研究に用いる熱交換器の熱特性を考慮した熱交換器の設計手法を検討する

著者別名	伸哉 小原
	アジアエネルギーメディア

引用文献

doi: https://doi.org/10.1016/j.ijhydene.2015.09.009
Study on the Dynamic Characteristics of an Integrated Coal Gasification Fuel Cell Combined Cycle

Shin'ya Obara

Power Engineering Lab., Dep. of Electrical and Electronic Engineering, Kitami Institute of Technology
Koen-cho 165, Kitami, Hokkaido 090-8507, Japan
obara@mail.kitami-it.ac.jp
phone/FAX +81-157-26-9262

Jorge Morel

Power Engineering Lab., Dep. of Electrical and Electronic Engineering, Kitami Institute of Technology

Masaki Okada

Dep. of Mechanical Systems Engineering, National Institute of Technology, Asahikawa College,
Shyunkodai 2-2-1-6, Asahikaw, Hokkaido 071-8142, Japan

Kazuma Kobayashi

Technology Innovation Center, National Institute of Technology, Asahikawa College,
Shyunkodai 2-2-1-6, Asahikaw, Hokkaido 071-8142, Japan

Abstract

In this study, a dynamic analysis model for integrated gasification fuel cell (IGFC) power generation was developed and the dynamic characteristics of electric power output by the
system were investigated. Using the proposed analytical model, the study addressed the frequency deviation of electric power output, the inertia system of gas and steam turbines, the air–fuel ratio of the solid oxide fuel cell (SOFC), and load patterns. Moreover, using the model, an example of an electric power load pattern in Japan was examined. Because the supply and demand difference in electric power can be monitored as frequency deviation in a power network, the frequency of each power generator was analyzed. Consequently, the output of IGFC gas and steam turbines could not be controlled in the target range. Therefore, it was necessary to stabilize the quantity of exhaust heat by improving the heat transfer speed of the SOFC.

Keywords: Integrated Coal Gasification Fuel Cell, Combined Cycle, Dynamic Characteristics, Solid Oxide Fuel Cell, Numerical Analysis

1. **Introduction**

Coal has many recoverable reserves and continues to be an important source of energy in the world. Because coal generates more CO\(_2\) emissions than other energy sources, it is desirable to increase the power generation efficiency of coal-fired power plants. The integrated gasification fuel cell (IGFC) consists of an air separator, coal gasification furnace, solid oxide fuel cell (SOFC), gas turbine (G/T), and steam turbine (S/T). The IGFC is generated using synthesized H\(_2\) gas produced by the coal gasifier. A power generation efficiency of 50% or more is realized using the combined cycle SOFC, G/T, and S/T [1–5]. The design of fundamental system [5–10], capture of CO\(_2\) [11, 12], cleanup of synthesis gas
exergy analysis, and economical efficiency [1-3, 16-20] are reported in a recent study on IGFC. Furthermore, case studies of SOFC power generation system using gasification of biomass [21-27], the SOFC organic Rankine cycle power system [28], the SOFC Stirling engine power system [29-32], the application to a distributed power supply [33], and study of a plasma gasifier fuel cell [34] have been conducted. Coal gasifiers in fixed bed, fluidized bed, entrained flow, and molten bath have also been developed [35]. Several types of coal gasifiers including a shell gasifier have been modeled. The dynamic characteristics of the IGFC are an important parameter required for the design of an electric power system. However, investigations of the dynamic characteristics of the IGFC have rarely been conducted, and the examination of output distribution and output stability using parallel operation of the IGFC and other power sources is not progressing. Although a large-scale IGFC is assumed to be the base supply of an electric power system, its use as a distributed power supply at a small or medium scale is analyzed in this study. Therefore, this study focuses on the dynamic characteristics of the IGFC using a numerical analysis model. The model developed in this study consists of the transient response characteristics of the SOFC triple combined cycle accompanied by the external reformer of natural gas developed in a previous study [36], and the analytical models of the integrated gasification combined cycle. By applying the analytic model to the IGFC with the full force power of 100 MW, the dynamic characteristics of the system are investigated using the MATLAB/Simulink R 2015a. Research findings have reported that the combined cycle by an SOFC and a gas turbine without a steam turbine is fine [37]. However, the
development of the SOFC triple combined cycle continues in Japan [38]. Therefore, the triple combined cycle comprising an SOFC, a gas turbine, and a steam turbine is examined.

2. System Configuration

2.1 Air Separation Unit (ASU)

The design of an air separation unit (ASU) has been presented in a previous study [39, 40]. The system configuration of the proposed IGFC and the flow of fluid and energy are shown in Fig. 1. The ASU for the proposed system assumes an internal compression type wherein raw material air is supplied by the air compressor \(CP_{\text{asu,air}} \). Air is cooled using a precooler (cooling tower) and moisture and carbon dioxide are removed in the absorber. The ASU produces high purity nitrogen and 95% pure oxygen used by the coal gasifier. This oxygen is then used as the raw material for coal gasification. Pure nitrogen is used for parsing and conveyance during coal pressurization.

2.2 Coal Gasifier

This study assumed the introduction of an entrained flow coal gasifier to which the fine ground coal is supplied. Because the oxygen produced by the ASU is also supplied to the gasifier, the fine ground coal instantly reacts under partial oxidation. The high temperature synthesized gas of 1300 to 1600 °C generated by the gasifier is used for generating steam supplied to the S/T. The processing of the removal of toxic substances is performed in the gasifier unit. For example, particulates are removed by the particulate
scrubber at the gasifying furnace exit. The cleanup of gases does not have a large influence on the dynamic characteristics of the system.

2.3 SOFC Triple Combined Cycle

The raw synthesized gas produced by the gasifier is supplied to the anode in the SOFC and oxygen (air) is supplied to the cathode using an air compressor. The exhaust gas from both electrodes and air from the air compressor are burned and high temperature exhaust gas is supplied to the G/T. The exhaust heat from the G/T is supplied to a heat recovery steam generator and steam is supplied to the S/T. Although the electric power from the system is supplied to the demand side through a transmission network, the magnitude of the supply and demand balance appears as the frequency deviation. Accordingly, if there is more supply than the quantity demanded, the electric power frequency will increase from the rated value. If the amount of supply is less than the quantity demanded, the frequency will decrease from the rated value. Therefore, it is necessary to adjust the production of the IGFC so that the frequency deviation of electric power is allowed to decrease.

3. Modeling of the System

3.1 ASU

3.1.1 Mass Balance and Heat Balance

Air entering the compressor \(C_{P_{\text{asu,air}}} \) is separated into oxygen, nitrogen, and other gases. The air is compressed to about 0.5 MPa and as a result its temperature increases to about
The heated air is then cooled to about 10 °C using a flush cooling tower. In addition, adsorption equipment removes moisture and carbon dioxide, and material gas is cooled to about −200 °C. Each ingredient is then separated in the cold box using the difference of the boiling point of each ingredient of the raw material fluid.

Fig. 2 shows the equilibrium state between the air liquefaction and cold box. Equations (1) and (2) show the mass balance of the air liquefaction and cold box, respectively. The subscript \(i \) in Eqs. (1) and (2) is an index of a substance, \(i = 1 \) shows oxygen, \(i = 2 \) shows nitrogen, and \(i = 3 \) shows other gases. Moreover, Eqs (3) and (4) represent the heat balance of the air liquefaction and cold box, respectively.

\[
\dot{m}_s \cdot M_{s,i} = \dot{m}_{cb} \cdot M_{cb,i} \tag{1}
\]

\[
\dot{m}_{cb} \cdot M_{cb,i} = \dot{m}_l \cdot M_{l,i} + \dot{m}_g \cdot M_{g,i} \tag{2}
\]

\[
\dot{m}_s \cdot h_i + \dot{Q}_{cb} = \dot{m}_{cb} \cdot h_{cb} \tag{3}
\]

\[
M_{cb} \cdot C_{cb} \frac{dT}{dt} = \dot{m}_{i,j} \cdot h_{i,j} - \dot{m}_{g,i} \cdot h_{g,i} - \dot{Q}_{cb,loss} \tag{4}
\]

Because liquid air stored in the cold box corresponds to the load change of the IGFC for several minutes or less, the dynamic characteristics of the air compressor is ignored. On the other hand, Eq. (4) represents the dynamic characteristics of the raw material fluid in the cold box.

3.1.2 Transfer function

Equation (5) represents a transfer function for the temperature in the cold box. The dynamic characteristics of the ASU are calculated from Eq. (4), and the transfer function
of Eq. (5) is obtained. The term τ_{cb} in Eq. (5) is the time constant of temperature change in the cold box, which is obtained from Eq. (4). Here, s is a Laplace operator.

$$P_{cb} = \frac{1}{1 + \tau_{cb}s} \quad (5)$$

3.2 Coal gasifier

Previous research has reported methods for removing foreign substances such as CO$_2$ from the product gas [31, 32, 41-42, 44] and for removing acid [45-48]. The reaction of the solid phase of a coal gasifier is the thermolytic reaction of coal and the gasification reaction of char. Because the temperature inside the coal gasifier is very high, a thermolytic reaction occurs instantly. Therefore, the dynamic characteristics of the thermolytic reaction in the coal gasifier can be ignored and the gasification reaction of char and gas phase reaction are investigated.

3.2.1 Mass balance

Table 1 shows reactions accompanying coal gasification. When coal is heated, the thermolytic reaction of coal will occur first. Next, the fuel gas (synthesis gas) is obtained primarily from oxygen, vapor, carbon dioxide, hydrogen, and other gases reacting to the coal char.

<table>
<thead>
<tr>
<th>(1) Thermolytic reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal \rightarrow CH$_4$ + C(s)</td>
</tr>
</tbody>
</table>
(2) Oxidizing reaction
\[C(s) + O_2 \rightarrow CO_2 \]

(3) Reaction with carbon dioxide
\[C(s) + CO_2 \rightarrow 2CO \]

(4) Reaction with vapor
\[
\begin{align*}
C(s) + H_2O & \rightarrow CO + H_2 \\
C(s) + 2H_2O & \rightarrow CO_2 + 2H_2 \\
CO + H_2O & \rightarrow CO_2 + H_2
\end{align*}
\]

(5) Reaction with hydrogen
\[
\begin{align*}
C(s) + 2H_2 & \rightarrow CH_4, \\
CO + 3H_2 & \rightarrow CH_4 + H_2O
\end{align*}
\]

The speed of the chemical reaction from which substance \(C \) is generated from substances \(A \) and \(B \) under a nonequilibrium state and the multiplier of the concentration \(c_A \) and \(c_B \) of a substance can be approximated using Arrhenius’s equation as a function (Eq. (6)). Moreover, when the reaction of gases \(A, B, \) and \(C \) are in equilibrium, the reaction speed can be derived using the partial pressure \((p_A, p_B) \) of gases instead of the concentration of substances (Eq. (7)). However, the subscript \(j \) of \(r_j \) in Eqs. (6) and (7) denotes the number of the target chemical equation, and \(A_{i,j} \) is the frequency factor.

\[
\frac{dC_c}{dt} = A_{f,j} \cdot \exp \left(-\frac{E_{a,j}}{R \cdot T} \right) \cdot C_A^n \cdot C_B^n = r_j \cdot C_A^n \cdot C_B^n \tag{6}
\]

\[
\frac{dp_c}{dt} = A_{f,j} \cdot \exp \left(-\frac{E_{a,j}}{R \cdot T} \right) \cdot p_A \cdot p_B = r_j \cdot p_A \cdot p_B \tag{7}
\]

Reaction numbers 1–3 \((j = 1, 2, 3) \) in Table 2 are the primary reactions of char to the gasifying agents of oxygen, carbon dioxide, and vapor. Numbers 4–8 \((j = 4, 5, 6, 7, 8) \) are
the primary gas phase reactions. The terms $r_1 - r_8$ in Table 2 represent the reaction speeds in the Arrhenius's equation shown in Eqs. (6) and (7) [49-52].

The shift equilibrium constant accompanying coal gasification in the coal gasifier can be expressed in the following formula from references [42]. However, \dot{m}_j in the equation is the molar quantity [mol/s] of the gas constituents j, and T_g is temperature of the gas.

$$K_e = \frac{\dot{m}_{CO} \cdot \dot{m}_{H_2}}{\dot{m}_{CO} \cdot \dot{m}_{H_2O}} = \exp \left(-3.689 \times \frac{4019}{T_g} \right)$$

(8)

<table>
<thead>
<tr>
<th>Table 2 Important chemical reactions [45-49]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction No.</td>
</tr>
<tr>
<td>Thermolytic reaction</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Reactions of char to the gasifying agents</td>
</tr>
<tr>
<td>$j = 1$</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>Gas phase reactions</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

The chemical reactions in the coal gasifier shown in Table 2 are the gasification reaction of char and the consecutive gas phase reactions. The chemical reactions and reaction path
shown in Table 2 are expressed using a block diagram organized from the transfer functions shown in Fig. 3. The terms $G_1 - G_8$ in Fig. 3 are the transfer functions using the reaction velocities $r_1 - r_8$ shown in Table 2.

3.2.2 Heat Balance

Equation (9) shows the heat balance of the gasification reaction of char and the gas phase reaction. Each item represents the heating value of enthalpy transportation of the substance i: the heating value of the chemical reaction, the amount of heat transfer between the coal particles, fluid, and furnace wall; and heat loss. The term i is a substance output and input in the system. The substances shown in Table 3 are also considered in this study ($i = 1, 2, 3, \cdots, 6$). Moreover, $\dot{m}_{cr,j}$ in the equation is the rate [mol/s] of the chemical reaction j shown in Table 2. Furthermore, the convective heat transfer q_c between gas and coal particles (Eq. (10)) and the radiation heat transfer q_r (Eq. (11)) between the furnace wall and fluid are also considered [48]. The Nusselt number in Eq. (10) is calculated by correlation in the Ranz–Marshall equation shown in Eq. (12). The Nusselt number is applied to a turbulent flow.

\[
\sum_{i=1}^{N_{cg}} (m_i \cdot C_{cg}) \frac{dT_{pc}}{dt} = \sum_{i=1}^{N_{cg}} \dot{m}_{cg,in-out,i} \cdot h_{cg,in-out,i} - \sum_{j=1}^{N_{cg,cr}} r_{cg,cr,j} \cdot \dot{m}_{cr,j} - (q_c + q_r) - q_{loss}
\]

\[
N_{cg} = 6, N_{cg,cr} = 8
\]

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
<td>C</td>
<td>O$_2$</td>
<td>H$_2$</td>
<td>CO</td>
<td>N$_2$</td>
<td>H$_2$O</td>
</tr>
</tbody>
</table>

Table 3 Notations for components
\[q_c = \pi \cdot d \cdot \lambda_g \cdot Nu \cdot (T_{pc} - T_g) \]

\[q_r = \sigma \cdot \varepsilon_{wall} \cdot S_{wall} \cdot (T_g^4 - T_{wall}^4) \]

\[Nu = 2 + 0.6 \cdot Re^{1/2} \cdot Pr^{1/3} \]

3.2.3 Dynamic characteristics

The dynamic characteristics of the coal gasifier are restricted in the later one at the speed of the chemical reaction model or the heat transfer model. Therefore, the analysis of the coal gasifier used a model with a long response time among the consecutive reactions shown in Fig. 3 or the heat balance of Eq. (9).

3.3 SOFC

The model of the dynamic characteristics of the SOFC is based on the author’s study report [36].

3.3.1 Mass balance

Equation (13) is a mass balance equation of the anode of the SOFC. In this equation, \(i \) is the component of the substance in Table 4, and \(n_{ad,rc} \) is the number of chemical reactions of the anode and reformer given in Table 5. Equation (14) is a mass balance equation in the cathode of the SOFC. In this equation, \(i \) is the component of the substance shown in Table 4, and \(n_{cd,rc} \) is a chemical reaction in the cathode shown in Table 5.

\[\frac{dm_{ad,i}}{dt} = \dot{m}_{ad,in,i} - \dot{m}_{ad,out,i} + \sum_{j=1}^{n_{ad,rc}} a_{ad,ij} r_{ad,j}, \quad i = 1, \ldots, 7, \quad n_{ad,rc} = 4 \]

(13)
\[\frac{dm_{cd,i}}{dt} = \dot{m}_{cd,in,i} - \dot{m}_{cd,out,i} + \sum_{j=1}^{n_{cd,rc}} a_{cd,ij} r_{cd,j}, \quad i = 1, \ldots, 7, \quad n_{cd,rc} = 1 \]

(14)

The terms \(r_{ad,2} - r_{ad,4} \) in Table 5 represent the speed of each chemical reaction. The reaction speed \(r_{ad,1} \) of the anode is obtained using Eq. (15). The reaction speeds \(r_{ad,2} - r_{ad,4} \) are calculated using Eqs. (16)–(18) [53].

\[r_{ad,1} = r_{cd,1} = \frac{I}{2F} \]

(15)

\[r_{ad,2} = \frac{k_2}{p_{ad,H_2}^{2.5}} \left(\frac{p_{ad,CH_4} p_{ad,H_2O} - \frac{p_{ad,H_2} p_{ad,CO}}{K_2}}{DEN^2} \right) \]

(16)

\[r_{ad,3} = \frac{k_3}{p_{ad,H_2}} \left(\frac{p_{ad,CO} p_{ad,H_2O} - \frac{p_{ad,H_2} p_{ad,CO_2}}{K_3}}{DEN^2} \right) \]

(17)

\[r_{ad,4} = \frac{k_4}{p_{ad,H_2}^{3.5}} \left(\frac{p_{ad,CH_4}^2 p_{ad,H_2O}^2 - \frac{p_{ad,H_2}^2 p_{ad,CO_2}}{K_4}}{DEN^2} \right) \]

(18)

Here, \(DEN \) in Eqs. (16)–(18) is given by Eq. (19), and \(K_{ads,i} \) in Eq. (19) is given by Eq. (20). Moreover, the rate coefficients for reforming reactions \(k_2, k_3, \) and \(k_4 \) in Eqs. (16)–(18) are calculated using Eq. (21). The equilibrium constants \(K_2, K_3, \) and \(K_4 \) of the reaction numbers 2–4 in Table 5 are given in Eqs. (22)–(24), respectively. \(K_2, K_3, \) and \(K_4 \) were used for Eqs. (16)–(18).
\[\text{DEN} = 1 + K_{ad,CO} p_{ad,CO} + K_{ad,H_2} p_{ad,H_2} + K_{ad,CH_4} p_{ad,CH_4} + K_{ad,H_2O} p_{ad,H_2O} \left/ p_{H_2} \right. \] (19)

\[K_{ad,i} = A_{K_{ad,i}} \exp \left(-\frac{\Delta h_{ad,i}}{RT} \right), \quad i = H_2, CH_4, H_2O, CO \] (20)

\[k_j = A_{k_j} \exp \left(-\frac{E_j}{RT} \right), \quad j = 2, 3, 4 \] (21)

\[K_2 = \exp \left(-\frac{26830}{T} + 30.114 \right) \] (22)

\[K_3 = \exp \left(\frac{4400}{T} - 4.036 \right) \] (23)

\[K_4 = \exp \left(-\frac{22430}{T} + 26.078 \right) \] (24)

The rate of molar flow discharged from the anode and cathode is given in Eqs. (25) and (26), respectively, using the choked exhaust flow equation in consideration of the pressure difference at the entrance of each electrode [51]. Moreover, Eq. (27) represents the oxygen utilization factor and fuel (hydrogen) utilization factor of the cathode and anode electrodes.

\[\dot{m}_{ad,out} = \sqrt{k_{ad} (p_{ad} - p_{ad, out})} \] (25)

\[\dot{m}_{cd,out} = \sqrt{k_{cd} (p_{cd} - p_{cd, out})} \] (26)

\[u_{O_2} = 1 - \frac{\dot{m}_{out,O_2}}{\dot{m}_{in,O_2}}, \quad u_{H_2} = 1 - \frac{\dot{m}_{out,H_2}}{\dot{m}_{in,H_2}} \] (27)

<table>
<thead>
<tr>
<th>Table 4 Notations for components</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
</tr>
<tr>
<td>Component</td>
</tr>
</tbody>
</table>
Table 5 Reactions at the reformer and anode and cathode electrodes

<table>
<thead>
<tr>
<th>Reaction number</th>
<th>Anode reaction</th>
<th>Reaction rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\text{H}_2 + \text{O}^{2-} \rightarrow \text{H}_2\text{O} + 2e^{-}$</td>
<td>rad_2</td>
</tr>
<tr>
<td>2</td>
<td>$\text{CH}_4 + \text{H}_2\text{O} \leftrightarrow \text{CO} + 3\text{H}_2$</td>
<td>rad_2</td>
</tr>
<tr>
<td>3</td>
<td>$\text{CO} + \text{H}_2\text{O} \leftrightarrow \text{CO}_2 + \text{H}_2$</td>
<td>rad_3</td>
</tr>
<tr>
<td>4</td>
<td>$\text{CH}_4 + 2\text{H}_2\text{O} \leftrightarrow \text{CO}_2 + 4\text{H}_2$</td>
<td>rad_4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reaction number</th>
<th>Cathode reaction</th>
<th>Reaction rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$0.5\text{O}_2 + 2e^- \rightarrow \text{O}^{2-}$</td>
<td>cd_{1}</td>
</tr>
</tbody>
</table>

3.3.2 Energy balance

Equation (28) is the energy balance equation of the SOFC. The temperature change in a sine time of the SOFC balances the sum total of enthalpy change of the anode and cathode, the energetic change of chemical reactions, the DC electric power output (P_{DC}), and the radiation and heat dissipation (q_r, q_{ht}) of heat conduction. Each reaction heat is contained in the term of enthalpy in Eq. (28). The convection and radiation are responsible for major part of stack cooling in the present study and cooling due to excess air is thus minor. Because the study of outlet temperatures as well as temperature profile of the cells are out of scope of this study then such assumption is acceptable. This means that the outlet temperatures would be somewhat lower than expected practically. Of course it affects slightly the power generations of the bottoming cycles (GT and ST) but dynamic responses would not be altered. Note that cell inlet temperature, cell operating temperature and cell outlet temperature are mainly important for cell thermal stresses the and since cell material type and construction are not studied then this issue is irrelevant for the dynamic simulations.
$$C_S \frac{dT}{dt} = \sum_{i=1}^{N} \Delta h_{in,i} \Delta h_{in,i} + \sum_{i=1}^{N} \Delta h_{in,i}^{cd} \Delta h_{in,i}^{cd} - \sum_{j=1}^{M} \Delta h_{n,m,j}^{r} r_{ad,j} - P_{DC} - q_r - q_{ht}$$

where, $N=7$, $M=4$.

3.3.3 Transfer function

The transfer function for the output adjustment of the SOFC is shown in Eq. (29). The term T_{fc} in Eq. (29) is the time constant of the SOFC. Because the output of the SOFC is dependent on cell temperature, T_{fc} is based on the rate of cell temperature change obtained from the energy balance equation (Eq. (28)) for the SOFC.

$$P_{fc,out} = \frac{1}{1 + T_{fc} S} m_{H_2,in}$$

3.4 Gas turbine system

The expression of the relations of G/T to S/T is the same as that for the analysis of dynamic characteristics in the SOFC triple combined cycle [36].

3.4.1 Relational expression for the compressor

The outlet temperature $T_{ac,air,out}$ in the air compressor G/T is calculated using Eq. (30) outdoor air temperature T_{amb}, where the change of air in a compressor assumes adiabatic compression, η_{ac} is compressor efficiency, R_{ac} is the compression ratio of the compressor, $W_{ac,air}$ is the rate of air flow in the compressor, and γ is the ratio of specific heat of air.
\[T_{ac,air,\text{out}} = T_{amb} \cdot \left\{ 1 + \frac{(R_{ac} \cdot W_{ac,\text{air}})^{\frac{\gamma-1}{\gamma}} - 1}{\eta_{ac}} \right\} \]

(30)

3.4.2 Gas turbine

Equation (31) represents the inlet temperature \(T_{gt,\text{in}} \) of the G/T, and Eq. (32) represents the outlet temperature \(T_{gt,\text{out}} \). Here, the subscript \(\text{rat} \) expresses the rating assuming that the flow of combustion gas is the same as the rate of air flow rate from the compressor. Furthermore, \(\dot{m}_f \) in each equation is the combustion gas flow supplied to the G/T, \(\dot{m}_{ac,\text{air}} \) is the rate of air flow, and \(\eta_{gt} \) in Eq. (32) is turbine efficiency. Change of the combustion gas in the G/T is assumed to be adiabatic expansion. The dynamic characteristics analysis and efficiency of the gas turbine are not related.

\[T_{gt,\text{in}} = T_{ac,\text{out}} + \left(T_{gt,\text{in,\text{rat}}} - T_{ac,\text{out,\text{rat}}} \right) \frac{\dot{m}_f}{\dot{m}_{ac,\text{air}}} \]

(31)

\[T_{gt,\text{out}} = \left\{ T_{ac,\text{out}} + \left(T_{gt,\text{in,\text{rat}}} - T_{ac,\text{out,\text{rat}}} \right) \frac{\dot{m}_f}{\dot{m}_{ac,\text{air}}} \right\} \left\{ 1 + \frac{1 - \frac{1}{\left(R_{ac} \cdot \dot{m}_{ac,\text{air}} \right)^{\frac{\gamma-1}{\gamma}}} \eta_{gt} }{1} \right\} \]

(32)

3.4.3 Transfer function

Equation (33) is a transfer function of the G/T when the time constant \(\tau_{ac} \) of the compressor is used.

\[P_{gt} = K_{gt} \cdot \frac{\left(T_{gt,\text{in}} - T_{gt,\text{out}} \right) \cdot \left(T_{ac,\text{out}} - T_{amb} \right) \cdot \dot{m}_{ac,\text{air}}}{1 + \tau_{ac}s} \]

(33)
3.5 Steam Turbine System

3.5.1 Relational expression

It is assumed that the model for the S/T is a Rankine cycle. The external work P_{st} of the S/T is obtained by removing the power consumption P_{pump} of the circulating pump from the heating value P_{boiler} supplied to the exhaust gas boiler, as shown in Eq. (34). Moreover, $\eta_{th, st}$ in the equation is the theoretical thermal efficiency.

$$P_{st} = P_{boiler} \cdot \eta_{th, st} + P_{pump} \quad (34)$$

3.5.2 Transfer function

Because steam supplied from the exhaust gas boiler passes through a steam pipe before working in the turbine, the time lag occurs in the output of the S/T (Steam receiver model). Therefore, the transfer function is given in Eq. (35) by setting the time constant τ_{sr} of the steam receiver. Moreover, the transfer function of the output of S/T is given by Eq. (36) using the delay time constant τ_{boiler} of the exhaust heat recovery boiler, the S/T power coefficient K_{st}, and the steam temperature T_{sm}. Equations (35) and (36) are used in the investigation of the dynamic characteristics of the system. Because the efficiency of the proposed system is not investigated in this study, the fixed value of the efficiency of the steam turbine system does not become a problem.

$$P_{out} = \frac{1}{1 + \tau_{sr} \cdot P_{in}} \cdot P_{in} \quad (35)$$
\[P_{st} = \frac{K_{st} \cdot T_{sm} \cdot \dot{m}_{sm} \cdot \dot{m}_{sm}}{1 + \tau_{boiler} s} \]

(36)

4.1 Electric Power Balance

Equation (37) represents incoming and outgoing electric power in the proposed system during sampling time \(t \). The combined cycle for G/T and S/T is a multiple axes type. The left-hand side of Eq. (37) represents electric power supply, and each item represents the output of the SOFC, G/T generator, and S/T generator. The right-hand side of Eq. (37) expresses the consumption of electricity. In the equation, the DC output of the SOFC is changed into AC through an inverter.

\[P_{fc} + P_{gt} + P_{st} = P_{nd} + P_{loss} \]

(37)

4.2 Modeling of Electric Power Output

4.2.1 Whole System

Fig. 4 shows the control block diagram of the proposed IGFC. The quantity of raw material synthesis gas in the ASU is adjusted with the amount of air discharge \(C_{P_{asu,air}} \) and the amount of coal \(P_{C_{gfl,coal}} \) supplied by the coal feeder in the gasifier. In addition, the emission temperature of the G/T is adjusted by controlling the rate of air flow \(V_{V_{cb,air}} \). This ensures a stable supply of heat to the heat recovery steam generator. The bus line in Fig. 4 shows an electric power grid.
4.2.2 Control block

Fig. 5 shows a control block diagram of the proposal IGFC shown in Fig. 4. The fuel gas supplied to the SOFC is adjusted by controlling the supply of fuel derived from exhaust heat temperature and the processing of synthesized gas. To enable a quick response of the SOFC in the fuel supply control system, a proportional-integral-derivative (PID) controller is installed. In addition, because fuel gas is stored in the ASU, load fluctuations of less than a few minutes can be absorbed. Therefore, the time lag of the ASU does not need to be considered. Fig. 6 shows the preferential control of the SOFC output, wherein operation of the G/T and S/T is stopped until the SOFC reaches 50% or more of rated power output.

4.2.3 Electric power system control block

(1) SOFC

Figure 7(a) shows a circuit of the SOFC power system. The DC output of the SOFC is changed into a three phase AC using a snubber circuit, a DC–DC converter, and an inverter. The bus line is supplied through a harmonic filter and an interconnection device. Because the output of the SOFC, G/T, S/T, load, and other power sources are interconnected on the bus line, the frequency of the bus line is changed by the balance of supply and demand. Therefore, the frequency of the bus line is always measured and the inverter is controlled to minimize any deviation in the target frequency. Figure 7(b) shows the control block of the SOFC, where the inverter controls frequency deviation using a PID control device. However, because a time lag occurs in the control described above, the primary delay is taken into consideration using the time constant T_{sofc}.

19
(2) Gas and Steam Turbines

As shown in Eq. (38), the frequency deviation $\Delta \omega$ of the electric power generated by a rotating machine is based on the difference in supply and demand $(P_s - P_d)$ between the power supply of a rotating machine P_s and power load P_d. Moreover, the magnitude of $\Delta \omega$ depends on the inertia constant M_{fw} of a power source. Equation (39) is a definitional equation for M_{fw}. Slight changes in electric power are eased by proper settings of M_{fw}. Figure 8 shows a block diagram of the frequency control of G/T and S/T on the basis of Eqs. 38 and 39.

\[
\Delta \omega = \frac{1}{M_{fw}} \cdot \frac{1}{\omega} \cdot \left(P_s + P_d - P_d \right)
\]

\[
M_{fw} = J \cdot \omega = \frac{1}{2} a_r \cdot m_r
\]

5. Conditions and Method of Analysis

Table 6 shows the rated power and power generation efficiency of each power generator used in the analysis. The total rated power of the system is 100 MW, and the system frequency is 50 Hz.

<table>
<thead>
<tr>
<th>Table 6 System configurations</th>
</tr>
</thead>
<tbody>
<tr>
<td>System rated power</td>
</tr>
<tr>
<td>Rated power of SOFC</td>
</tr>
<tr>
<td>Rated power of G/T</td>
</tr>
<tr>
<td>Rated power of S/T</td>
</tr>
<tr>
<td>Power generation efficiency (Rated power, HHV)</td>
</tr>
<tr>
<td>SOFC</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>G/T</td>
</tr>
<tr>
<td>S/T</td>
</tr>
<tr>
<td>System frequency</td>
</tr>
</tbody>
</table>

5.1 ASU and Coal Gasifier

Table 7 shows the property values of the coal used in the analysis. Table 8 shows the specifications and operating conditions of the coal gasifier. In addition, the state inside the G/T burner under rated power is set to 3 MPa at 525 K.

<table>
<thead>
<tr>
<th>Table 7 Physical properties of coal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australian black coal</td>
</tr>
<tr>
<td>Density</td>
</tr>
<tr>
<td>Specific heat</td>
</tr>
<tr>
<td>Heat conductivity</td>
</tr>
<tr>
<td>Moisture</td>
</tr>
<tr>
<td>Fixed carbon</td>
</tr>
<tr>
<td>Volatile matter</td>
</tr>
<tr>
<td>Ash</td>
</tr>
<tr>
<td>HHV</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>H</td>
</tr>
<tr>
<td>O</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 8 Specifications of the coal gasifier furnace</th>
</tr>
</thead>
<tbody>
<tr>
<td>Furnace</td>
</tr>
<tr>
<td>Diameter and height</td>
</tr>
<tr>
<td>Height of combustion chamber</td>
</tr>
<tr>
<td>Reaction temperature in furnace</td>
</tr>
</tbody>
</table>
5.2 SOFC

Table 9 shows the operating specifications and setting values for the SOFC analysis. Because air–fuel ratio (AFR) influences operating temperature of the SOFC, the range 5–10 is investigated.

<table>
<thead>
<tr>
<th>Table 9 Equipment specifications and settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOFC solid heat capacity</td>
</tr>
<tr>
<td>SOFC operation pressure</td>
</tr>
<tr>
<td>SOFC total current</td>
</tr>
<tr>
<td>SOFC cell voltage</td>
</tr>
<tr>
<td>SOFC temperature</td>
</tr>
<tr>
<td>SOFC stack unit power</td>
</tr>
<tr>
<td>The number of stack unit</td>
</tr>
<tr>
<td>Coal energy input</td>
</tr>
<tr>
<td>Air mass flow rate</td>
</tr>
<tr>
<td>AFR</td>
</tr>
<tr>
<td>Fuel utilization rate</td>
</tr>
<tr>
<td>Oxygen utilization rate</td>
</tr>
<tr>
<td>Outside air temperature</td>
</tr>
</tbody>
</table>

5.3 Gas Turbine

Table 10 shows the operating specifications and settings of the air compressor and SOFC.

<table>
<thead>
<tr>
<th>Table 10 Air compressor and G/T specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressor outlet temperature</td>
</tr>
<tr>
<td>G/T entrance temperature</td>
</tr>
<tr>
<td>Pressure ratio of compressor</td>
</tr>
<tr>
<td>Ratio of specific heat</td>
</tr>
</tbody>
</table>
 Efficiency of compressor η_{ac} 85%
 Turbine efficiency of G/T η_{t} 85%

5.4 Dynamic Characteristics of Equipment

Table 11 shows the time constant of the transfer function and upper and lower limits of a limiting circuit for the main equipment [54, 55]. The term p.u. in the table is the per unit method based on the rated power.

<table>
<thead>
<tr>
<th>Table 11 Design parameters and time constants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment</td>
</tr>
<tr>
<td>Delay time constant of compressor T_{ac}</td>
</tr>
<tr>
<td>Delay time constant of heat recovery boiler T_{h}</td>
</tr>
<tr>
<td>Governor-free control of SOFC</td>
</tr>
<tr>
<td>Fuel upper limit $F_{k,up}$</td>
</tr>
<tr>
<td>Fuel lower limit $F_{k,lo}$</td>
</tr>
<tr>
<td>Time constant of flow control valve $T_{fc,v}$</td>
</tr>
<tr>
<td>Load and speed control of G/T</td>
</tr>
<tr>
<td>Time constant of governor $T_{g,f}$</td>
</tr>
<tr>
<td>Load high limit setting $F_{gt,up}$</td>
</tr>
<tr>
<td>Load low limit setting $F_{gt,lo}$</td>
</tr>
<tr>
<td>Governor-free control of G/T</td>
</tr>
<tr>
<td>Fuel upper limit $F_{g,up}$</td>
</tr>
<tr>
<td>Fuel flow rate at the time of no load $F_{g,lo}$</td>
</tr>
<tr>
<td>Time constant of flow control valve $T_{fc,v}$</td>
</tr>
<tr>
<td>Fuel system time constant $T_{fc,f}$</td>
</tr>
<tr>
<td>Emission temperature control of G/T</td>
</tr>
<tr>
<td>Time constant of radiation shield $T_{fc,rs}$</td>
</tr>
<tr>
<td>Time constant of thermostat $T_{fc,ig}$</td>
</tr>
<tr>
<td>Time constant of integral control $T_{fc,i}$</td>
</tr>
<tr>
<td>Control-signal upper limit of temperature of</td>
</tr>
</tbody>
</table>

23
exhaust gas $F_{g,up3}$ 1.05
Control signal lower limit of temperature of exhaust gas $F_{g,lo3}$ 0.0
Reference temperature of exhaust gas of G/T $t_{gr,er0}$ 858 K

5.5 Analysis Method

The dynamic characteristics of the proposed IGFC shown in Fig. 1 were analyzed under the fixed step of the relative error 10^{-3} using the MATLAB/Simulink R 2015a. Convergence time was long because the time constant of the ASU and the coal gasifier was large. Therefore, shortening the convergence time was attempted by introducing a PID controller as shown in Fig. 5. The electric power output of the SOFC was the transient overshoot range with a 20% of upper limit, with each parameter of the PID controller set to converge in shortest amount of time. As a result, each parameter was set at the values shown in Table 11.

<table>
<thead>
<tr>
<th>K_P</th>
<th>K_I</th>
<th>K_D</th>
<th>F_{cl}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.979</td>
<td>0.000576</td>
<td>1402</td>
<td>0.04715</td>
</tr>
</tbody>
</table>

6. Results of Analysis

6.1 Step Response Characteristics

6.1.1 Step output

Fig. 9(b) shows the response results for the SOFC, G/T, and S/T at the point when the step load shown in Fig. 9(a) was input to the IGFC. The left side of Fig. 9 shows the response result when the increased step of load was input into the system, and the right
side shows the results when the step of load was decreased. As shown in Fig. 9(a), the input of an increased step and a decreased step at intervals of 30,000 s resulted in step widths of 0.05, 0.1, 0.15, and 0.2 p.u. (5%, 10%, 15%, 20% of the rated load), respectively. The magnitude of the difference in step input shown in Fig. 9(a) and responses shown in Fig. 9(b) appear as the frequency deviation shown in Fig. 9(c). The figure shows that the frequency deviation immediately following a step was large. The frequency deviation became large as the step width increased. However, this tendency was greater with decreased steps than with increased steps. In the case of the largest step width of 0.2 p.u., the convergence time of the step response was approximately 8,000 s.

6.1.2 Speed of chemical reaction and heat transfer

Fig. 10 shows the relation among the AFR, step width, and frequency deviation obtained in Section 6.1.3. Although frequency deviations differed in the increase and decrease steps, there was almost no difference in the frequency deviation of the AFR. The difference in the supply of air in the SOFC compressor was expected to significantly influence the operating temperature of the SOFC. However, as shown in Fig. 10, the reason the response delay of the IGFC was not strongly related to the difference in the AFR was because shortening the convergence time using the PID controller was effective. Although the temperature change resulting from heat transfer in the coal gasifier was 0.253 K/s (Eq. (9)), the speed of each chemical reaction shown in Fig. 3 exceeded the heat transfer speed. Moreover, the dynamic characteristics of the temperature change in the SOFC when AFR = 5, 10, and 15 were 0.0140, 0.0309, and 0.0476 K/s, respectively. On the basis of these
results, to accelerate the IGFC response rate, improvements in the speed of heat transfer and design of redundant equipment in accordance with a transient overshoot are necessary.

6.1.3 Inertia system and frequency deviation

When the inertia constant of the G/T and S/T changed, as shown in Fig. 10, a change a number of frequencies changes was observed. Generally, a minute deviation in frequency decreased when the inertia constant was large. The acceptable range of frequency deviation for the Hokkaido Electric Power Co., Inc. was 50 ± 0.3 Hz. The frequency deviation of the electric power for the G/T and the S/T could not satisfy the conditions outlined in Figs. 9 and 10. These power sources could not respond to the peak supply with a load change.

6.2 Load-Following Characteristics

6.2.1 Pattern of electric power supply

Fig. 11(a) shows the electric power supply pattern of the Hokkaido Electric Power Co., Inc. [56] on a representative day in August 2014. The figure uses the per unit method based on 4.65 GW of maximum output. Electric power was supplied by a combination of thermal and hydraulic power generating facilities in the utility’s service area. Some systems of the supplied power corresponded to the output of renewable energy and related large changes in load. Because heat transfer control of the coal gasifier and the SOFC required a long response time, the IGFC was used as a base power source to correspond to uniform load. However, when the IGFC was introduced as the power source or distributed
power supply of a small-scale power network (microgrid), load-following operation to a load change was required. Therefore, the electric power supply pattern shown in Fig. 11(a) was introduced into the IGFC model and the load-following characteristics were analyzed.

6.2.2 Relationship to load fluctuation

Fig. 11(b) shows the response results in two cases, A and B. Although the inertia constant of G/T and S/T in Cases A and B were the same, the AFR differed considerably. The response results in Case A was closer to the load pattern shown in Fig. 11(a) rather than Case B. Moreover, the response characteristics of the SOFC were almost the same as those of the G/T described in Section 6.1. Fig. 11(c) shows the analysis results for the frequency deviation of the G/T. Because the inertia constant of the G/T and S/T were similar set in each case, the frequency deviation of the S/T was the same as that shown in Fig. 11(c). Because the acceptable range of frequency deviation for the Hokkaido Electric Power Co., Inc. was 50 ± 0.3 Hz, the period during which deviation was acceptable was long in each case. Therefore, the electric power output of the SOFC, G/T, and IGFC S/T made it difficult to use them as peak power sources with load fluctuations. Because the response time of the system required to achieve a change of 20% of rated power was approximately 8,000 s, the operational change to the IGFC would have to be initiated 2.2 h in advance.

7. Conclusions
Most investigations of the dynamic characteristics of the IGFC are not readily available and the load-following characteristics of interconnections with renewable energy or a load with fluctuations is not well known. In this study, the analytic model of the IGFC was developed and the dynamic characteristics of the model were investigated using the MATLAB/Simulink R 2015a. Because of the difference in electric power supply and demand appeared as a frequency deviation in the power network, the magnitude of the frequency deviation was used for evaluating the dynamic characteristics of the IGFC. Moreover, the analysis model of the IGFC was 100 MW of full force power. The rated power of the SOFC, G/T, and S/T was 70 MW, 22 MW, and 8 MW, respectively. Consequently, the following conclusions were obtained.

(1) The step response characteristics and dynamic characteristics of the IGFC using a power load pattern (Hokkaido Electric Power Co., Inc. during the summer season in Japan) were clarified. In the numerical analysis, the dynamic characteristics of the IGFC were clarified with respect to the inertia constant of each turbine and the AFR of the SOFC.

(2) When the magnitude of an input step (step width) increased, the frequency deviation of the electric power resulting from the step response of the IGFC became large. This tendency was larger in the decrease step pattern than in the increase step pattern. The convergence time of the step response was about 8,000 s to achieve a 20% increase in rated power. Because the speed of chemical reactions of the coal gasifier and SOFC were faster than the heat transfer speed, a high speed heat transfer control was necessary to improve the response speed of the IGFC. Furthermore, to shorten the convergence time, a redundancy design of equipment is necessary.
(3) The acceptable range of the frequency deviation of the Hokkaido Electric Power Co., Inc. was 50 ± 0.3 Hz. When the dynamic characteristics of the IGFC were investigated in relation to the power load pattern of the Hokkaido Electric Power Co., Inc., the real time response to the load pattern was difficult for the SOFC. For the G/T and S/T, the frequency deviation of electric power output deviated from the acceptable range during the representative day. When the 20% of load change in rated power was applied to the IGFC, achieving the stability of the output required approximately 2.2 h. Therefore, adjustments to the output of the IGFC need to be planned several hours in advance.

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASU</td>
<td>Air separation unit</td>
</tr>
<tr>
<td>A_i</td>
<td>Pre-exponential factor for i</td>
</tr>
<tr>
<td>a</td>
<td>Stoichiometric matrix</td>
</tr>
<tr>
<td>a_r</td>
<td>Flywheel plate radius [m]</td>
</tr>
<tr>
<td>C_p</td>
<td>Specific heat at constant pressure [J/K]</td>
</tr>
<tr>
<td>$C_{P_{\text{asu,air}}}$</td>
<td>Air compressor of ASU</td>
</tr>
<tr>
<td>$C_{P_{\text{asu,air1}}}$</td>
<td>Compression turbine of ASU</td>
</tr>
<tr>
<td>C</td>
<td>Heat capacity [J/(K·kg)]</td>
</tr>
<tr>
<td>C_A, C_B</td>
<td>Concentration</td>
</tr>
<tr>
<td>DEN</td>
<td>Denominator</td>
</tr>
<tr>
<td>d</td>
<td>Characteristic length [m]</td>
</tr>
<tr>
<td>E</td>
<td>Activity energy [J/mol]</td>
</tr>
</tbody>
</table>
E_{ocv} : Open circuit voltage [V]

$ET_{asu,air}$: ASU expansion turbine

F : Faraday constant (96,485 sA/mol)

F_{cl} : PID control filter factor

G : Transfer function

GT : Gas turbine

h : Enthalpy [J/g]

$\Delta\bar{h}$: Molar specific enthalpy [J/mol]

I : Current [A]

J : Moment of inertia [kgm²]

K : Equilibrium constant

K_{ads} : Adsorption constant

K_D, K_I, K_P : PID control parameter

K_h : Coefficient of overall heat transfer [W/(m²K)]

K_{st} : Power coefficient of S/T

k : Rate coefficients for reforming reactions

M : Mass [g]

M_{fw} : Factor of inertia

m : Number of moles [mol]

\dot{m} : Moles rate [mol/s], Mass rate [g/s]

m_r : Mass of flywheel plate [kg]

N : Number
\(n_{ad,rc} \) : Number of chemical reactions in anode

\(n_{cd,rc} \) : Number of chemical reactions in cathode

\(\text{Nu} \) : Nusselt number

\(P \) : Power [W], [p.u.]

\(P_d \) : Power load [W], [p.u.]

\(P_s \) : Power supply [W], [p.u.]

\(p \) : Pressure [Pa]

\(p_c \) : Pulverized coal

\(p_{\text{cgf,coal}} \) : Supply of coal by feeder [g/s]

\(Pr \) : Prandtl number

\(\dot{Q} \) : Heat [W]

\(q_C \) : Convective heat transfer [W]

\(q_r \) : Radiative heat transfer [W]

\(q_{ht} \) : Heat conduction [W]

\(R \) : Universal gas constant [J/(mol K)]

\(r \) : Reaction rate [mol/s]

\(R_{ac} \) : Air compressor compression ratio

\(Re \) : Reynolds number

\(S \) : Area [m²]

\(s \) : Laplace operator

\((s)\) : Solid

\(\text{SOFC} \) : Solid oxide fuel cell
S/T: Steam turbine

T: Temperature [K]

ΔT: Temperature difference [K]

T_{amb}: Outside air temperature [K]

t: Time [s]

u: Utilization

V: Voltage [V]

$V_{\text{V,air}}$: Combustor air flow valve

W: Quantity of flow [p.u.]

Greek characters

ε: Emissivity

γ: Ratio of specific heat

η: Efficiency

η_{th}: Theoretical thermal efficiency

λ: Thermal conductivity [W/(mk)]

σ: Stefan–Boltzmann constant 5.67×10^{-8} [W/(m² K⁴)]

τ: Time constant

ω: Frequency

$\Delta \omega$: Frequency deviation [Hz]

γ: Ratio of specific heat

Subscript

ac: Air compressor
References

Caption

Fig. 1 Proposed IGFC combined cycle

Fig. 2 General schematic of the air separation unit equilibrium stage

Fig. 3 Transfer function block of the coal gasification chemical reaction

Fig. 4 Whole system diagram of proposed system

Fig. 5 Control block diagram of proposed system

Fig. 6 Control flow of each generator

Fig. 7 Control block diagram of the SOFC

Fig. 8 Frequency control of electric power output

Fig. 9 Results of step input analysis ($M_{gt} = 15$, $M_{st} = 15$, $AFR = 15$)

(a) Input load

(b) Output power

(c) Frequency variation
Fig. 10 Results of the frequency deviation analysis

Fig. 11 Dynamic characteristics of the proposed system

Fig. 1 Proposed IGFC combined cycle
Fig. 2 General schematic of the air separation unit equilibrium stage

Fig. 3 Transfer function block of the coal gasification chemical reaction
Fig. 4 Whole system diagram of proposed system
Fig. 5 Control block diagram of proposed system

Fig. 6 Control flow of each generator
(a) Power circuit

(b) Block diagram

Fig. 7 Control block diagram of the SOFC
Fig. 8 Frequency control of electric power output
Fig. 9 Results of step input analysis ($M_f = 15, M_T = 15, AFR = 15$)
Fig. 10 Results of the frequency deviation analysis
Fig. 11 Dynamic characteristics of the proposed system