deep Sequential ina T+l
30) POII,VID Recurrent Seﬁggggry observations of particular fllrll(:sflecscsseglslf?x{ CRN
Q-Networks channel states band ackets
or waiting p
Sensor
. : Total rate and
DOQN with Base Channel access selection for o Internet
33) MDP LSTM station history and CSI channel prediction of things
access error
4. FUTURE PROSPECTS consume a large amount of perception energy,
g p p gy

In the previous sections, we presented an
overview and a brief description of the proposed
DQN algorithms in dynamic spectrum access.
Nevertheless, several open issues remain.

(1) In practical applications, different wireless
channel environments need to be considered.
Most DQN-based dynamic spectrum access
algorithms use the Rayleigh fading channel model
with little consideration of other models (such as
the Nakagamim channel model). In this regard, it
is necessary to test different wireless channel
models, because CR entity communication affects
the characteristics of wireless channels in fact.

(2) The dynamic spectrum access process needs to

&
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which is a huge cost for the system. It can be
considered to combine spectrum prediction before
spectrum perception, but there is still a lack of
system-level overall scheme in this regard.

(3) Most DQN models are based on single-agent
algorithm. In fact, in the process of dynamic
spectrum access, secondary users play the role of
cooperation, communication and competition,
which is consistent with the idea of multi-agent
algorithm. Collective behavior and distributed
control systems are important examples of
multiple autonomous agents in a dynamic
environment. Therefore, the problem of
multi-agent system will gradually become a hot
research direction.
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