Support-vector-machine-based sound and vibration
signal processing for monitoring milling operations

Wen-Lin Chu!, Min-Jia Xie?

"Department of Mechanical Engineering., National Chin-Yi University of Technology
(No.57, Sec. 2, Zhongshan Rd., Taiping Dist., Taichung 41170, Taiwan)
E-mail: wichu@ncut.edu.tw
2Department of Mechanical Engineering., National Chin-Yi University of Technology
(No.57, Sec. 2, Zhongshan Rd., Taiping Dist., Taichung 41170, Taiwan)
E-mail: charlie2302220@gmail.com

To recognize the abnormal state of the CNC milling machine, sound and vibration sensors were set up
inside the machine to capture the signals during machining. In this study, the signals are analyzed and
labeled with three states: unmachined, machined, and machining chatter. The characteristic values of each
state are established by the calculation of approximate entropy for the time domain signals. The model
recognition rate can reach up to 95.1% for the states with and without processing and processing flutter.
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1. INTRODUCTION

Machine tools have been widely used in today's era, and
the future factory will be developed into a 24-hour
operation system, gradually becoming a human-free or
intelligent chemical factory.” The advantage of this system
is not only to increase the output, but also to make the
machine replace the manpower, and more importantly, the
workers do not need to take care of one or more machines
to perform the operation.? Therefore, the machine of the
future should be able to detect its own condition and
prevent itself in advance under the long time and large
amount of operation.” When performing a lot of machining,
the tool will wear out and start to be damaged. If the tool
continues to be used after a certain period of time, it will
cause dynamic cutting errors and machining chatter?,
which will further affect the quality of the product.

This paper focuses on the machining conditions of CNC
milling machines, with reference to industrial-grade sensor
microphones or accelerometers that have been used in
several papers to perform the study.> ©® Many research
papers have extracted signals for algorithmic computation
or training of models, Grossi, et al. 7 obtained the
machining signals with a microphone for analysis, and the
vibration stability of the spindle can be calculated with
only a few signals from cutting tests over a wide range of
high speeds. Shi, et al. ® The training parameters were
deployed by using an ordered-neurons long short-term
memory (ON-LSTM) training model and population based
training (PBT) with four acceleration gauges on the data
set obtained from a large number of milling experiments.
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The training results are consistent with the spectrum
obtained from the original signal by short-time Fourier
transform (STFT). In this experiment, the sound and
vibration signals are analyzed to compare the difference
between the response states of the two signals to
processing, and in the signal processing part, Approximate
Entropy (ApEn), which has been adopted by many
literatures, is used to convert the signals numerically.”
Approximate entropy values are often used for analysis
and identification of various signals '® 'V and are most
often used in biomedical-related research. Lahmiri, et al. '?
By using approximate entropy features, we can effectively
distinguish the sound signals of healthy and sick babies'
cries. Eventually, a machine learning method, Support
Vector Machine (SVM), is used to train a model to identify
the processing state.'® To avoid the noise of the original
signal that causes misjudgment of the training results, this
paper uses a finite pulse response filter to eliminate the
noise and then conducts model training to increase the
recognition of the model training.

2. EXPERIMENTAL EQUIPMENT AND
METHODS

To identify the abnormal state of chattering in the
milling machine, sound and vibration sensors (microphone
and accelerometer) were set up inside the machine to
collect the machining signals, and then the signals were
analyzed and the state was marked, and finally the
identification model was trained. The detailed



specifications of the equipment used in this experiment are
summarized in Section 2.1, and the overall experimental
structure is described in Section 2.2.
(1) Experimental equipment

The machine equipment used in this experiment is the
digital control milling machine (MV154-C) produced by
Quaser Machine tools Inc. and the controller is FANUC, as
shown in Fig. 1 The specifications are shown in Table 1.

Fig. 1 Digital control milling machine (MV154-C)

Table 1 Digital control milling machine (MV154-C)

specification
No. Specifications Nlif:ll:l E:; of
1 Workbench size (mm) 900x500
2 X-axis travel(mm) 762
3 Y-axis travel (mm) 530
4 Z-axis travel (mm) 560
Spindle nose to
5 workbench distance 150~710
(mm)
6 Workbench load (kg) 500
Direct-
7 Spindle type Drive
Spindle

The tool used for the experimental machining is a cobalt
HSS end mill (H.S.S-Co8 END MILL), as shown in Fig.
2.The specifications are shown in Table 2. The workpiece
material is aluminum alloy (6061), and the workpiece
material size is uniformly 100x80x10 mm.

Fig. 2 Cobalt HSS end mill

Table 2 Cobalt HSS end mill specification

No. Specification Nuvl:ll:l eers of
1 Blade diameter (mm) 10
2 Shank diameter (mm) 10
3 Blade length (mm) 25
4 Total length(mm) 75
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Metric three-blade high

guide angle >0

The sound and vibration sensor used in the experiment
was a microphone (378B02) made by PCB Piezotronics,
which was set up 85 mm from the processing area.'¥ Metra
Mess-und Frequenztechnik's three-axis accelerometer
(KS943B.100) is attached to the side of the spindle.'> The
above equipment is shown in Fig. 3 to Fig. 5, and the
specification table is shown in Table 3 to Table 5. The
overall experimental equipment setup is shown in Fig. 6.

Fig. 3 Microphone (378B02)

Table 3 Microphone (378B02) specification

No. Specifications Number of values
Sensitivity
1 (mV/Pa) 48.93
Frequency
2 Range 3.75~20,000
(¥2 dB)(Hz)
3 Inherent noise 137 dB re 20 uPa
Ambient
4 temperature _40~80
measurement
range (°C)
Diameter x
5 height (mm) 12.7x90.9
6 Weight (gm) 45.8

Fig. 4 Three-axis acceleration gauge (KS943B.100)

Table 4 Three-axis acceleration gauge (KS943B.100)
Specification
No. Specification Number of
values
1 Sensitivity (mV/g) 100




Frequency Range

> 3 dB)(Hy) 0.5~22,000
Measurement

3 Range(g) o0

4 Measure the ambient 20~120

temperature range (°C)

Fig. 5 Signal Acquisition Module (NI-9234)

Table 5 Signal Acquisition Module (NI-9234) specification

No. Specification Number of

values

1 Signal Range(V) +5

2 Number of channels 4

Sampling Frequency

3 (kS/s/ch) >1:2

4 Input Configuration IEPE

5 Noise at maximum 50

sampling rate (LVrms)
6 Connecting Channel BNC

Fig. 6 Experimenting with equipment erection
conditions

(2) Experimental Framework

In this study, in order to create a state of tremor during
processing, according to Budak and Altintas, '© Research
indicates that the occurrence of chatter is directly related to
the two machining parameters of spindle speed and depth
of cut. The experimental parameters are shown in Table 6.
The feed rate is 200 mm/rev, the radial depth of cut is 10
mm, and the machining method is smooth milling. First,
the signals of the machining process were collected, and
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the unmachined environment signals, normal machining
signals and machining chatter signals were obtained. After
obtaining the signal data, the signal is processed, and the
time domain figure is used to classify the processing and
unprocessed periods. frequencies (FFT), and based on the
period doubling type frequency formula, As shown in
equation (1a)'? the time period between normal processing
and tremor processing is classified. The next part of the
signal processing is to convert the time domain data of the
original signal per second into an Approximate Entropy
(ApEn) feature, and finally to build a model to identify the
abnormal machining condition by SVM. The detailed
process is shown in Fig. 7.

zQ) Q

fon =50 * 165 s-1,0,1, ..,

j[Hz],n = (1)

fPD is chatter frequency; z is the number of flutes in

the cutter; Q3 is Spindle speed; n is multiplication constant.

Table 6 Experimental processing parameters

Experiment Spindle speed Axial depth of
(r.p.m) cut (mm)
1 1200 1
2 1200 2
3 1200 4
4 2400 1
5 2400 2
6 2400 4
7 4800 1
8 4800 2
9 4800 4
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Fig. 7 Experiment Flow Chart

(3) Approximate entropy characteristics

This paper adopts the Approximate Entropy (ApEn)
theory proposed by Steve M. Pincus in 1991 for the
characterization of numerical conversion.'®)

ApEn is a value that represents the correlation,
persistence, or regularity of a Table in a set of time series.
The lower the value, the higher the correlation and
repetition of the Table's state in this time period; conversely,
the higher the ApEn value, the higher the independence
and randomness of the Table's state in each second of time
series, and the more complex the state. In this paper, we
take the processing signal data as an example, and use the



characteristic value of ApEn to distinguish the state of the

time domain signal, the data form is shown in equation (2a).

x(@) =[u(@),u(@+1),..,u(i+m-1)],
i=1,2,.(N-m+1) (22)
m is Embed Dimension; N is total amount of data for
each calculation; the signal of this experiment is the total
number of data points per second, and the Range
1<m < N of ApEn is defined as shown in equations (3a)
to (3d)."

ApEn(m,r, N) = ¢" (1) = 6" (1) (3a)
§" (1) = s 3 Il () (3b)
C:,,(r) _ (number of such j such that d[x(i), x( j)] <r)
(N-M +1)
,(3¢)
d[x(i), x(j)] = max k:Lzmm(|u(i +k-1)-u(j+k-1)])
,(3d)

r is recommended filtering coefficient for noise is
0.1~0.25 times the standard deviation of the total data
value within the range.!% 2%

(4) Finite impulse response filter

In this paper, it is believed that too much noise in the
original signal will easily cause misjudgment in the
subsequent model training and lead to poor model stability.
Therefore, finite impulse response (FIR Filters) is used for
band-pass filtering of the signal. The filtering band ranges
from 50 Hz to 5000 Hz, and the lower part of the band is
used to remove the signal drift, and the higher part of the
band is used to remove the interference of the high
frequency noise from the machine?", which will make the
response before and after the frequency consistent
according to the wavelength length of the filter, and the
frequency response outside the range is eventually close to
zero. Therefore, it is called a limited pulse response filter,
and its filter input-output relationship is shown in equation
(4a2).»

y(n) =) bx(n—k) (4a)

The output signal response of the filter is y(n) ; input
signal is x(n) ; K the coefficient refers to the order of the
filter; the pulse response of the filter is b, ,also can replace
as the filter coefficient.

(5) Support vector machine

In this paper, the final classification of processing states
is done by using support vector machines, which are often
used in machine learning to classify states. This approach
is considered as supervised learning in machine learning in
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support vector machines, since all states are classified into
blocks before the training of the classification model.

The classification method of SVM is to map the training
data set to a hyperplane, and to calculate the distance of
each data point to each other until we find the maximum
distance that can distinguish the two blocks.?> 29

The SVM first calculates the distance in space, the
training data consists of points 7 and is expressed as a
vector (x; d,); x,is the input vector; d, is the target value

which is the maximum distance, the following equation
expresses the target value as 1 and -1, and is mapped to the
hyperplane by substituting the target value. The hyperplane
distance is expressed as shown in equation (5a).
d =1 ;W' x+b)>0
y= , (5a)
d =-1;(w x+b)<0

y is hyperplane; w is hyperplane weight vector value; x
is the vector value of the feature block obtained after
mapping the training data set x, to the hyperplane space;

b is the bias of the hyperplane is a constant, which is
expressed as shown in equation (6a) by substituting all
training data sets.

yi(wa+b) >1,i=1,2,3,...,n

(6a)

Finally, in order to find the maximum distance (margin)
between the two characteristic blocks as shown in Eq. (7a),
it is necessary to make the range of the two characteristic
blocks as large as possible, and the target function is
obtained by substituting Eq. (7b).

margin = M (7a)
[ )
1 2
min 2] o
subject to {yi [(WTXI- +b)] >1,(i=1,2,3,....n)

3. EXPERIMENTAL RESULTS

In this paper, the signal interception was carried out for
the milling process. The relevant sensors were installed
into the machine and the process was carried out according
to the experimental parameters in Table 6, and the
processing signal of the experiment was intercepted. The
sampling frequency of the vibration signal collected by the
accelerometer was set to 10240 Hz, and the sampling
frequency of the sound signal collected by the microphone
was set to 25600 Hz.

The time domain signals collected from each sensor are
converted into numerical states per second by the
approximate entropy feature, and the SVM model is
trained by the toolbox in MATLAB R2020a, and the degree
of recognition is compared with and without the finite
impulse response filter.



(1) Chatter Phenomenon Analysis

In this paper, we determine the occurrence of chattering
according to the period doubling type frequencies of
Equation (1a). Therefore, the time domain signal of the
processing was subjected to Fast Fourier Transform (FFT)
to find out the maximum response frequency per second
during the processing, and finally the table surface of the
workpiece was compared to confirm the occurrence of
tremors. First, we observe the time domain figure of all the
experiments, and take the time domain figure of
experiment 6 to illustrate the signal results as shown in Fig.

8.
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Fig. 8 Processing time domain diagram of
Experiment 6

From Fig. 8, we can observe the time domain of the
whole acquisition process from machine start-up to
processing. The first part of the signal is from 0 to 4.3
seconds, which shows that the energy is low and the
spindle has not been started yet; the signals from 4.3 to 16
seconds and after 40.6 seconds are the signals from the
energy amplitude caused by the spindle rotation between
the start of the machine and the end of machining and the
spindle stop; and the period from 16 to 40.6 seconds is the
signal from the spindle rotation at high speed. In the period
from 16 to 40.6 seconds, the energy signal is generated by
the high speed rotation of the spindle. The FFT was
performed on the processing period from 16 to 40.6
seconds to determine whether the maximum frequency
response was close to the frequency value of the frequency
multiplier, and to determine whether there was any tremors
during the processing period. The results of the conversion
of the accelerometer and the microphone signal into
frequency are shown in Table 7 and Table 8.

Table 7 Speeding up the frequency of processing periods per
second

The maximum frequency response of the Nth second
processing period of FFT

16~17 17~19
4574 1314

19~23
1316

Time(s)
Frequency(Hz)
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Time(s) 23~30 30~32 32~36
Frequency(Hz) 1315 1314 1315
Time(s) 36~38 38~40 40~41
Frequency(Hz) 1314 1315 4572

Table 8 Frequency of microphone processing periods per second

The maximum frequency response of the Nth second
processing period of FFT

Time(s) 16~17 17~18 18~19
Frequency(Hz) 3646 2148 1913
Time(s) 19~20 19~20 21~22
Frequency(Hz) 1195 1914 1911
Time(s) 22~23 23~24 24~25
Frequency(Hz) 1195 1913 1912
Time(s) 25~27 27~29 29~30
Frequency(Hz) 1913 1315 2151
Time(s) 30~31 31~32 32~40
Frequency(Hz) 2150 1314 1315
Time(s) 40~41
Frequency(Hz) 4173

According to Table 7 and Table 8, the calculated
values of Equation (la) were compared, except for the
periods of 16~17 seconds and 40~41 seconds, whose
frequencies were not close to the period doubling type
frequencies, and the rest of the periods showed tremors.
The workpiece after machining is shown in Fig. 9.

3.3(mm)

Fig. 9 Experiment 6 workpiece surface

The surface of the workpiece in Fig. 9 shows that the
machining distance from 16 seconds to 17 seconds is about
3.3(mm), and no tool marks appear on the surface of the
workpiece. In view of this, this paper uses equation (la)
and the surface condition of the workpiece to mark the
status of the rest of the machining experiments to
determine whether chatter occurred.

(2) Finite impulse response filter with approximate
entropy theory feature retrieval results

After marking the processing status, this section
compares the identification results with and without the
use of the filter. First, the original signal classification
experiment was conducted, and all the experimental time
domain signals were converted to ApEn features with the
following parameters: m2 set to 2;r the coefficients were
0.2 times the standard deviation of the time domain signals
per second; N is the total amount of data was the total
number of data points of the time domain signals per
second. The model recognition results are shown in Table
9 and Table 10.




Table 9 Raw signal with approximate entropy features and SVM
classification with or without processed model
identification results

SVM model
Linear Quadratic Cubic
Recognition 53.7% 61.0% 56.1%
Fine Medium Coarse
Gaussian Gaussian Gaussian
Recognition 51.2% 46.3% 53.7%

Table 10 SVM classification of raw signals with and without
processing and model identification results of tremor
states with approximate entropy features

SVM model
Linear Quadratic Cubic
Recognition 46.3% 43.9% 26.8%
Fine Medium Coarse
Gaussian Gaussian Gaussian
Recognition 53.7% 48.8% 46.3%

From the SVM model recognition rates obtained in
Table 9 and Table 10 , it can be observed that the highest
recognition rate of the original signal with and without
processing was only 61.0%, and the highest recognition
rate of the model with and without processing and
processing tremor was only 53.7%. Based on the above
results, we believe that the original signal has too many
noise signals, so the second SVM classification
experiment will present the results after filtering the signal.

First, all the experimental raw signals are band-pass
filtered at 50~5000 Hz using finite impulse response filter,
and then the filtered signals are characterized by ApEn.
The results of model recognition are shown in Table 11
and Table 12.

Table 11 Model identification results of the original signal using
finite impulse response filter with approximate
entropy feature and SVM classification with and
without processing state

SVM model
Linear Quadratic Cubic
Recognition 87.8% 90.2% 87.8%
Fine Medium Coarse
Gaussian Gaussian Gaussian
Recognition 87.8% 87.8% 78.0%

Table 12 The original signal is identified using a finite impulse
response filter with an approximate entropy feature
to classify the SVM model with or without
processing and tremor state

SVM model
Linear Quadratic Cubic
Recognition 87.8% 92.7% 63.4%
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Fine Medium Coarse
Gaussian Gaussian Gaussian
Recognition 95.1% 90.2% 75.6%

The data in Table 11 and Table 12 show that after the
original signal is filtered with the finite impulse response
filter, the SVM classification result is performed by ApEn
feature conversion. The recognition rate of the model with
or without processing was up to 90.2%, and the recognition
rate of the model with or without processing and
processing tremor was up to 95.1%, and the recognition
rate of each SVM model increased.

4. CONCLUSION

In this paper, we analyze the vibration signals and
acoustic signals collected during the machining process to
identify the machining time period, and then perform fast
Fourier transformations to obtain the maximum response
frequency. Then, the signal is converted into ApEn features,
and the final result of the classification by SVM achieves
95.1% recognition rate. In order to prevent excessive noise
in the original signal, it is necessary to use a finite impulse
response filter to bandpass filter the signal.

In the future, we can try different filtering bands to
eliminate the remaining frequency intervals that may lead
to model misclassification, or adjust the parameters of
ApEn so that the processed eigenvalues can make the states
of our experiments more obvious and regular, so that the
SVM classification results can have a higher recognition
rate.
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