静水中で運動を開始する円柱に作用する変動流体力
（反復運動における変動揚力の非反復性の境界層はく離制御による抑制）

羽二生 博之*1，宮 越 勝 美*1，鈴木 聡一郎*1
武 田 修 平*2，佐々木 基成*3

Fluctuating Fluid Forces Acting on Circular Cylinders
Commencing their Motion in Still Water
(Suppression of Nonrepeatability of Fluctuating Lift by Control
of Boundary Layer Separation In Repeated Motion)

Hiroyuki HANIU*4, Katsumi MIYAKOSHI, Soichiro SUZUKI,
Shyuhei TAKEDA and Motonari SASAKI

**Dept. of Mech. Eng., Kitami Inst. of Tech., 165 Koen-cho, Kitami-shi, Hokkaido, 090-8507 Japan

When circular cylinders are moved in still water, it is known that fluctuating lift exhibits nonrepeatabale characteristics even if the cylinders are repeatedly towed or swung under the same conditions. In this study, asymmetric wake is produced by control of boundary layer separation with placing tripping wire on the surface of circular cylinders in towed or swung motion to suppress the nonrepeatability of fluctuating lift. The effectiveness of the suppression was evaluated by standard deviation of ensemble collected lift data at each towed distances or swung angles and flow visualizations. The results obtained by this study will be applied to the development of manipulator arms operated in water where effects of mechanical vibrations are insignificant in comparison of that of fluctuating fluid forces associated with vortex formation.

Key Words : Vortex, Fluid Force, Fluid Transients, Flow Induced Vibration, Separation, Circular Cylinder, In Still Water

1. 緒 論

水中での危険な環境下における作業は、今後徐々にロボット化されていくものと予測される。特に熟練作業が要求される分野では、技術者が自らも雇って作業することは困難であり、高精度な位置決めや軌製の制御ができる水中マニピュレータの開発が不可欠である。静水中でマニピュレータのアーム構成要素に見立てた柱状物体が運動を開始すると、物体背後に渦が形成され、物体の左右の渦のバランスが崩れて変動流体力が作用する。また、水は空気よりも密度が1000倍ほど大きいため、流体力もかなり大きなものとなる。特に物体の進行方向と垂直な方向に作用する揚力変動のrms値は、円柱において流体と物体の相対速度に基づく理論揚力（動圧×投影面積）の50%近くにもなる。これは、抗力変動のrms値が理論抗力の約10%であることに比べると1) はるかに大きく、断放出に基づく揚力変動は水中マニピュレータの高精度な位置決め制御を行ううえで非常に重要な要素である。

前報2)においては、このような観点から円柱を静水中で反復的に運動させたときの揚力の挙動を調べた結果、並進運動および旋回運動のいずれの場合においても、揚力変動には移動距離および旋回角度に対して強い非反復性があることが明らかとなった。

本研究においては、揚力変動の非反復性を高めて揚力変動が予測可能な外乱となるような流れ制御を行うことによって、マニピュレータの高精度な制御が今後可能になることを想定している。非反復性を高める手法としては、トリビニングツイストを円柱の片側表面に設置して境界層のはく離を制御し、運動開始直後に円柱背後に形成されるのはく離泡を左右（または上下）に非対称に成長させ、必ず一方のはく離泡の巻込みを先行させることを考えた。

一方、揚力変動そのものを抑制する流れ制御によって、マニピュレータの制御を容易にすることも考えられる。流体力そのものを抑制する試みはこれまでいくつかあるが3)4) いずれも外部流体の導入や円柱直径の
数倍の大きなブレートの設置を必要とし、工学的な応用において問題がある。また坂本らはごく小さな円柱をはく離せん断層内に挿入して、円柱背後におけ
るはく離せん断層の巻込みを抑制することによって、変動流体力を十分減少させることに成功している。しかし小円柱の最適な挿入位置の範囲は狭く、水中マニプレータの場合のように初期振動を遮るため
に静止状態から定常状態まで助走区間において加速運
動させる場合は、はく離せん断層の位置が大きく変化
するため、制御が難しいものと思われる。特に旋回運
動においては、スパン方向のレイノルズ数が変化する
ため、制御はいっそう難しいものと思われる。

五十嵐は、円柱まわりの流れに及ぼすトリッピング
ワイヤの影響を調べ、円柱中心から見て前方どおり
点から計ったワイヤの設置角度βおよびワイヤから
円柱下流にいた接線の接点までの角度θの和で表
されるφはβ+θを一つのパラメータとし、もう一つ
のパラメータをワイヤとワイヤ間の距離から計算した
結果φθが76°以上においては境界層は粗さ
レイノルズ数に関係なくワイヤから直接はく離するバ
ターンDであることが示された。したがって本研究
においては、φθが76°以上にならないうトリッピング
ワイヤを設置することで、円柱の後流を安定して非対
称にできる制御が可能になると考え、並進運動と旋回
運動における揚力変動の挙動に与えるトリッピングワ
イヤの影響を調べた。また旋回運動においては、スパ
ン方向の粗さレイノルズ数がほぼ一定になるようなテ
ープ状の薄いブレートを円柱表面に垂直に取付けて
揚力変動の挙動を調べた。

2. 実験装置および方法

2-1 並進運動における実験条件 本実験ではま
ず、有限長の円柱でえい航による並進運動をさせた揚
力変動の測定を行った。図1に示すように水深約300
mm、幅300mmの断面を有するえい航式水路に円柱
を上端部がほぼ水面に一致するように垂直に設置し
、ステッピングモータとワイヤおよびブリッジ(0.1 mm/
step)によって水平方向にえい航した。円柱は図2に
示すように直径48mm、長さ240mmで、下端面は薄
いプラスチック板によって閉じている。揚力変動は前
報40においては円柱中心軸上部に張られたストレイン
ゲージで曲げモーメントとして検出し、スパン中央
の集中著重に換算した。しかし本研究においては図2
の右側に示すように、円柱を支える中心軸の上端部に
ロードセルを取付けて、その上部をえい航装置の台
車に固定し、直接揚力変動を検出した。

えい航速度は10 cm/sとし、えい航開始時における
円柱の慣性力による振動を遮るためにえい航距離が
10 cmまでは等加速度運動をさせ、えい航距離が60
cmまで揚力変動の測定を行った。等加速度運動にお
ける助走距離を10 cmとした経緯については、前報
を参照されたい。なお揚力の検出方法が本研究ではロ
ードセル方式と変更になったが、助走距離による振動
の影響は前報と同様な結果が得られている。

一方、本研究のような実験においては、渦形成に伴
う揚力変動の周波数特性は運動システム系のうち機械
的な振動周波数特性を明確に区別する必要がある。そ
して静止状態の円柱を水中(円柱先端面に空気に抜きの
小孔を設けて水を内部に満たした)に設置し、揚力方
向に小さい振動を与えて、固有振動数をロードセル出
力電圧変動のパワースペクトラルから求めた。その結
果、固有振動周波数は約15 Hzであった。また、ステッ
ピングモータのステップ動作による振動周波数は約
1kHzと、極めて高いものとなっている。一方、円柱
の並進運動が一定速度になったときのレイノルズ数は
約4.8×10⁴である。したがって予想される流派出周
波数は、ストローハル数を約0.2と仮定すると、約
0.4 Hzと考えられる。したがってサンプリングにお
ける固有振動によるエリアリングを防止するためと、
えい航距離に対する十分な分解能を得るために、アナ
ログロードセルのカットオフ周波数を2 Hzに、12bit A/D変換器のサンプリング周波数を10 Hzに
設定して、コンピューターに揚力変動の時系列データを取り込んだ。なお本実験において揚力成分に対して垂直な抵抗成分は、揚力を検出す目的で設置したロードセルに約 0.05%検出される。

境界層のはく離制御のために用いたトリッピングワイヤの設置角度 β, 円柱表面接点までの角度 α および ϕ を図 3 に示す。円柱直径 48 mm に対し、トリッピングワイヤは直径 4 mm のものを用い、設置角度 β は 30°から 80°まで 5°おきに変化させて揚力変動の測定を行った。本研究における α の値は 32.2°一定であり、各設置角度 β に対する ϕ および粗さレイノルズ数 Re_k の値を表 1 に示す。

2-2 旋回運動における実験条件 旋回運動においては、図 4 に示すように水深約 400 mm、幅 600 mm、長さ 1350 mm の水槽の水深中央部に図 5 に示すように直径 50 mm、長さ 335 mm の円柱を水平に設置し、ステッピングモータ (0.1°/step) によって旋回させた。また図 5 からわかるように円柱の表面の端面は旋回軸から 35 mm 異れており、中心軸を支持軸となっている真直線パイプと接触しない程度の大小を残してはほどに閉じている。揚力変動は円柱を支持する真直線パイプ表面の旋回軸から 60 mm 離れた位置にひずみゲージを張って、軸の曲げひずみとして検出し、円柱スパン中央への集中加算に換算した。

旋回角速度は 1.0 rad/s として 0～180°まで旋回させたが、旋回運動同様旋回開始時の振動を避けるために円柱先端部の円弧運動の軌跡に沿う助走距離が 10 cm 程度（約 13 cm）になるように 0～20°までは等角加速度運動させ、停止時には 160～180°までを等角減速度運動させた。また、水中での円柱の固有振動数は約 7 Hz であり、ステッピングモータのステップ動作周波数は 0.5 kHz である。円柱スパン中央付近の周速度は約 0.8 Hz と予想されることから、エリアシンク防止のアナログフィルタと A/D 変

<table>
<thead>
<tr>
<th>β (°)</th>
<th>ϕ (°)</th>
<th>Re_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>62.2</td>
<td>400</td>
</tr>
<tr>
<td>35</td>
<td>67.2</td>
<td>459</td>
</tr>
<tr>
<td>40</td>
<td>72.2</td>
<td>514</td>
</tr>
<tr>
<td>45</td>
<td>77.2</td>
<td>566</td>
</tr>
<tr>
<td>50</td>
<td>82.2</td>
<td>613</td>
</tr>
<tr>
<td>55</td>
<td>87.2</td>
<td>655</td>
</tr>
<tr>
<td>60</td>
<td>92.2</td>
<td>693</td>
</tr>
<tr>
<td>65</td>
<td>97.2</td>
<td>725</td>
</tr>
<tr>
<td>70</td>
<td>102.2</td>
<td>752</td>
</tr>
<tr>
<td>75</td>
<td>107.2</td>
<td>773</td>
</tr>
<tr>
<td>80</td>
<td>112.2</td>
<td>788</td>
</tr>
</tbody>
</table>

Fig. 4 Schematic view of swing experiment

Fig. 5 Test body for swing experiment

3. 結果および考察

3-1 並進運動における制御効果 図 6 はトリッピングワイヤを設置していない無制御時において、えい軸距離 X を横軸に瞬間揚力係数 C_l を縦軸にとって 250 回のえい軸を重ね合わせた結果を示したものである。ここで C_l はロードセルによって検出された瞬
静水中で運動を開始する円柱に作用する変動流体力

Fig. 6 Variation of instantaneous lift coefficient (no tripping wire)

Fig. 7 Variation of instantaneous lift coefficient ($\beta=30^\circ$)

間隔を、定常流で航速が10 cm/sにおける動圧に基づいて無次元化したものである。また個々のえい航は、先のえい航によって生じた乱れが十分に収まるのを持って行った。図6から、同一条件での反復的なえい航運動に対して揚力変動はほとんど反復性を示さないという、前報7の結果とよく一致しているのがわかる。

図7から図9は、トリッピングワイヤの設置角度βをそれぞれ30, 50, 65°にしてえたときの揚力変動を250回重ね合わせたものである。図7から、ワイヤの設置角度βが増加するに従い、揚力変動の軌跡がワイヤを設置した側（C_lが正の側）に偏り、軌跡の幅が狭まって非反復性が抑制されているのがわかる。図7のβが30°のときのϕ^rの値は表1に示したように62.2°であり、五十嵐の報告によると、この制御条件下ではワイヤが境界層のはく離に影響を与えないパターン Aとワイヤから直接はく離するパターン Dの遷移領域にあたっており、そのためえい航開始直後の後流はわずかに非対称になっているものと考えられる。

図8のβが50°においてϕ^rの値は82.2°(76°)であり、流れは直接はく離するパターン Dとなっている

Fig. 8 Variation of instantaneous lift coefficient ($\beta=50^\circ$)

Fig. 9 Variation of instantaneous lift coefficient ($\beta=65^\circ$)

Fig. 10 Flow visualizations for towing experiment ($X=200$ mm)

ものと思われる。図9のβが65°については、30°から80°まで5°おきに行った実験の中で軌跡の幅が最も狭くなったものを示したものである。このときのϕ^rの値は97.2°できやり流れはワイヤから直接はく離するパターン Dとなっているものと思われる。

図10に無制御時とβが30°および65°のときの揚力の軌跡の偏りが最も強くなるえい航距離$X=200$ mmにおけるスパン中央ではく離せん断層の可視化画像を示した。図10の可視化画像はいくつかの可
静水中で運動を開始する円柱に作用する変動流体力

視覚画像の中から代表的なものを示したものである。まず無制御時では、No.1とNo.2の画像のように上または下側のはく離泡の成長が進んでいるものや、No.3の画像のように上下のはく離泡の成長がほぼ同じものがあったりと、いろいろな流れパターンが見られた。トリッピングワイヤの設置角度βを30°の場合には、No.2やNo.3の画像のように下側のはく離泡の成長が進んでいるものが多く観測されたが、No.1の画像のようにのはく離泡が上下ほぼ対称なものも時折見られた。またϕ_xの値は76°以下の62.2°であるため、トリッピングワイヤははく離した境界層をずく下流で円柱に再付着しているのがわかる。これに対して、βが65°の場合はϕ_xの値は76°よりも十分大きい97.2°であるため、境界層はトリッピングワイヤから直接はく離しているのがわかる。またはく離せん断層は、No.1からNo.3の3画像に見られるように、下側のはく離せん断層の巻込みがすでに完了した非対称な流れ場となっており、わずかな違いはあるものの、つまりに同じ流れパターンが観測された。

非対称性の強さを表すパラメータとして、特定のえい航距離Xにおける揚力係数の250個の集合データを用いた標準偏差$\sigma_{C_l}(X)$を求め、えい航距離に対する変化を図11に示した。図11からわかるように、βが65°において揚力変動の非対称性が最も抑制されている。

また、$X=400$mm付近で非対称性が増加しているのは、湿生の付着のすれがえい航距離が増加するのに従って大きくなるためと思われる。

以上の結果から、トリッピングワイヤを適切な位置に設置することによって、後流の非対称性が強くまり、揚力変動の非対称性が抑制されることがわかる。

3-2 旋回運動における制御効果　図12はトリッピングワイヤを設置していない無制御時において、旋回角度θを横軸に瞬間揚力係数C_lを縦軸にとって、綫返し旋回運動をさせたときの揚力の軌跡を重ね合わせたものである。ここでC_lはひずみゲージで検出された円柱支持軸の曲げ応力から円柱スパン中央の集中加重に換算した瞬間揚力を求め、それを定速旋回運動時のスパン中央での周方向移動速度である20cm/sにおける動圧に基づいて無次元化したものである。また個々の旋回は、先の旋回によって生じた乱れが十分収まっているのを待って行った。図12から、並進運動の場合と同様に揚力変動は反復運動に対してほとんど反復性を示さないことがある。

トリッピングワイヤの設置角度βを30°から80°まで5°おきに変化させて実験を行った。その結果設置角度の増加とともに揚力変動の軌跡の非対称性は生じたが、並進運動の場合のように軌跡の広がりの顕著な減少は見られなかった。図13はその中で軌跡の広がりが最も小さくならした設置角度$\beta=55°$における揚力変動の軌跡を示したものであり、旋回前半部での非反復性の抑制効果がほとんどないことがわかる。これは、旋回運動において円柱の周方向の移動速度がスパン方向で変化するため、円柱自体のレイノルズ数およびワイヤの粗さレイノルズ数が一定ならず、境界
層のはく離パターンがスパン方向で異なるためと思われる。\(\beta = 55^\circ\)における\(\phi_e\)の値は並進運動の場合の87.2%とほとんど同じであり、五十嵐（1950年）の報告によると、粗さレイノルズ数に関係なくトリッピングワイヤから直接はく離するパターンDのはずである。しかしながら五十嵐の報告では粗さレイノルズ数が200以上のデータは示されておらず、本研究の旋回運動では、旋回軸付近でのワイヤーの粗さレイノルズ数が200以下の部分もあり、パターンD以外の流れパターンが円柱の根本付近に存在しているものと考えられる。

図14は揚力変動の軌跡の非対称性が顕著となる旋回角度\(\theta = 60^\circ\)におけるスパン方向のいわゆる断面での境界層のはく離の可視化画像である。図14の\(r\)は各可視化断面の旋回軸からの距離であり、\(R\)は旋回軸から円柱先端面までの距離である。図14からわかるように、\(r/R\)の値が0.763以上の先端付近の流れはトリッピングワイヤから直接はく離するパターンDであるが、\(r/R\)が0.68以下では一度ワイヤからはく離した流れが下流で再付着するパターンAとなっている。非反復性が抑制されないおもな原因は、パターンAからパターンDに変わるスパン方向における位置が旋回運動をさせるごとに少しずつ異なるためと考えられる。

3.3 テーパ形状小平板による制御 旋回運動においては、スパン方向の各位置での粗さレイノルズ数をある程度一定にすることによって、スパン方向の広い範囲において境界層のはく離状態をパターンDに統一することができ、その結果揚力変動の非反復性を抑制することが可能であると考えられる。そこでトリッピングワイヤにおける円柱先端付近の粗さレイノルズ数と同じ粗さレイノルズ数がスパン方向全体で得られるような小平板を\(\beta = 55^\circ\)の位置に取付ける場合の突起高さのスパン方向における値を求め、図15に破線で示した。図15からわかるように突起高さの変化は逆関数形の曲線のため加工が難しく、円柱の根本面交付近での突起高さはかなり高いものとなる。根本面付近の周方向速度は速く、その部分の揚力変動全体への寄与は小さいので、図15の実線で示したように加工の容易なテーパ部と断面形状を組合せ形状の厚さ3mmの制御小平板を用いて実験を行った。なお、スパン方向における粗さレイノルズ数の変化を、トリッピングワイヤと制御小平板を用いた場合についてそれぞれ破線および実験で図16に示した。図16からスパン方向の広い範囲において制御小平板の粗さレイノルズ数がおおむね一定であることがわかる。

図17は、旋回角度\(\theta = 60^\circ\)におけるスパン方向の各断面での境界層のはく離の可視化画像である。図17からわかるようにスパン方向のすべての断面において境界層が制御平板から直接はく離するパターンDとなっている。また、図18はこの制御条件における揚力
変動の軌跡を重ね合わせたものであるが、旋回前半部において軌跡の幅がトリッピングワイヤの場合よりもかなり狭くなり、非反復性が図9に示した並進運動の場合と同じ程度抑制されていることがわかる。さらに、特定の旋回角度ごとの揚力係数の標準偏差$\sigma(\theta)$を求め、その旋回角度θに対する変化を図19に示した。図19では無制御時のものを実線で、$\beta=55^\circ$のトリッピングワイヤを設置したときのものを細い破線で、小平板による制御時のものをお太い破線で示した。図19から旋回前半部における小平板による非反復性の抑制効果が十分得られていることがわかる。これに対し旋回後半部では、小平板によるトリッピングワイヤよりも非反復性の抑制効果が低いことがわかる。これは旋回後半部において渦の巻込み位相のずれが大きくなるためであり、揚力の各軌跡が周期変動する特性が現れていることから、旋回後半部においても揚力変動の予測は実視環境やトリッピングワイヤを用いた場合よりも容易であると考えられる。

一方円柱先端部の旋回円弧に沿った移動距離は$\theta=90^\circ$において約580mmであり、ここまでの揚力変動の軌跡は図9に示した並進運動でのトリッピングワイヤによる制御の場合とよく似ている。したがって、旋回運動後半部での流れの展開は並進運動での600mmから1200mm付近までの外周距離における流れの展開に相当すると考えられ、並進運動での500mm以上の外周距離でも揚力変動の予測は容易であると思われる。

4. 結 論

（1）並進運動において円柱表面の片側にトリッピングワイヤを適切な位置に設置することによって、後流の非対称性が強まり、必ずしも平面に直角な巻込みが先行して、反復性と並進運動を行ったときの揚力変動の非反復性が十分に抑制されることがわかった。

（2）旋回運動において円柱表面の片側にトリッピングワイヤを設置してもスパン方向での粗さレイノルズ数が変化するため、はく離パターンが異なり非反復性がなく抑制されなかった。

（3）旋回運動における粗さレイノルズ数がスパン方向ではほぼ一定になるような粗さ高さをもった小平板を適切な位置に設置することによって、はく離パターンがスパン方向の広い範囲で統一され、旋回前半部において非反復性が十分に対策されることがわかった。

（4）小平板による制御での旋回後半部においては渦の巻込み位相がずれるために非反復性はあまり抑制
されないが，揚力変動に周期性があるため，揚力変動
の予測は無制御時やトリッピングワイヤによる制御時
よりも容易であることがわかった。

文献

（1）Sakamoto, H. and Hanju, H., Trans. ASME. J. Fluids
（2）羽二生博之・ほか2名, 機論, 65-630, B (1999), 642-647.

（3）例えば，上田新次郎・田中英雄, 機論, 41-350, (1975),
2853-2865.
（4）例えば，Roshko, A., NACA, Tech. Note, No. 1569
(1954).
（7）坂本弘志・ほか2名, 機論, 52-475, B (1986), 1175-1183.