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This paper proposes a low-complexity estimation algorithm for weighted subspace fitting (WSF) based on the Genetic Algorithm
(GA) in the problem of narrow-band direction-of-arrival (DOA) finding. Among various solving techniques for DOA, WSF is one
of the highest estimation accuracy algorithms. However, its criteria is a multimodal nonlinear multivariate optimization problem.
As a result, the computational complexity of WSF is very high, which prevents its application to real systems. The Genetic
Algorithm (GA) is considered as an effective algorithm for finding the global solution of WSF. However, conventional GA
usually needs a big population size to cover the whole searching space and a large number of generations for convergence,
which means that the computational complexity is still high. To reduce the computational complexity of WSF, this paper
proposes an improved Genetic algorithm. Firstly a hypothesis technique is used for a rough DOA estimation for WSF. Then, a
dynamic initialization space is formed around this value with an empirical function. Within this space, a smaller population size
and smaller amount of generations are required. Consequently, the computational complexity is reduced. Simulation results
show the efficiency of the proposed algorithm in comparison to many existing algorithms.

1. Introduction

The narrow-band direction-of-arrival (DOA) estimation is a
basic and important problem in sensor array signal process-
ing. So far, a set of classical algorithms have been proposed,
such as those in [1–7]. Based on this basic narrow-band
model and the classical algorithms above, many innovative
algorithms have been developed according to different
models of signals, noise, and array manifolds, such as those
in [8–12].

Among these techniques, the weighted subspace fitting
(WSF) is one of the highest estimation accuracy algo-
rithms and it can also deal with coherent signals directly.
However, its criteria is a multimodal nonlinear multivariate
optimization problem. As a result, the computational com-
plexity of WSF is very high, which prevents its application
to real systems.

Artificial intelligence algorithms such as Genetic Algo-
rithm (GA) [13], Particle Swarm Optimization (PSO) [14],
Joint-PSO [15], and Bee Colony [16] algorithms are

considered to be general and efficient ways for such a prob-
lem. However, conventional artificial intelligence algorithms
usually need a big population size to cover the whole search-
ing space and a large number of iteration times for conver-
gence. Although Joint-PSO is a rather efficient algorithm
for SML estimation, it requires some preprocessing tech-
niques which may make the system more complex.

Based on the Genetic Algorithm, this paper proposes an
improved low-complexity Genetic algorithm for WSF esti-
mation. Firstly, it uses a hypothesis technique for a rough
DOA estimation for WSF. Then, a dynamic initialization
space is formed around this value with an empirical function
with respect to signal-to-noise ratio (SNR). Compared to the
original whole searching space, this initialization space is
much smaller and can be considered to be close to the solu-
tion of WSF. Then, a smaller population size and smaller
amount of generations are required. Consequently, the com-
putational complexity is reduced. At last, simulation results
show the efficiency of the proposed algorithm in comparison
to many other algorithms.
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The rest of this paper is organized as follows. In Section 2,
we introduce the problem of DOA and the formulation of
WSF. In Section 3, we introduce the proposed algorithm.
Simulation results are shown in Section 4, and the conclusion
is drawn in Section 5.

2. System Model and Problem Formulations

To make the article more compact, this section just shows a
brief system model and problem formulation. For detailed
information, the readers should refer to [5, 6].

Consider that there are p sensors (the array configuration
can be arbitrary) receiving q narrow-band signal waves. p and
q are known. Sensors and signals are in the same far-field
plane. All the signals have distinct directions θ1, θ2,… , θq.
Note that the number of sensors should be greater than the
number of signals, that is, p > q. Furthermore, we have
assumed that the sensors are omnidirectional and the array
response is ideal, otherwise some calibration techniques
should be used, such as those in [17, 18]. Then, the output
of the array is as follows:

y t =A Θ x t + e t , 1

where y t is the p-dimension output vector, x t is the q
-dimension signal vector, e t is the noise vector, and A Θ
is the steering vector parameterized by Θ = θ1, θ2,… , θq .
Taking M snapshots of the array, the observed data is Y =
y t1 y t2 ⋯ y tM . Then, we calculate the covariance
matrix of the observed data and make an eigen decomposi-
tion of it as follows:

R̂ = 1
M

YYH = 〠
p

i=1
λieieHi = Êx∧xÊ

H
x + σ2ÊeÊ

H
e , 2

where λi and ei are eigenvalues and eigenvectors, ∧x is a diag-
onal matrix and constructed by the q largest eigenvalues, Êx is
constructed by the corresponding eigenvectors of ∧x, Êe is the
orthogonal complement of Êx, σ

2 = 1/ p − q ∑p
i=q+1λi.

Then, the WSF criterion is shown as follows:

Θ = arg min
Θ

LW , 3

LW = tr P⊥
AÊx ∧x − σ2I

2
∧−1
x ÊH

x , 4

where

P⊥
A = I −A Θ A Θ HA Θ −1A Θ H 5

From (3) to (4), it is clear that the estimation of WSF is to
find a set of Θ to minimize LW , which is a multimodal non-
linear multivariate optimization problem.

3. Improved Genetic Algorithm for WSF

The Genetic Algorithm (Algorithm 1) is considered to be a
general and effective way for such a multimodal nonlinear
multivariate optimization problem.

However, conventional GA usually needs a big popula-
tion size to cover the whole searching space (every direction
varies from −90 to 90 degrees) and a large number of gener-
ations for convergence, which means that the computational
complexity is still high. To reduce computational complexity
of WSF, this paper proposes an improved Genetic algorithm.
The improved GA applied for WSF is shown as follows.

Algorithm 1. Genetic Algorithm

(1) Rough DOA search

A hypothesis technique is used in this step to find a rough
DOA for WSF. Let Lm Θ m be a cost function of LW in (4)

where m is the assuming signal number and Θ m = θ1, θ2,
… , θm .

(i) Assuming m = 1, calculate the corresponding steer-
ing vectorA Θ 1 , the covariance matrix of observed

data R̂ Θ 1 , and L1 Θ 1 in turn. Obviously, the

cost function L1 Θ 1 is a one-dimensional optimi-

zation problem with respect to θ1. Find θ1 which
minimizes L1 Θ 1 .

(ii) Assuming m = 2 and fixing θ1 obtained above, calcu-
late L2 Θ 2 . Now L2 Θ 2 is also a one-dimensional

optimization problem with respect to θ2. Find θ2
which minimizes L2 Θ 2 ….

q Assuming m = q, find θq in the same manner.

Define ΘM = θ1, θ2,… , θq obtained above. This is a
rough search DOA forWSF. Although it is hard to prove that
ΘM is close to the solution of WSF in theory, simulation
results show that this hypothesis technique provides a rather
good rough search value. Figure 1 shows the positions of a
rough DOA search value, the true DOA, and the solution
of WSF for both coherent and noncoherent cases. In the
noncoherent case, the rough search DOA is rather close to
the solution of WSF as Figure 1(a) shows, while in the coher-
ent case, they are a little far apart (when SNR = 0 dB, less than
5 degrees apart) as Figure 1(b) shows. It is clear that the
rough search DOA can be considered to be rather close to
the solution of WSF for both cases.

(2) Initialization space

Then around this value, we should use a “scale” to span
the initialization space. This initialization space should be
close or even contain the solution of WSF. Then, a smaller
population size is needed and all the individuals which are
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randomly initiated in this space could converge quickly to the
solution of WSF.

We define the “scale” empirically as follows, which is a
function with respect to SNR:

f SNR =

1
eSNR/10

, for non‐coherent case,

5
eSNR/10

, for coherent case
6

Note that the “scale” is different for coherent and nonco-
herent cases. This is because in the noncoherent case, the
rough search DOA is more closer to the solution of WSF
(as shown in Figure 1). As a result, the initialization space
could be smaller. The initialization space is defined as a set
of Θ in which

θ1 ∈ θ1 − f SNR1 , θ1 + f SNR1 , 7

θ2 ∈ θ2 − f SNR2 , θ2 + f SNR2 ,… 8

θq ∈ θq − f SNRq , θq + f SNRq , 9

where SNRi is the signal-to-noise ratio of the ith signal. Obvi-
ously, θi − f SNRi ≥ −90° and θi + f SNRi ≤ 90°. Note that
this initialization space is dynamic. When SNR gets higher,
the initialization space gets smaller because the rough search
DOA is closer to the solution of WSF. Then, only a small
population size is needed and all the individuals will converge
quickly to the solution of WSF.

The proposed algorithm can be summarized as follows:

(1) Rough DOA search and get ΘM as above.

(2) Construct the initialization space with respect to (6)
to (9).

(3) In the initialization space acquired in step 2, ran-
domly initiate a swarm of particles Θ = Θ1,Θ2,
… ,Θm whose position might be the potential solu-
tion to the optimization problem. m is the number
of particles. Θi = θi1, θi2,… , θiq is defined as the ith
1 ≤ i ≤m particle’s position in the search space.

(4) Evaluate all the individuals according to the fit-
ness function (4), that is, LW Θ , and select the top
m/2 individuals whose fitness function value are
smaller than others.

(5) From the selected individuals, cross and mutate to
generate m − m/2 new individuals. The crossover
process is similar to the following process. Ran-
domly select two individuals in step 4 to generate
a new individual. For example, select Θi and Θj

to generate Θk. Θk = θi1 + θj1 /2, θi2 + θj2 /2,… ,
θiq + θjq /2 . The mutation process is such that
when an individual is selected to be mutated, it will
be randomly changed to a new position. Note that
crossover and mutation are probabilistic, which are
called crossover probability and mutation probability.

(6) Let the newly created m − m/2 individuals in step
5 and the m/2 individuals selected in step 4
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Figure 1: Positions of the solution ofWSF, the true DOA, and the rough search DOA. (a) p = 8, q = 2,M = 100, and SNR = 0 dB; all the signals
are independent (noncoherent). (b) p = 8, q = 2, M = 100, and SNR = 0 dB; 2 signals are fully correlated (coherent).
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determine a new set of m individuals Θ1 = Θ1
1,

Θ1
2,… ,Θ1

m .

(7) Let Θ1
replace Θ and go to step 4 until the conver-

gence condition is satisfied or when the number of
generations reaches the maximum.

From a large number of simulations for the proposed
algorithm, it is better to set the parameters as follows: the
crossover probability is set to be 0.89, the population size
m, is set to be 20, the maximum number of generations is
set to be 300, and the mutation probability is set to be
0.1. The convergence condition is such that the best indi-
vidual of the whole population does not change for three
consecutive times.

Note that the proposed algorithm does not have any
effect on the DOA finding accuracy compared with the con-
ventional GA. Even if the rough search DOA and the initial-
ization space are far from the solution of WSF, the improved
GA algorithm will still find the solution of WSF through a
relatively large number of generations.

4. Simulations

In the simulation, we compare the computational complexity
of the proposed algorithm and many other existing algo-
rithms such as AM [4], conventional GA [13], and PSO
[14]. We do simulation using “Matlab” with the version of
R2013a in a normal laptop where the CPU is an Intel® Core™
i5-6300U @2.40GHz and the RAM is 8.0GB. The SNR is
signal-to-noise ratio. The root-mean-square-error (RMSE)
is defined as

RMSE = 1
qN

〠
q

k=1
〠
N

l=1
θk,l − θk

2
, 10

where N is the number of independent simulation trails and

θk,l is the estimation of θk at the lth trial. Therefore, RMSE
represents the deviation between the estimated value and
the true DOA. The unit is degree.

Figure 2 shows the RMSE of the estimation of WSF and
MUSIC according to different SNRs. The scenario is the same
as Figure 1(a) except for the SNR. Note that for the estima-
tion of WSF, both the proposed algorithm and the original
GA are used. The RMSE of these two methods are exactly
the same. It proves that the proposed algorithm does not
have any effect on the DOA finding accuracy compared with
the original GA. Furthermore, Figure 2 also shows that the
DOA estimation accuracy of WSF is much better than that
of MUSIC as we have described in the Introduction.

Figure 3 shows the comparison of calculating time
(the total computational complexity) using the proposed
algorithm, original GA, PSO, and AM for WSF estimation
according to different SNRs. For each SNR, we have done
30 independent simulation trials. The calculating time is
the average time of 30 independent trials. Figure 3(a) shows
the noncoherent case, that is, all the signals are independent,

while Figure 3(b) shows the coherent case. “Proposed” repre-
sents the proposed algorithm and the other symbols repre-
sent their respective algorithms for WSF estimation. To
have a fair comparison of computational complexity, their
convergence accuracies are set to be the same. The scenarios
are described in the captions.

From Figures 3(a) and 3(b), it is found that the proposed
algorithm is the most efficient one among these solving tech-
niques. Furthermore, the efficiency is more obvious when the
signal number increases (more directional parameters to be
estimated) as Figure 3(b) shows. The total computational
complexity of the proposed algorithm is about one-eighth
of the original GA.

As we have analyzed above, the total computational com-
plexity of the proposed algorithm depends on two factors,
that is, the population size and the iteration times. Table 1
shows the comparison of computational complexity of each
algorithm in detail. Table 1 is a sample of Figure 3(a) when
SNR = 0 dB. As Table 1 shows, the population size of the pro-
posed algorithm is 20, while for the original GA and PSO the
population size should be at least 30. The average iteration
times of the proposed algorithm is 35, while the original
GA is 202. This is because in the proposed algorithm, the
novel initialization space is much smaller than the whole
search space and the solution of WSF can be considered to
be close to the initialization space. As a result, a smaller pop-
ulation size is needed and all the particles could converge to
the solution of WSF quickly (less iteration times). Conse-
quently, the computational complexity is much lower.

5. Conclusion

In this paper, an improved Genetic algorithm is proposed for
WSF estimation of DOA. This proposed algorithm uses a
hypothesis technique and an empirical function to determine
a dynamic initialization space. Within this space, a smaller
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Figure 2: RMSE of the estimation of WSF and MUSIC.
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population size and smaller amount of generations are
required. Consequently, the computational complexity is
reduced. This paper has the following contributions: (1)
The technique of limiting the initialization space is general
and it can be applied to some other artificial intelligence algo-
rithms such as PSO for DOA estimation. (2) The computa-
tional complexity of the proposed algorithm is rather low
and it does not have any effect on the DOA estimation accu-
racy. (3) It is a general technique for DOA estimation.
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