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Abstract  

 

Abstract 

 

The deterioration of the aging infrastructures has become a global problem in recent decades, 

which threatens the public safety. To solve the above problem, researches on structural health 

monitoring (SHM) and structural damage detection (SDD) have been carried out all over the 

world. Researchers have made large amounts of efforts in the development of vibration-based 

SDD methods based on the theories of dynamics and signal processing.  

In this thesis, an attempt on SHM has been made on a ballasts concrete railway bridge. By 

performing a series of vibration experiments, obvious variations on modal parameters have 

been found. The variations on the modal parameters show difficulties of SHM, which need to 

be overcome. The difficulties can be summarized as follows: (1) the effects of environmental 

variation and other uncertainties to the structural dynamic behavior, (2) low efficiency of using 

the large amounts of monitoring data. 

In recent years, the rapid development of Deep Learning technology shows obvious 

advantages in many fields, such as object detection, medical science, and so on. Firstly, it is a 

pure data-driven method. By using Deep Learning technology, functions can be generated to 

link the input data to the results automatically, with no need of any domain knowledge. 

Secondly, large amounts of data can be used efficiently in the process of training a network. 

Therefore, in this thesis, a vibration-based structural state identification method by using 1-

D convolutional neural networks (CNNs) has been proposed. The proposed method aims to 

overcome the difficulties as introduced in the second paragraph by adapting the Deep Learning 

technology in the civil engineering field to solve the SHM problems. 

By using the proposed 1-D CNNs, functions linking the raw vibration data and structural 

states can be established. Those 1-D CNNs are developed to identify tiny local structural 

changes, and are validated on actual structures. Databases of structural vibration response are 

established based on a T-shaped steel beam (in lab), a short steel girder bridge (in test field), 

and a long steel girder bridge (in service) to validate the performance of the proposed 1-D CNN. 

The complexities of data in above 3 databases increase progressively. The raw acceleration data 

are not pre-processed and are directly used as training and validation data. The well-trained 

CNNs almost perfectly identify the locations of the small local structural changes, 

demonstrating the high sensitivity of the proposed CNN to tiny changes in actual structures. 
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The capacity of determining the boundary between data in different structural states is also 

shown clearly. 

Subsequently, to explore the mechanism of the proposed 1-D CNN, the convolutional kernels 

and outputs of the convolutional and max pooling layers are visualized and analyzed. The 

effectiveness of the CNN is also proved by visualizing the variation of data structure in each 

layer of the CNN by the T-SNE method. 

Furthermore, to examine the capacity of identify untrained structural changes of the proposed 

CNN, robustness tests of the CNN models to locations of structural changes and temperature 

effect are carried out. The results show low capacity of the classification CNN model to identify 

local structural changes in untrained locations and temperature environment. Fortunately, the 

robustness to the temperature effect can be easily improved by expanding the training data 

acquired in diverse temperature conditions. 

Finally, to improve the expression capacity of location and the robustness of the CNN to 

locations of structural changes, a regression CNN model is proposed with the updated encoding 

of the label and the output layer of the CNN. Comparing to the classification CNN models, 

higher robustness is obtained in the regression CNN model. Moreover, a deep network with 

multi-convolution blocks and multi-task outputs is proposed to further improve the robustness 

of identifying local structural changes in untrained locations. The results show obvious increase 

in the accuracies of the network to identify untrained local structural changes. 

Overall, the expected contributions will be two-folds. For academy, the results of the study 

demonstrate the feasibility and rationality of using Deep Learning technology to solve SHM 

and SDD problems in civil engineering field. The potential of developing new Deep-Learning-

based SHM and SDD schemes are also shown. For the society, the proposed research will boost 

the development of technology that guarantees human’s daily safety. 
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Chapter 1   

Introduction 

 

1.1 Background  

    Many bridges were constructed in the post-World War 2 period, when construction 

technology was developing. As these bridges age, their service function is being degraded by 

cracking, fatigue, corrosion, and other structural damages caused by long-time service and 

geological hazards (AASHTO, 2008; MLIT, 2018), posing a major threat to public safety.  

The White Paper On Land, Infrastructure, Transport and Tourism In Japan 2017 reports the 

detailed severity of the deterioration of the infrastructures in Japan: “The amount of 

infrastructure that is 50 years or older is expected to increase at an accelerating pace in the 

near future. The rapid deterioration of the infrastructure that comprises Japanese land is a 

major problem that requires society-wide efforts to solve.” (MLIT, 2018).  

Figs. 1.1 and 1.2 show two example of the deterioration of bridges. The bridge in Fig. 1.1 is 

located in Kitami, Hokkaido, Japan. There are some loosen bolts on the bridge which reduce 

the local stiffness. Fig. 1.2 shows an operating bridge in Vienna, Virginia, USA. Concrete on 

the bridge has fallen off, and steel bars have been exposed. The severe deterioration makes 

local residents feel quite anxiety when crossing the bridge.  

 

 

Fig. 1.1 Deteriorated bridge with loosen bolts (Kitami, Hokkaido, Japan) 
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Fig. 1.2 Severe deteriorated bridge (Vienna, Virginia, USA) 

 

    Even today, the safety and service function of bridges is often confirmed by visual inspection. 

However, the effectiveness of visual inspection is compromised by limited human resources, 

delayed discovery of damages, and huge time and budget costs. Automatically estimating the 

structural health conditions using smart techniques is therefore indispensable, which is also 

consistent with the trend of national policy of Japan that: “development and introduction of 

monitoring technologies that provide an efficient insight into the conditions of social 

infrastructures” (MLIT, 2018). 

    Thus, monitoring the health condition of old bridges is critically important to reduce the risk 

of public safety. Researchers have proposed various structural health monitoring (SHM) and 

structural damage detection (SDD) approaches to understand the structural states. Examples 

are the vision-based methods of Khuc and Catbas (2017), Barile et al. (2016), and Zaurin and 

Catbas (2010), and the vibration-based methods of Siringoringo and Fujino (2018), Wattana 

and Nishio (2017), Chang and Kim (2016), Farahani and Penumadu (2016), Döhler et al. 

(2014), Oshima et al. (2013), Kumar et al. (2012), and Rice et al. (2010). 
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1.2 Deep Learning in Civil Engineering  

    With the advent of the Deep Learning revolution (LeCun et al., 2015) and the increasing size 

of data, the advantages of data-driven approaches such as image classification (Krizhevsky et 

al., 2012; Szegedy et al., 2015; Lin et al., 2015; Koziarski and Cyganek, 2017), speech 

recognition (Graves et al., 2013; Graves and Jaitly, 2014), and natural language processing 

(Goldberg, 2017, Luong et al., 2015) have become increasingly evident. In data-driven 

methods, the machine learns from the data, and establishes an estimation model of the output 

status. Above advantage makes deep learning feasible to be used in the civil engineering field. 

Deep learning has been applied to civil engineering problems such as estimating concrete 

compressive strength (Rafiei et al., 2017), reliability analysis of transportation networks 

(Nabian and Meidani, 2018), and estimating the sales prices of new housing (Rafiei and Adeli, 

2016). When implemented through a neural network, deep learning can automatically compute 

a set of functions in multiple inter-connected layers, linking the input data and the expected 

outputs in a holistic framework. Meanwhile, the data features are extracted automatically 

without requiring manual effort.  

    By adopting the deep learning paradigm, vision-based SDD methods have entered a new era 

in the civil engineering field. Several researchers have proposed crack and corrosion 

identification based on image processing techniques with convolutional neural networks 

(CNNs) (LeCun et al., 1998; LeCun and Bengio, 2003). Such techniques identify, localize and 

display the cracks and corrosions with very high accuracy (Cha et al., 2017; Cha et al., 2017; 

Tong et al., 2017; Xue and Li, 2018; Zhang et al., 2017a; Gao and Mosalam, 2018). However, 

vision-based SDD methods have an obvious limitation: they cannot detect invisible structural 

damages. In actual civil structures, the interior of the girder, slab, and many other parts cannot 

be easily inspected. Thus, developing a SDD method that identifies invisible structural 

damages is highly demanded. 

 

 

1.3 Conventional Vibration-Based SDD Methodologies 

    Vibration-based SDD methods can potentially identify invisible structural damages, because 

(in theory at least) any local structural damage will change the mass and stiffness distributions 

of the structure, causing variations of the natural frequencies and mode shapes (Cawley and 

Adams, 1979; Pandey et al., 1991; Adeli and Jiang, 2008). To develop vibration-based SDD 
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methods, one must accurately identify the vibration parameters. Classical system identification 

methods have been reviewed in previous papers (Sirca and Adeli, 2012; Reyders, 2012). The 

literature is also replete with recent developments on system identification (Oh et al., 2017; 

Huang and Beck, 2018; Yao et al., 2018; Yin et al. 2017; Kim et al., 2017; Perez-Ramirez et 

al., 2016; Li et al., 2017; Amezquita-Sanchez et al., 2017). Vibration-based SDD methods with 

system identification have explored the correlations between the vibration features (natural 

frequency, mode shape, and their derivatives) and the structural damage information (Chang 

and Kim, 2016; Spiridonakos and Chatzi, 2014; Reynders et al., 2014; Yan et al., 2005; 

Ratcliffe, 1997; Pandey et al., 1991; Dutta and Talukdar, 2004; Ndambi et al., 2002). Vibration-

based SDD methods are reviewed in Salawu (1997), Cruz and Salgado (2008), and Moughty 

and Casas (2017). 

    There are several main challenges when applying SDD methods in practice. First, natural 

frequencies are easily affected by environmental factors (Hu et al., 2013; Xia et al., 2012; 

Zhang et al., 2017b). The subtle natural frequency changes induced by low-scale damages are 

easily smothered by environmental effects. Damage detection in changing environments has 

been discussed in several papers (Deraemaeker et al., 2008; Spiridonakos and Chatzi, 2014; 

Reynders et al., 2014; Yan et al., 2005; Döhler et al., 2014). As SDD indicators, natural 

frequencies lack information of the damage locations. The second challenge is that: a lot of 

vibration-based SDD methods rely heavily on accurate identification of mode shapes. The 

measurement results of the mode shapes usually fluctuate in a certain range with the 

components of error. Authors concern that when the error is large, SDD methods based on 

mode shapes or its derivations have risks of failing to detect damages. Third, most of the 

traditional vibration-based SDD methods require manual exploration and determination of the 

structural damage indicators based on the researchers’ knowledge and experience. An 

experience-based feature extraction process may be biased and risk omitting information that 

is vital to the structural damage diagnosis. These three limitations highlight the complexity of 

vibration-based SDD problems.  

 

 

1.4 Deep Learning and Vibration-Based SDD Methodologies 

    Deep learning methods can potentially resolve the complicated vibration-based SDD issues, 

because the deep neural network generates a function that automatically links the raw 
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acceleration data to the damage information. Features of the acceleration data are extracted 

automatically, and the acceleration data are more fully exploited than in conventional vibration-

based SDD methods. Lin et al. (2017) proposed a classification CNN with six convolutional 

layers and three maximum pooling layers. The CNN was trained by feeding raw vibration data 

generated by a finite element beam model. The damage was detected with very high accuracy 

(94.57%), proving that CNNs are suitable for vibration-based SSD. Abdeljaber et al. (2017) 

and Avci et al. (2018) identified the structural damages caused by loosened bolts on a steel 

frame by a CNN-based approach with very good performance. Another CNN-based SDD 

experiment was conducted on a benchmark frame structure (Abdeljaber et al., 2018), where 

structural damages were created by removing some braces. The method requests only two 

measurement data under health and severe damage conditions, reporting a good estimation of 

the overall structural health condition. One major achievement was the development of an 

unsupervised learning SDD method that does not require a large amount of label data (Rafiei 

and Adeli, 2017; Rafiei and Adeli, 2018).  

However, the above approaches were either implemented on a computer-simulated beam 

model or on in-lab structures. Their performances on actual structures remains unknown. The 

feasibility of detecting small local structural changes on real-world structures by CNN-based 

methods needs to be validated. 

 

 

1.5 Purposes of the Thesis  

    It is unknown that the performance of the CNN-based structural state identification method 

when applying the method on actual structures with more uncertainties. The robustness of the 

method to locations of structural changes and temperature is also not clear. 

    To fulfill the gaps as mentioned in previous paragraph, in this study, firstly, a series of 

vibration experiments were performed on a concrete railway bridge, investigated the variations 

of the modal parameters of the bridge, and verified the difficulties of SHM by using the modal 

parameters. Secondly, a 1-D CNN was proposed and validated the structural state identification 

performance of the proposed CNN-based method on three real-world structures: (1) a 2.3m-

long in-lab T-shaped steel beam; (2) a 6.7m-long steel girder bridge in test field; (3) a 27.3m-

long in-service steel girder bridge. The performance measure is the accuracy of structural state 

identification. Thirdly, for a mechanical interpretation of the classification rules of the proposed 
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CNN, the author visualizes and discuss the convolutional kernels, outputs of the convolutional 

layer, and the maximum pooling layer. The effectiveness of the CNN is also proved by 

visualizing the variation of data structure in each layer of the CNN by the T-SNE method. 

Fourthly, to examine the capacity of identifying untrained local structural changes of the 

proposed CNN, two rounds of robustness tests of the CNN model were carried out. Finally, to 

improve the expression capacity of location and robustness of CNN for structural state 

identification, a regression CNN model, and a deep network with multi-convolution blocks and 

multi-task outputs were proposed, and was validated on the databases of the T-shaped steel 

beam.  

    There are two further purposes of the study. For one thing, the proposed study aims to boost 

the development of new Deep-Learning-based SHM and SDD schemes. For another, the 

proposed study intends to promote the development of technology that guarantees human’s 

daily safety. 
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Chapter 2  

Investigations on the Variations of Modal Parameters  

 

2.1 Introduction 

For SHM, it has been widely accepted that the vibration-based method provides the 

possibility of detecting and locating structural damage (Boller et al., 2009). The shifts of 

dynamic parameters such as natural frequencies, damping ratios, mode shapes, and other 

relevant numerical parameters may indicate damage information. However, dynamic 

parameters are easily affected by environmental factors such as temperature and frost.  

In this chapter, a series of vibration experiments are performed on a multi-span pre-stressed 

concrete simply-supported beam ballasted railway bridge. The purposes of the experiments are 

as follows: 

(1) To investigate the variations of the modal parameters; 

(2) To verify the difficulties of using the modal parameters for tiny structural change 

identification. 

 

2.2 Bridge Description 

The investigated object is a 5-span ballasted pre-stressed concrete simply supported beam 

bridge located in Kitami City, Hokkaido, Japan. The construction of the bridge was completed 

in 1976. The bridge connected Kitami City to Ikeda County. A lateral view of the 3 spans of 

the bridge is shown in Fig. 2.1 and a general drawing is shown in Fig. 2.2.  

 

 

Fig. 2.1 Three spans of the bridge 
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Fig. 2.2 General drawing of the bridge (Unit: m) 

 

The section views of the bridge are shown in Fig. 2.3. On the two sides of each span, the 

structure was designed as Fig. 2.3 (a) with wide girders, and in the middle of each span the 

structure was designed as Fig 2.3 (b) with narrow girders. The sections of the girders change 

at the left and right quarter points of each girder. There are three cross beams on all the quarter 

points of each span. Walkways are extended of the bridge on the left and right sides. Handrails 

are also constructed on the edges of the walkways.  

 

   

(a). section of two sides of girders (b). section of middle of girders 

Fig. 2.3 Section views of the bridge (Unit: m) 

 

For the substructure, as shown in Fig. 2.2, the 3 piers on the Ikeda side are higher than the 

pier on the Kitami side based on the terrain under the bridge. For the boundary conditions, the 

superstructures are supported at the bottom of the two ends of each girder by line bearing 

supports, as shown in Fig. 2.4. The length of deck in longitudinal direction is 32.02 m and the 

span length is 31.3 m.  



Chapter 2: Investigations on the Variations of Modal Parameters 

9 

 

 

Fig. 2.4 Line bearing support 

 

    Ballasts were distributed on the slab in all the 5 spans, as shown in Fig. 2.5. As the bridge is 

already out of service, the sleepers and tracks had been removed for several years. In the final 

stage, before the bridge was totally destructed, the ballasts, raised concrete lips, walkways, and 

handrails were removed, as shown in Fig. 2.6. In order to hoist the superstructure of the bridge 

during destruction, a lot of holes were drilled on the slab, as shown in Fig. 2.7. 

 

 

Fig. 2.5 Distributed ballasts on the deck 
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Fig. 2.6 Bridge under destruction 

 

  

Fig. 2.7 Holes on the slab 

 

 

2.3 Outline of the Experiments 

    In order to investigate the variations of the dynamic parameters of the bridge, a series of 

vibration experiments were carried out during 2 years from November 2015 to December 2017. 

The time table of the experiments is shown in Table 2.1. In each experiment, the vibration tests 

were conducted span by span. Note that all the tests were concentrated on only one span. In 

Table 2.1, the first eight experiments (No. 1 - No. 8) were performed with no sleeper and track 
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on the bridge, as shown in Fig. 2.5. The last experiment (No. 9) was performed during 

destruction, with no sleeper, track, ballast, raised concrete lip, walkway, and handrail on the 

bridge. Some holes were also drilled on the slab for hoisting as shown in Figs. 2.6-2.7.  

 

Table 2.1 Experimental schedule 

Experimental 

Number 
Date Experimental 

Number 
Date 

No. 1 2015-11-16 No. 6 2017-2-3 

No. 2 2016-2-11 No. 7 2017-4-13 

No. 3 2016-8-18 No. 8 2017-7-25 

No. 4 2016-10-18 No. 9 2017-12-28 

No. 5 2016-11-29   

 

    Free damped vibrations of the bridge were measured by the Imote2 wireless acceleration 

sensor system. The original sensor consists of a SHM-H sensor board (ISHMP, 2009), an 

Imote2 communication board (Crossbow, 2007) a power supply board, and an antenna, as 

shown in for Fig. 2.8. In order to add the waterproof function to the sensor, the sensor was 

updated by installing all the main components in a plastic box, as shown in Fig. 2.9. An 

additional battery box was also applied to enhance the battery life of the sensor. 

 

     
Fig. 2.8 Original wireless sensor Fig. 2.9 Updated wireless sensor  

 

    In No. 1, 3, 4 experiments, 10 sensors were installed on or beside the raised concrete lips 

symmetrically in two rows (5 sensors ×2 rows) in each span, as shown in Fig. 2.10(a). For 

efficiency considerations, in the No. 2, and No. 5-9 experiments the number of sensor was 

reduced to 6 on each span, as shown in Fig. 2.10(b). The excitation method was human jumping 

and landing owning to its convenience of applying. Symmetric and asymmetric excitations 
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were conducted on the middle points and the quarter points of the walkways. For each test, the 

measurement is 30 second with 280 Hz sampling frequency. Free damped vibration of the 

bridge was recorded and processed. 

 

     

(a) pattern 1 (b) pattern 2 

Fig. 2.10 Sensor distribution maps 

 

The acceleration data were collected by wireless communication to the computer. As only 

impulse excitations were applied, the dynamic behavior of the bridge was simple free damped 

vibration. Thus, the natural frequencies were identified by picking the peaks in the power 

spectrum. The peak picking method is based on the fact that the frequency response functions 

reach an extreme value approximately at the natural frequency. The damping ratios were 

calculated by the half-power bandwidth method. Finally, the mode shapes were estimated by 

the cross-spectrum method (Liou and Jeng, 1989). 

 

 

2.4 Results 

    The identified natural frequencies and damping ratios of every span in all the experiments 

are shown in Figs. 2.11 and 2.12. And the mode shapes of Span 1 in the No. 2 experiment are 

shown as an example in Fig. 2.13. As only vertical impulse excitations were applied, in total 

six vertical modes were identified. From lower to higher order, the six modes are the 1st bending 

mode, the 1st torsional mode, the 2nd torsional mode, the 2nd bending mode, the 3rd torsional 

mode, and the 3rd bending mode. No horizontal vibration mode was identified. 
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(a) 1st bending mode (b) 1st torsional mode 

 

  

(c) 2nd torsional mode (d) 2nd bending mode 

 

  

(e) 3rd torsional mode (f) 3rd bending mode 

 

Fig. 2.11 Natural Frequencies 
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(a) 1st bending mode (b) 1st torsional mode 

 

  

(c) 2nd torsional mode (d) 2nd bending mode 

 

  

(e) 3rd torsional mode (f) 3rd bending mode 

 

Fig. 2.12 Damping ratios 
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(a) 1st bending mode (b) 1st torsional mode 

          

(c) 2nd torsional mode (d) 2nd bending mode 

                 

(e) 3rd torsional mode (f) 3rd bending mode 

Fig. 2.13 An example of mode shapes 

 

    In Fig. 2.11, the natural frequencies in each mode from the No.1 to No.8 experiments show 

clear seasonal variation tendency that there are 2 local maximum peaks of the natural 

frequencies in the Februaries of 2016 and 2017. In order to find the reasonable explanation of 

this phenomenon, a series of investigations were carried out. As Hokkaido is located in the 

northern hemisphere, the season in February is winter. Normally, the relative high modulus of 

elasticity of concrete in winter caused by low temperature was considered as the main reason 

of this phenomenon. However, the temperature gap between the No. 2 (2016-2-11) and No. 5 

(2016-11-29) experiments was only 2 °C, as shown in Fig. 2.14. The 2 °C temperature 

difference could not cause so obvious natural frequency difference. Thus this assumption was 

excluded. By empirically estimating, the frozen supports could be another possible reason to 

cause this phenomenon (Alampalli, 1998). However, there was no ice or snow on the supports 

by visual inspection. The boundary condition of the bridge did not change and it is also not an 
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acceptable explanation of the phenomenon. In this case, great attention was paid to the frozen 

ballasts. In this series of experiments, three typical ballast states were obtained, dry, frozen, 

and wet, as shown in Fig. 2.15.  

 

   

Fig. 2.14 Average temperature of the experimental days 

 

   

(a) dry (b) frozen  (c) wet  

Fig. 2.15 Three ballast states 

 

    Firstly, the dry ballast state shown in Fig. 2.15 (a) was presented in the No. 1 experiment. 

There was no rainfall during the week before the experiment, so the moisture content of the 

ballasts could be very low. In the No. 1 experiment, the dry ballasts were discrete with low 

adhesive effect. Secondly, the frozen state of the ballasts shown in Fig. 2.15 (b) appeared in 
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the No. 2 experiment. The ballasts were totally frozen. Ice filled the gaps between the ballasts 

and transferred the ballasts into a new composite material. As the special climatic conditions 

in the winter of Hokkaido, the ballasts had gone through a special temperature variation process. 

When the daily temperature fluctuated around 0 °C, snow on the ballasts would melt into water 

and seep into the space within the ballasts. Then the temperature dropped to 0 °C, the seeped 

water would freeze. After several loops of that the daily temperature fluctuated around 0 °C, 

the ice which filled in the space within the ballasts would be accumulated. When the ice 

reached a relatively high amount, the material properties of the frozen ballasts would change 

obviously. It could be seen as a new composite material. In this hypothesis, ice acts as filler, 

and ballasts perform as aggregate. Thirdly, the wet ballast state shown in Fig. 2.15 (c) was 

surveyed in the No. 5 experiment. The ballasts were a little wet, but not frozen. The increase 

of moisture content of the ballasts would affect the material properties by reducing the friction 

and increasing the stickiness. However, the property change was too mild comparing to frost. 

    The natural frequencies of the final experiment (No. 9) was obtained in totally different 

bridge condition with no ballast, raised concrete lip, walkway, and handrail. Meanwhile, a lot 

of holes are drilled on the deck. In a word, all the subsidiary components of the structure were 

removed, and even some structural damages were made on the slab. In these circumstances, 

the excitation positions of the No. 9 experiment were slightly adjusted to the inside areas for 

safety reasons. Thus, only 4 modes were identified: the 1st bending mode, the 1st torsional mode, 

the 2nd bending mode, and the 3rd bending mode, as shown in Fig. 2.11 (a), (b), (d), and (f). 

The 2nd and 3rd torsional modes were not sufficiently excited. The results show that the natural 

frequencies in the No. 9 experiment are much higher than the natural frequencies in other 

experiments. The reason should be that after removing the subsidiary components of the bridge, 

especially the ballasts, the mass of the bridge was greatly reduced. Lower mass of the structure 

leads to higher natural frequencies. For the holes on the deck, theoretically, structural damages 

may decrease the natural frequencies since the stiffness of the bridge is reduced. However, the 

effect of holes to the natural frequencies is much lower than the effect of removing the 

subsidiary components of the bridge to the natural frequencies. As a result, the natural 

frequencies of the bridge during destruction increased obviously even though the slab was 

drilled. 

For damping ratios as shown in Fig 2.12, through a general view, no clear regularity could 

be found within these data. The damping ratios did not show clear trend as the natural 

frequencies, and just varied unproportionally with the seasons altering. The complexity and 
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uncertainty of the ballasts could be possible reasons for the results. The differences between 

the shapes of ballasts lead to different spaces and interaction mechanisms between the ballasts 

which would directly affect the moisture content, fiction, and stickiness of the ballasts. 

Furthermore, with the onset of ice in winter, the mechanisms of the ballasts would become 

more complex. In a word, all the mentioned factors can differ the amount of the absorbed and 

damped vibration energy, leading to different damping ratios. 

For the last experiment (No. 9), the damping ratios of the 3 lower identified modes (the 1st 

bending mode, the 1st torsional mode, and the 2nd bending mode) increased obviously, which 

is far beyond the authors’ expectation. Before the No. 9 experiment, the damping ratios were 

expected to decrease, since the ballasts were removed. The ballasts can absorb energy of 

vibration. Without the ballasts on the slab, the capacity of absorbing energy of the structure is 

decreased, thus lower damping ratios were expected. One possible reason of the increase of 

damping ratios is that by removing the subsidiary components of the bridge, the vertical forces 

on the supports were decreased, leading to lower frictions on the surfaces of the sliding bearings. 

If there were some motions on the supports, the energy of vibration was consumed in the 

movement of sliding bearings. However, this assumption needs more study to prove. 

For the mode shapes of the bridge, as the sensor distributions in the experiments were not 

uniformed, the mode shape variation through all the experiment cannot be obtained. However, 

one phenomenon is found that in any experiment, the mode shapes of any certain span 

fluctuated in a wide range. Two examples are shown in Figs. 2.16-2.17, corresponding to the 

amplitudes of the 1st bending mode shapes of Span 2 in the No. 2 and No. 7 experiments. There 

are 7 tests in the No. 2 experiment and 4 tests in No. 7 experiment. The amplitudes in all 

channels vary obviously. Here the ratio of variation of the amplitude R is calculated as Equation 

2.1. Ai is the amplitudes of Channel i. The variation ratios of amplitudes of the mode shape are 

summarized in Tables 2.2 - 2.3, corresponding to the results in Figs. 16-17. Tables 2.2 - 2.3 

shows that even in the same experiment, the amplitudes of the model shape in different tests 

vary larger than 20%.  
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Fig. 2.16 Amplitudes of the 1st bending mode of Span 2 in 7 tests in No. 2 Experiment (2016-

2-11) 

 

 

Fig. 2.17 Amplitudes of the 1st bending mode of Span 2 in 4 tests in No. 7 Experiment (2017-

4-13) 

 

𝑅 = [max(𝐴𝑖) − 𝑚𝑖𝑛(𝐴𝑖)] / 𝑚𝑒𝑎𝑛(𝐴𝑖)                                               (2.1) 

 

Table 2.2 Variation ratios the amplitudes of the model shape of Span 2 in the No. 2 

Experiment 

Channel Ratio of variation (%) 

1 20.57 

2 14.76 

3 11.35 

4 42.49 

5 45.32 

6 44.46 

Average 29.83 
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Table 2.3 Variation ratios the amplitudes of the model shape of Span 2 in the No. 7 

Experiment 

Channel Ratio of variation (%) 

1 19.10 

2 22.79 

3 21.51 

4 33.87 

5 12.76 

6 33.6 

Average 23.94 

 

 

2.5 Conclusions  

    Overview the results, all the dynamic parameters (natural frequencies, damping ratios, and 

mode shapes) are not stable indicators to present the state of structure. The dynamic parameters 

are easily biased by the environmental changes, measurement errors, or other uncertainties. 

Since the conventional SDD methods are based on the dynamic parameters, it is difficult to use 

the dynamic parameters as indicators of small local structural changes. The effect of 

environmental changes and other uncertainties cannot be overcome easily. Meanwhile, only 

arbitrary signal processing methods have been used to analyze the vibration data. The vibration 

data cannot be used effectively. Therefore, a modern approach of designing an indicator for 

structural state identification was carried out by using Deep Learning in later chapters. 
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Chapter 3 

Basic Concept of Deep Learning and Related Algorithms  

 

3.1 Introduction of Artificial Neural Network  

Artificial neural network is a main machine learning method, which is also the 

quintessential Deep Learning models. The goal of a neural network is to approximate some 

function f *, which maps an input x to the expected result y. A neural network defines a mapping 

y = f (x; θ) and learns the value of the parameters θ that result in the best function approximation 

(Goodfellow et al., 2016). 

Artificial neural networks are called networks because they are typically represented by 

composing many different functions together. The model is associated with a directed graph 

describing how the functions are composed together. For example, there might have three 

functions f (1), f (2), and f (3) connected in a chain, to form f(x) = f (3)(f (2)(f (1)(x))). These chain 

structures are the most commonly used structures of neural networks. In this case, f (1) and f (2) 

are called the first and second layers. The overall length of the chain gives the depth of the 

model (Goodfellow et al., 2016). In recent years, the chains of functions become longer and 

longer, such as the VGG network (Simonyan and Zisserman, 2014) with 19 weighted layers, 

GoogLeNet (Szegedy, Liu, et al., 2014) with 22 weighted layers, and ResNet with even 152 

weight layers (He, Zhang, et al., 2016), and so on. If the function chain is plotted as a vertical 

operation graph, the depth of the graph becomes deeper and deeper in recent years. This is the 

origin of the name “Deep Learning”. 

During neural network training, f (x) is driven to match f *(x). The training data provides 

noisy approximate examples of f *(x) which evaluated at different training data. Each example 

x is accompanied by a label y ≈ f *(x). The training examples specify directly what the output 

layer must do at each point x, and it must produce a value that is close to y (Goodfellow et al., 

2016).  

Generally, the training loop consists of (1) gradient calculation by using back-propagation 

algorithm (Rumelhart et al., 1986a) and some loss functions, and (2) parameter update by 

descending the gradients through some optimizers. 
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3.2 Layers of the Network  

3.2.1 1-D convolutional layer 

The algorithm of a one-dimensional (1-D) convolutional layer iterates two operations 

throughout the input array (see Fig. 3.1). To clarify the algorithm for readers, the input array 

is element-by-element multiplied by the kernel and the products are then summed as shown in 

Equation 3.1. Second, the summed value plus a bias value is fed into an activation function to 

obtain the output value. This process moves sequentially along the temporal axis of the input 

array, as shown in Sub-array 1 and Sub-array 2 of Fig. 3.1.  

 

Fig. 3.1 Demonstration of a 1-D convolutional layer 

 

𝑓(𝑖) = ∑ 𝑆(𝑖 + 𝑛)𝐾(𝑛)
𝑣𝑘

𝑛=1
                                          (3.1) 

 

The kernels are the same width as the input array. To clarify the presentation of the 

convolutional layer, Fig. 3.1 shows only integer values, but the parameters in the convolutional 

layer of actual CNN models are real values. The length, number, and sliding size of the kernels 

are manually assigned. The kernel weights are trainable parameters and are continuously 

updated by the optimizer during the training process. The convolutional layer has three 

extraordinary properties that improve a machine learning system: sparse weights, parameter 

sharing, and equivariant representations (Goodfellow et al., 2016). By virtue of these properties, 

the convolution highly reduces the memory requirements of the model and improves the 

statistical efficiency of automatically extracting and learning the local features in the data. 
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3.2.2 Batch normalization 

The training data are learned batch by batch. Therefore, the batch distributions are non-

uniformly and unstably distributed and must be fitted by the network parameters in every 

training iteration, which greatly slows the convergence of the model. To circumvent this 

problem, the convolutional layer is followed by an adaptive reparametrization method called 

batch normalization (Ioffe and Szegedy, 2015). The batch normalization algorithm calculates 

the mean 𝜇𝐷 and variance 𝜎𝐷
2 of every batch of the training data, then shifts and scales the 

original data to zero-mean and unity-variance. Finally, the shifted data 𝑥𝑖̂ are assigned a weight 

𝛾 and bias 𝛽 to increase their expressive power. The calculations are given by Equations 3.2-

3.5. The reparametrization in the batch normalization algorithm significantly alleviates the 

problem of coordinating updates through the layers in the neural network.  

 

𝜇𝐷 =  
1

𝑚
∑ 𝑥𝑖

𝑚
𝑖=1                                                        (3.2) 

 

𝜎𝐷
2 =  

1

𝑚
∑ (𝑥𝑖 −  𝜇𝐷)2𝑚

𝑖=1                                                 (3.3) 

 

𝑥𝑖̂ =  
𝑥𝑖−𝜇𝐷

√𝜇𝐷
2 +𝜖

                                                          (3.4) 

 

𝑦𝑖 =  𝛾𝑥𝑖̂ +  𝛽                                                        (3.5) 

 

 

3.2.3 Max pooling layer 

The batch normalization layer in the proposed CNN is followed by a 1-D max pooling layer 

(Zhou and Chellappa, 1988). The 1-D pooling operation extracts the maximum output within 

a certain neighborhood along the time-series direction. The neighborhood is defined by a 

sliding window that strides along the time dimension. An example of 1-D max pooling is shown 

in Fig. 3.2. After pooling, the representation is approximately invariant to small translations of 

the input data, meaning that the features in the data are basically unchanged although the data 

size is reduced. Note that the values in real applications should be real values within the same 

range of the input, but simple integers are shown for illustrative purposes. The 1-D max pooling 



Chapter 3: Basic Concept of Deep Learning and Related Algorithms 

24 

 

is a dynamic downsampling technique that greatly improves the statistical efficiency and 

computational speed of the neural network. 

 

 

Fig. 3.2 Demonstration of a 1-D max pooling  

 

3.2.4 Dropout  

Dropout (Srivastava et al., 2014) is an effective solution to the over-fitting problem. The 

dropout operation is applied after the flatten layer. Briefly, the dropout operation inactivates 

some units during training and reactivates them during validation, boosting the performance of 

the CNN at very low computational cost.  

 

3.2.5 Fully connected layer 

The fully connected (FC) layer constitutes part of the classifier in the last layers. The units 

in the FC layer are linked to all units in the forward layer. As shown in Equation 3.6, the input 

values u are multiplied by the weights w and the products are summed. A bias b is added to the 

summed value. Finally, this result is input to an activation function f, which computes the 

output. The weights w and biases b are trainable variables, and the activation function f is 

manually assigned. For instance, in this study, the activation function of the FC layer was the 

rectified linear unit (ReLU) function (Nair and Hinton, 2010), determined by Equation 3.7. 

 

𝑦 = 𝑓(∑ 𝑢 × 𝑤 + 𝑏)                                                   (3.6) 
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𝑦 = 𝑚𝑎𝑥(0, 𝑢)                                                       (3.7) 

 

3.2.6 Softmax output layer 

The last layer in the CNN is the softmax output layer, which outputs the structural-state 

identification result. The calculation is given by Equation 3.8. The probabilities of all 

predictive candidates are evaluated, and the candidate with the highest possibility is output as 

the final result.  

 

𝑦𝑖 =
exp (𝑢𝑖)

∑ exp (𝑢𝑖)𝑛
𝑖=1

                                                        (3.8) 

 

 

3.3 Mechanisms of Learning  

The process of learning is to solve an optimization problem that minimum the loss L of the 

network, as shown in Equation 3.9. Here the loss L means the deviation between the label and 

the network output, which is measured by a loss function. θ means the parameters in the 

network, such as weights and biases. 

 

𝜃∗ = arg min 𝐿(𝜃)                                                (3.9) 

 

The process of learning is implementing gradient descent continuously. Suppose that θ has 

two variables [θ1, θ2], and randomly start at 𝜃0 = [
𝜃1

0

𝜃2
0]. The parameters are updated as Equation 

3.10.  

 

𝜃1 = [
𝜃1

1

𝜃2
1] =  [

𝜃1
0

𝜃2
0] −  𝜂 [

𝜕𝐿(𝜃1
0)/𝜕𝜃1

𝜕𝐿(𝜃2
0)/𝜕𝜃2

]                               (3.10) 
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Here 𝜂 is the learning rate, which indicates the ratio of parameter updating. The gradient of 

θ, ∇𝐿(𝜃), is [
𝜕𝐿(𝜃1

0)/𝜕𝜃1

𝜕𝐿(𝜃2
0)/𝜕𝜃2

]. For short, the process of learning can also be summarized as 

Equation 3.11. 

𝜃1 =   𝜃0 −  𝜂∇𝐿(𝜃0)                                            (3.11) 

 

Therefore, the learning process are continuously implemented as Equation 3.12, until the 

loss L approximately reach the minimum. 

 

𝜃𝑛+1 =   𝜃n −  𝜂∇𝐿(𝜃n)                                         (3.12) 

 

 

3.4 Loss Functions  

    Loss function is used to calculate the deviation between label and network prediction. In this 

study, two loss functions are applied: categorical cross entropy, and mean squared error. 

 

3.4.1 Categorical cross entropy 

    The algorithm of categorical cross entropy L is shown in Equation 3.13. Here n is the batch 

size, y means the label, and a is the network output. 

𝐿 =  −
1

𝑛
∑ [𝑦 ln𝑎 +  (1 − 𝑦)ln(1 − 𝑎)]𝑥                                (3.13) 

 

3.4.2 Mean squared error 

    The algorithm of mean squared error L is shown in Equation 3.14. Here n is the batch size, 

y is the label, a is the network output. 

 

𝐿 =  
1

𝑛
∑ (𝑎𝑖 − 𝑦𝑖)

𝑛
𝑖=1

2
                                                  (3.14) 
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3.5 Optimizers 

    Optimizer is an algorithm which determine the strategy of parameter updating. In this study, 

two optimizers are utilized: stochastic gradient descent (SGD), and Adam (Kingma and Ba, 

2014). 

 

3.5.1 Stochastic gradient descent 

    SGD is an extension of the gradient descent algorithm (Cauchy, 1847). SGD is the most 

used optimizer for machine learning or deep learning. The algorithm of SGD estimating the 

gradient downhill is shown as Equation 3.15. Here x is the input data, θ means the parameters 

in the network, L is the loss function, 𝜂 is the learning rate, f is the network, and y is the label. 

 

𝜃 ←  𝜃 −  𝜂 ×
1

𝑚
∇𝜃 ∑ 𝐿(𝑓(𝑥𝑖;  𝜃), 𝑦𝑖)𝑖                              (3.15) 

 

3.5.2 Adam 

    Adam is an adaptive learning rate optimization algorithm. The algorithm of Adam is as 

follows. Firstly, learning rate 𝜂, decay rates ρ1 and ρ2, and a small constant 𝛿 used for numerical 

stabilization are required to be assigned manually. Secondly, the parameters of the network θ 

are required. Thirdly, initialize the 1st and 2nd moment variables s = 0, r = 0, and time step t = 

0. Fourthly, while stopping criterion not met, calculate as following steps: 

 

 Sample a batch of m data from the training set [x1, x2, …, xm] with corresponding 

labels yi; 

 Compute gradient: 𝑔 ←  
1

𝑚
∇𝜃 ∑ 𝐿(𝑓(𝑥𝑖;  𝜃), 𝑦𝑖)𝑖  

 Update biased 1st moment estimate: 𝑠 ←  𝜌1𝑠 +  (1 −  𝜌1)𝑔  

 Update biased 2nd moment estimate: 𝑟 ←  𝜌2𝑟 +  (1 −  𝜌2)𝑔 ⨀ 𝑔 

 Correct bias in 1st moment: 𝑠̂  ←  
𝑠

1−𝜌1
𝑡 

 Correct bias in 2nd moment: 𝑟̂  ←  
𝑟

1−𝜌2
𝑡 
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 Update the parameters: 𝜃 ←  𝜃 −  𝜂
𝑠̂

√𝑟̂+𝛿
 

 

 

3.6 Deep Learning for Structural State Identification  

A neural network learns to identify the structure state by iterating two alternating steps: (1) 

train the neural network by using vibration data and corresponding label of structural state, and 

(2) validate the neural network. Different sets of data are required for training and validation 

accordingly. 

In the training step, the network is updated by evaluating and reducing the deviations 

between the predicted (network output) and actual (labeled) locations of the local structural 

changes, on a batch-by-batch basis. The uniformity and deviations between the network 

outputs and labels are called the accuracy and loss, respectively.  

The neural network is trained by iteratively feeding the training data, evaluating the loss, 

and updating the network parameters. The training is complete when the network outputs 

achieve a high accuracy with relatively low loss and good performance of identifying structural 

changes. 

 

 

3.7 Introduction of Support Vector Machine 

Support vector machines (SVM) play a dominant role when dealing with the classification 

tasks before the Deep Learning revolution. SVM was proposed by Cortes and Vapnik in 1995. 

SVM is a supervised learning algorithm which determines a model to predict the categories of 

new samples. The concept of SVM is to define a hyperplane (y = w·x + b) which can maximize 

the margin between different categories of data when observing the database in high 

dimensional space. The determined hyperplane is used for a certain classification task. One 

example is shown in Fig. 3.3 to demonstrate the basic idea of SVM. The two categories of data 

can be classified by the hyperplane which maximizes the margin between boundaries of the 

two categories of data. 
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Fig. 3.3 Concept of SVM 

 

    Fig. 3.3 shows an ideal data structure which can be classified easily. However, in actual 

cases, data structures are usually much more complex, such as the case shown in Fig. 3.4. Even 

though there is clear gap between the two categories of the data, there is no suitable hyperplane 

to describe the boundary. 

 

 

Fig. 3.4 Complex data structure 
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    To solve above problem, a kernel function is used to increase the dimensions of the data. By 

observing the data structure in a higher dimensional space, a hyperplane can be determined 

easily to classify data in different categories which has failed in the original dimensional space. 

One example is shown in Fig. 3.5, which is the classification result of the data as shown in Fig. 

3.4. The raw data are 2-D data. By using the radial basis function (RBF) kernel, the 3rd 

dimensional coordinate is calculated as Equation 3.16 and expanded to the original 2D 

coordinates. Here x represents the raw data, xc is the center of data which is set to 0, and 𝜎 is a 

manually assigned parameters to control the radial range of the kernel function. 

 

𝑘(𝑥) = exp (−
‖𝑥−𝑥𝑐‖2

2𝜎2 )                                             (3.16) 

 

 

Fig. 3.5 SVM classification result by using RBF kernel 

 

    Based on the concept as introduced above, the general optimization objective function of the 

SVM method can be determined as Equation 3.17. The w and b of the hyperplane are desired 

which can maximize the margin between different categories of data. Here yi is label, Φ is 

kernel function, xi is data. If we manually define the constrain that yi (w·Φ(xi) + b) ≥ 1, the 

optimization objective function can be transformed into Equation 3.18. 
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argmax
𝑤,𝑏

{
1

‖𝑤‖
min

𝑖
[𝑦𝑖 ∙ (𝑤 ∙ Φ(𝑥𝑖) + 𝑏)]}                                 (3.17) 

 

argmax
𝑤,𝑏

1

‖𝑤‖
                                                        (3.18) 

 

Subsequently, by using Lagrange multiplier, the optimal solution that meets the constrain 

can be obtained by solving the optimization objective function as shown in Equation 3.19. 

 

max
𝛼

min
𝑤,𝑏

𝐿(𝑤, 𝑏, 𝛼) =  
1

2
‖𝑤‖2 − ∑ 𝛼𝑖(𝑦𝑖(𝑤 ∙ Φ(𝑥𝑖) + 𝑏) − 1)𝑛

𝑖=1             (3.19) 

 

To obtain the minimum values of w and b in Equation 3.19, firstly calculate the partial 

derivatives of specific parameters as shown in Equation 3.20, thus Equations 3.21 and 3.22 can 

be obtained.  

 

𝜕𝐿

𝜕𝑤
=

𝜕𝐿

𝜕𝑏
= 0                                                      (3.20) 

 

𝑤 = ∑ 𝛼𝑖𝑦𝑖Φ(𝑥𝑛)𝑛
𝑖                                                  (3.21) 

 

0 = ∑ 𝛼𝑖
𝑛
𝑖=1 𝑦𝑖                                                      (3.22) 

 

Secondly, feed Equations 3.21 and 3.22 into Equations 3.19 to obtain Equation 3.23 which 

can be transform into Equation3.24. 

 

max
𝛼

𝐿(𝑤, 𝑏, 𝛼) =  ∑ 𝛼𝑖
𝑛
𝑖=1 −

1

2
∑ 𝛼𝑖

𝑛
𝑖=1,𝑗=1 𝛼𝑗𝑦𝑖𝑦𝑗Φ(𝑥𝑖)Φ(𝑥𝑗)                  (3.23) 

 

max
𝛼

𝐿(𝑤, 𝑏, 𝛼) = min
𝛼

(
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗Φ(𝑥𝑖)Φ(𝑥𝑗)𝑛

𝑗=1
𝑛
𝑖=1 − ∑ 𝛼𝑖

𝑛
𝑖=1 )            (3.24) 
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With the constrains in Equation and 𝛼𝑖 ≥ 0, by computing 
𝜕𝐿

𝜕𝛼𝑖
= 0, the optimal 𝛼𝑖 can be 

obtained. Then, feed 𝛼, x, and y into Equation 3.21 to calculate w of the hyperplane. Finally, 

calculating b by feeding yi, w, and xi into Equation 3.25 to finish determining of the hyperplane. 

By using the determined hyperplane, the categories of new data can be predicted. 

 

𝑦𝑖 =  𝑤𝑥𝑖 + 𝑏                                                  (3.25) 

 

In recent years, SVM are commonly used as references of the accuracy of neural network 

predictions, since SVM is a mature machine learning method which has achieve very good 

results in lots of tasks. 

 

 

3.8 Introduction of T-Distributed Stochastic Neighbor Embedding  

T-distributed stochastic neighbor embedding (T-SNE) is a data structure visualization 

approach proposed by Maaten and Hinton in 2008. The method projects high-dimensional data 

to a 2-D or 3-D space, and keeps the similar data structure in the low-dimensional space, which 

means that the data with high correlation keep close in the low-dimensional space. 

The method converts the high-dimensional Euclidean distances between data into 

conditional probabilities. The conditional probability of data in high-dimensional space pij is 

defined as Equation 3.26 in the Gaussian distribution, and is set as Equation 3.27 for the reason 

of convenient computation. The conditional probability qij in the low-dimensional space is 

defined as Equation 3.28 in the form of Student t-distribution, and yi is the coordinate in the 

low-dimensional space. 

 

𝑝𝑖|𝑗 =
exp(−‖𝑥𝑖−𝑥𝑗‖

2
/2𝜎2)

∑ exp(−‖𝑥𝑘−𝑥𝑙‖2/2𝜎2)𝑘≠𝑙
                                         (3.26) 

 

𝑝𝑖𝑗 =
𝑝𝑖|𝑗+𝑝𝑗|𝑖

2𝑛
                                                      (3.27) 
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𝑞𝑖𝑗 =
(1+‖𝑦𝑖−𝑦𝑗‖

2
)

−1

∑ (1+‖𝑦𝑘−𝑦𝑙‖2)−1
𝑘≠𝑙

                                               (3.28) 

 

The visualization is realized by minimizing the loss between the conditional probabilities of 

data in the high-dimensional space pij and the low-dimensional space qij through the loss 

function in Equation 3.29. The loss can be reduced by descending the gradient of loss as shown 

in Equation 3.30. Finally, the process of optimization can be summarized as Equation 3.31. 

Here Υ is the solution vector of the data structure in the low-dimensional space { y1, y2, …, yn}, 

t means the number of iteration, 𝜂 represents learning rate, and 𝛼 is momentum of parameter 

updating. 

 

𝐶 = 𝐾𝐿(𝑃 ∥ 𝑄) = ∑ ∑ 𝑝𝑖𝑗 log
𝑝𝑖𝑗

𝑞𝑖𝑗
𝑗𝑖                                       (3.29) 

 

𝛿𝐶

𝛿𝑦𝑖
= 4 ∑ (𝑝𝑖𝑗 − 𝑞𝑖𝑗)(𝑦𝑖 − 𝑦𝑗) (1 + ‖𝑦𝑖 − 𝑦𝑗‖

2
)

−1

𝑗                         (3.30) 

 

Υ(𝑡) = Υ(𝑡−1) + 𝜂
𝛿𝐶

𝛿Υ
+ 𝛼(𝑡)(Υ(𝑡−1) − Υ(𝑡−2))                            (3.31) 
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Chapter 4  

Structural State Identification by using a Classification 1-D Convolutional 

Neural Network 

 

4.1 Introduction 

    In this chapter, a classification CNN model is proposed to identify the locations of tiny local 

structural changes. The architecture of the CNN is shown in Fig. 4.1. The CNN consists of a 

1-D convolutional layer, batch normalization layer, a max pooling layer, a flatten layer, a 

dropout layer, and an output layer. 

 

 

Fig. 4.1 Architecture of the CNN 

 

Vibration experiments were conducted on a steel T-shaped beam (in lab), a short steel girder 

bridge (in test field), and a long steel girder bridge (in service), establishing three independent 

databases for training and validating the feasibility of the proposed CNN architecture. 

To validate the performance of the proposed method, sufficient acceleration data on both 

the intact and damaged structural states must be available. Generating the data of damaged 

structural states is a pivotal problem under current investigation. Releasing a structural 

component such as a bolt or a brace (Abdeljaber et al. 2017; Avci et al., 2018; Abdeljaber et 



Chapter 4: Structural State Identification by Using a Classification 1-D Convolutional Neural Network 

35 

 

al., 2018) is a practical solution, as the damages incurred are easily recovered. However, the 

artificial vibration data generated by the above damages do not represent the vibration data of 

local structural changes of bridge girders, which is a precondition to generate and validate a 

CNN for detecting local structural changes for bridge girders. Fortunately, more realistic data 

of damaged structural sites can be generated by borrowing the famous sociological concept of 

negative population growth to test the proposed CNN. Common structural damages such as 

cracks and corrosion, which reduce the local stiffness and mass, can be referred to as positive 

structural damages. Negative structural damage is then manually generated by slightly 

increasing the local structural stiffness and mass. By using the vibration data of both the intact 

structural state and the “negative structural damage” states, whether the CNN-based SDD 

method detects tiny local stiffness and mass changes on actual structures can be validated. 

The sensor system, as shown in Fig. 4.2, is common in all the experiments. The sensor 

system consists of Ono Sokki NP-3130 accelerometers (sensitivity: 10 mV/s2 ± 1dB), 

amplifiers, an AD converter (ADC resolution: 16 bits), and an operating computer.  

 

                                            

(a) Accelerometer  (b) Data acquisition system 

Fig. 4.2 Sensor system 

 

The T-shaped beam and the short steel girder bridge were vertically impacted by a small 

rubber hammer (weight: 233g).  To ensure a diverse database, the hitting force was varied 

between approximately 100 and 1500 Gal. The hitting period was 2 seconds. To examine more 

practical excitation methods, the in-service long steel girder bridge was excited by white noise 

and traffic load. 
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Afterwards, the performance of the proposed CNN-based structural-state identification 

method was validated. In each experiment, a 5-fold cross validation was conducted as follows. 

After shuffling the data order, the database was divided into five equal parts. One of the parts 

was chosen as the validation set, and the remaining four parts were reserved for training the 

CNN. The validation was iterated five times, and the accuracies of the five iterations were 

averaged to give the performance evaluation. Note that in each iteration, the data in the training 

set and the validation set were never overlapped. To show the good performance of the 

proposed CNN, the results of CNNs are compared with the results of SVM predictions. The 

configurations of the SVMs are determined by trial and error. The SVM models were designed 

with linear kernel, penalty parameter C of 1, and degree polynomial kernel function of 3. 

The CNN design was based on the Tensorflow framework (Abadi et al., 2016a; Abadi et al., 

2016b) and Keras API (Chollet, 2017) in the Python 3.6 language environment, with an Intel 

Core i7-6900k CPU and a NVIDIA GTX 1080Ti graphic card to accelerate the training. 

 

4.2 T-shaped Beam Experiment 

4.2.1 Vibration experiment for data generation 

    In this first attempt to identify different structural states by a CNN, the experimental subject 

was a T-shaped steel beam, one of the simplest engineering structures. The beam was 2090 mm 

long with a 360-mm wide, 10-mm thick flange. The web was 20 mm thick and 390 mm high. 

The beam was fixed by 8 bolts (4 bolts each on the left and right ends) as shown in Fig. 4.3. 

 

 

Fig. 4.3 T-shaped steel beam 

 

The layout of the experiment is shown in Fig. 4.4. The vertical vibration was measured by 

nine accelerometers installed on the surface of the flange. The sampling frequency was 10000 
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Hz, and the sampling period was set to 1.0 second (a free damped vibration). Thus, each datum 

was configured as 9 Ch. × 10000. A magnet weighing 1.37 kg (0.75% structural mass increase) 

was attached at 8 different positions on the web, providing 8 patterns of the local structural 

mass changes, and 9 different structural states (State 0: original state with no additional mass, 

and States 1-8: states with the additional mass). The descriptions of all the structural states are 

listed in Table 4.1. Each structural state was subjected to approximately 1600 impacts to 

generate the acceleration data. The data distribution of the database is shown in Table 4.2. 

 

 

Fig. 4.4 Layout of the T-shaped beam vibration experiment  

 

Table 4.1 Description of the structural states of the T-shaped beam vibration experiment 

State  Description  

0 Original state, no magnet attached  

1 The magnet is attached on S1, as shown in Fig. 4.4 

2 The magnet is attached on S2, as shown in Fig. 4.4 

3 The magnet is attached on S3, as shown in Fig. 4.4 

4 The magnet is attached on S4, as shown in Fig. 4.4 

5 The magnet is attached on S5, as shown in Fig. 4.4 

6 The magnet is attached on S6, as shown in Fig. 4.4 

7 The magnet is attached on S7, as shown in Fig. 4.4 

8 The magnet is attached on S8, as shown in Fig. 4.4 
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Table 4.2 Data distribution of the T-shaped beam database 

Category  Amount  Category  Amount  

State 0 1587 State 5 1622 

State 1 1595 State 6 1623 

State 2 1595 State 7 1619 

State 3 1611 State 8 1593 

State 4 1620   

In total   14465 

 

Eight excitation positions (E1-E8) were distributed on the flange surface, as shown in Fig. 

4.4. In each data category, the flange was subjected to approximately 200 impacts at each 

excitation position, generating about 1600 time-free damped vibrations in total. Each free 

damped vibration of the beam was recorded after a hammer excitation at a different hitting 

energy. An example of raw vibration data of the T-shaped steel beam data is shown in Fig. 4.5. 

 

 

Fig. 4.5 An example of raw vibration data of the T-shaped steel beam database 
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4.2.2 CNN configuration 

    The detailed configuration of the applied CNN for structural state identification is shown in 

Table 4.3, which shares the main architecture shown in Fig. 4.1. 

 

Table 4.3 Configuration of the CNN for the T-shaped beam database 

Layer Output Shape Parameter Activation Variables 

Input 10000×9 None None 0 

Convolution 

1-D 
9991×5 

Kernel number: 

5; 

Kernel size: 

10×9; 

Stride: 1; 

Padding: Valid 

Linear 455 

Batch 

normalization 
9991×5 None None 20 

Max Pooling 

1-D 
3330×5 

Kernel number: 

3; 

Stride: 1 

None 0 

Flatten 16650 None None 0 

Dropout 16650 Rate: 0.25 None 0 

FC 40 None ReLU 666,040 

Output 9 None Softmax 369 

Total parameters    666,884 

 

Since a softmax layer is used as the output layer, the corresponding labels is one-hot 

encoding. One-hot encoding is a vector with only one “1”, and others are “0”. The location of 

“1” represents the specific data category. The detailed labels of data in each structural state is 

shown in Table 4.4. For the proposed CNN, the location of “1” in a label indicates the structural 

state. 
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Table 4.4 Labels of data in the T-shaped beam database 

 Encoding 

S0 1 0 0 0 0 0 0 0 0 

S1 0 1 0 0 0 0 0 0 0 

S2 0 0 1 0 0 0 0 0 0 

S3 0 0 0 1 0 0 0 0 0 

S4 0 0 0 0 1 0 0 0 0 

S5 0 0 0 0 0 1 0 0 0 

S6 0 0 0 0 0 0 1 0 0 

S7 0 0 0 0 0 0 0 1 0 

S8 0 0 0 0 0 0 0 0 1 

 

Rectified Linear Unite (ReLU) excitation function is used in the FC layers. The definition 

of the ReLU excitation function is shown in Equation 4.1, and a figure of ReLU excitation 

function is shown in Fig. 4.6. 

 

𝑓(𝑥) = max (0, 𝑥)                                                              (4.1) 

 

 

Fig. 4.6 ReLU excitation function 

 

    All the weights in the network are initialized with Variance Scaling initializer, and all the 

biases are initialized with zeros.  

    The loss function of the CNN is categorical cross entropy, as introduced in Subsection 3.4.1. 
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    The CNN has training by the Adam optimizer as introduced in Subsection 3.5.2. The detailed 

parameters are as follows: learning rate of 0.0001, ρ1 of 0.9, ρ2 of 0.999, 𝛿 of 1e-8, and decay 

of 0. 

    The batch size is 256 in the training process. Thus the network updates 46 times (14465 × 

0.8 / 256) in each epoch. 

 

4.2.3 Results 

    The 5-fold cross-validation results of the T-shaped beam database are shown in Table 4.5. 

In each fold, the training accuracy was nearly 100.00%, and the validation accuracies ranged 

between 99.65% and 99.86% (average 99.79%). The detailed validation results of the Fold 1 

model are shown in Fig. 4.7 as an example. There are only five wrong predictions in the 2893 

validation data. This result confirms that the CNN model is sensitive to tiny local mass changes 

of the in-lab steel beam structure. The accuracies of the SVM predictions show less than 1% 

lower than the accuracies of the proposed CNN. The proposed CNN shows no clear advantage 

in the steel beam experiment, since the structure and the excitation method are both the simplest 

cases. The merits of the proposed CNN are more obvious in the cases with more complex 

structure or more complex excitation methods as discussed in Sections 4.3 and 4.4.  

 

Table 4.5 Accuracy of 5-fold cross validation of the T-shaped beam database (%) 

 Training Validation  Validation (SVM) 

Fold 1 100.00 99.83 99.27 

Fold 2 99.99 99.76 99.20 

Fold 3 100.00 99.86 99.34 

Fold 4 100.00 99.65 98.86 

Fold 5 100.00 99.83 99.52 

Average 100.00 99.79 99.24 
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Fig. 4.7 Confusion matrix of the validation results of the Fold 1 model of the T-shaped steel 

beam 

 

The CNN was trained at a very high convergence speed. The training history of Fold 1 is 

presented as an example in Fig. 4.8. The accuracies of the training and validation sets in each 

epoch are plotted. The accuracies of both sets reached 95% after Epoch 2. During the first 

several epochs, the validation accuracies were higher than the training accuracies, because the 

training accuracy was calculated by counting the number of correctly predicted training data 

throughout 46 iterations (number of training data / batch size = ((14465 × 0.8) / 256) on a 

batch-by-batch basis in each epoch, whereas the validation accuracy was obtained after each 

epoch. That is, in each epoch, the training accuracy was calculated batch-by-batch in all 46 

time updates of the CNN, whereas the validation accuracy was computed after the 46th time 

update. 
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Fig. 4.8 Training procedure of the CNN for the T-shape beam database (Fold 1) 

 

 

4.3 Short Steel Girder Bridge Experiment  

4.3.1 Vibration experiment for data generation 

To validate whether the proposed CNN can identify local stiffness and mass changes in an 

actual civil structure, the vibration experiment was repeated on a steel girder railway bridge 

constructed in 1925, as shown in Fig. 4.9. The sleepers and tracks on the bridge have been 

removed, and the bridge has been transported to the test field of the authors’ institute. The 

bridge is 6.45 m long, 1.994 m wide, and 0.775 m high.  

 

 

Fig. 4.9 Short steel girder bridge 

 

The experimental layout is shown in Fig. 4.10. The vertical vibrations were measured by 15 

accelerometers installed on the surface of the upper flange of the main girder. The sampling 
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frequency and period were set to 10000 Hz and 0.6 second (a free damped vibration), 

respectively. Thus, each datum was configured as 15 Ch. × 6000.  

 

 

Fig. 4.10 Layout of the short steel girder bridge vibration experiment 

 

In this experiment, the local structural state was changed in two ways. First, a steel plate on 

the lower flange was affixed to the bridge by two clamps, as shown in Fig. 4.11(a). The steel 

plate was 18 cm long, 8 cm wide and 1.2 cm thick, and weighed 5.11 kg (0.21% structural 

mass increase). The fixed steel plate slightly increased both the local stiffness and mass of the 

bridge. In the second way, a mass block (3.21 kg, 0.13% structural mass increase) was attached 

to the surface of the upper flange, as displayed in Fig. 4.11(b). The mass block was an actuator 

with its excitation function disengaged. The actuator is a convenient additional mass because 

it affixes to the surface by its magnet.  

 

                       

(a) steel plate                     (b) mass block  

Fig. 4.11 Additional elements in the short steel girder bridge experiment 

 

In total there are six structural states in this experiment: an initial state with no additional 

element installed (State 0), four structural states created by fixing the steel plate at four different 
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positions on the two ends of the lower flange (States 1-4), and one structural state generated 

by attaching the mass block to the middle of the upper flange (State 5). The detailed 

descriptions of the structural states are summarized in Table 4.6. 

 

Table 4.6 Descriptions of the structural states of the short steel girder bridge vibration 

experiment 

State  Description  

0 Original state, no additional element attached 

1 
The steel plate is fixed on the left side of the lower flange, as shown 

in Fig. 4.10, changing local stiffness and mass 

2 
The steel plate is fixed on the second left side of the lower flange, as 

shown in Fig. 4.10, changing local stiffness and mass 

3 
The steel plate is fixed on the second right side of the lower flange, 

as shown in Fig. 4.10, changing local stiffness and mass 

4 
The steel plate is fixed on the right side of the lower flange, as 

shown in Fig. 4.10, changing local stiffness and mass 

5 
The mass block is attached on the middle of the upper flange, as 

shown in Fig. 4.10, changing local mass 

 

 

Moreover, there are 14 excitation positions on the bridge: seven positions on the upper flange 

(E1, E3, E5, ..., E13), and another seven on the lower flange (E2, E4, E6, ..., E14), as shown in 

Fig. 4.10. After applying an impulse load by striking the bridge with a hammer, the acceleration 

data of the 0.6-s free damped vibration data were collected. The data distribution is shown in 

Table 4.7. The data of State 0 were collected first. Owing to time limitations, the numbers of 

vibration test in States 1-5 were reduced, so the data distribution was somewhat unbalanced. 

In total, 8595 data are stored in this database. 

 

Table 4.7 Data distribution of the short steel girder bridge database 

Category  Amount  Category  Amount  

State 0 2073 State 3 1362 

State 1 1279 State 4 1286 

State 2 1414 State 5 1181 

In total   8595 
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4.3.2 CNN configuration 

    The detailed configuration of the applied CNN for structural state identification is shown in 

Table 4.8. The CNN shares the main architecture with the CNN for the T-shaped beam in 

Section 4.2, as display in Fig. 4.1. Since the amounts of accelerometers and structural states 

are different, the data shapes vary when data flowing through layers. 

 

Table 4.8 Configuration of the CNN for the short steel girder bridge database  

Layer Output Shape Parameter Activation Variables 

Input  6000×15 None None 0 

Convolution  

1-D 
5991×5 

Kernel number: 

5; 

Kernel size: 

10×9; 

Stride: 1; 

Padding: Valid 

Linear 755 

Batch 

normalization 
5991×5 None None 20 

Max Pooling  

1-D 
1997×5 

Kernel number: 

3; 

Stride: 1 

None 0 

Flatten 9985 None None 0 

Dropout 9985 Rate: 0.25 None 0 

FC 40 None ReLU 399,440 

Output 6 None Softmax 246 

Total parameters    400,461 

 

    All the weights in the network are initialized with Variance Scaling initializer, and all the 

biases are initialized with zeros. The encoding of labels is also one-hot. The detailed labels of 

all the structural states are shown in Table. 4.9.  
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Table 4.9 Labels of data in the short steel girder bridge vibration database 

State  Encoding  

0 1 0 0 0 0 0 

1 0 1 0 0 0 0 

2 0 0 1 0 0 0 

3 0 0 0 1 0 0 

4 0 0 0 0 1 0 

5 0 0 0 0 0 1 

 

 

    The loss function of the CNN is categorical cross entropy, as introduced in Subsection 3.4.1. 

    The CNN has training by the Adam optimizer as introduced in Subsection 3.5.2. The detailed 

parameters are as follows: learning rate of 0.0001, ρ1 of 0.9, ρ2 of 0.999, 𝛿 of 1e-8, and decay 

of 0. 

    The batch size is 256 in the training process. Thus the network updates 27 times (8595 × 0.8 

/ 256) in each epoch. 

 

4.3.3 Results 

The accuracy of the proposed CNN model was also confirmed in a cross-validation of the 

short steel bridge vibration experiment (see Table 4.10). The training and validation accuracies 

obtained in the five cross-validations ranged from 99.96% to 100.00% and from 98.89% to 

100.00%, respectively, averaging 99.98% and 99.36% respectively. The detailed validation 

results of the Fold 1 model are shown in Fig. 4.12 as an example. There is only no wrong 

prediction of the 1719 validation data. 
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Table 4.10 Accuracy of 5-fold cross validation of the short steel girder bridge database 

(%) 

 Training  Validation Validation (SVM ) 

Fold 1 99.97 100.00 97.67 

Fold 2 99.96 99.24 97.79 

Fold 3 100.00 98.89 97.50 

Fold 4 99.96  99.07 97.50 

Fold 5 99.99  99.59 97.73 

Average 99.98 99.36 97.64 

 

 

Fig. 4.11 Confusion matrix of the validation results of the Fold 1 model of the short steel 

girder bridge 

 

The high accuracy of the 5-fold cross-validation confirms the high sensitivity of the CNN 

model to tiny local mass and stiffness changes, even though the ratios of the local mass changes 

were only 0.21% in States 1-4 and 0.13% in State 5. The validation accuracy was slightly lower 

than that of the T-shaped beam, probably because the steel bridge has a complex structure and 

the data were acquired in an outdoor environment.  

The accuracies of the SVM predictions in each fold or the overall result are about 2% lower 

than the accuracies of the proposed CNN. As the structure and environment become more 

complex, the advantages of the CNN begin to emerge.  

The training converged quickly despite the unbalanced database. As an example, Fig. 4.13 

plots the training and validation accuracies in Fold 1. The accuracies of both the training and 

validation datasets exceeded 90% after five epochs of training, and 99% after 20 epochs of 
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training. The fast convergence of the CNN model also proves the sensitivity of the CNN model 

to the small local stiffness and mass changes of an actual outdoor structure. 

 

 

Fig. 4.13 Training procedure of the CNN for the short steel girder bridge database (Fold 1) 

 

 

4.4 Long Steel Girder Bridge Experiment  

4.4.1 Vibration experiment for data generation 

To validate whether the proposed CNN is sensitive to small local mass changes in actual in-

service bridge, the vibration experiment was examined on a steel girder bridge in Kitami, 

Hokkaido, Japan, as shown in Fig. 4.14. The bridge is 27.3 m long and 13.8 m wide, and has 6 

main steel girders. The general drawing of the bridge is show in Fig. 4.15. 

 

 

Fig. 4.14 Long steel girder bridge 
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Fig. 4.15 General drawing of the long steel girder bridge 

 

The experimental layout is shown in Fig. 4.16. The vibration experiment was performed on 

the left quarter of the Girder 4. The vertical vibrations were measured by 15 accelerometers 

installed on the upper surface of the lower flange close to the web, as shown in Figs. 4.16 - 

4.17. The sampling frequency was set to 10000 Hz.  

 

 

Fig. 4.16 Layout of the long steel girder bridge vibration experiment 

 

 

 

Fig. 4.17 Accelerometer and magnets 
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To validate a more practical excitation method rather than hammer impact excitation, an 

actuator was installed on the lower flange, as shown in Fig. 4.18, generating white noise to 

excite the girder. As the traffic had not been restricted, the acquired vibration data has the 

component affected by the traffic load. 

 

 

Fig. 4.18 Actuator 

 

Five magnets weighing 4.72 kg (approximately 0.0015% structural mass increase) was 

attached at 3 different positions on the lower flange, as shown in Figs. 4.16-4.17, providing 3 

patterns of the local structural mass changes, and 4 different structural states (State 0: original 

state with no additional mass, and States 1-3: states with the additional mass). The detailed 

descriptions of the structural states are summarized in Table 4.11. 

 

Table 4.11 Description of the structural states in the long steel girder bridge experiment 

State  Description  

0 Original state, no magnet attached 

1 Magnets are attached on left side the lower flange, as shown in Fig. 4.16 

2 
Magnets are attached on second left side the lower flange, as shown in Fig. 

4.16  

3 
Magnets are attached on third left side the lower flange, as shown in Fig. 

4.16 

 

In each structural state, after engaging the actuator, vibration of the girder was measured for 

40 minutes. Afterwards, the vibration data was split to 1200 pieces of 2s-long data. Therefore, 
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a database, which consists of 4800 data (4 structural states × 1200 data), was established. The 

detailed data distribution is shown in Table 4.12. Meanwhile, a datum in State 0 is shown as 

an example in Fig. 4.19.  

 

Table 4.12 Data distribution of the long steel girder bridge database 

Category  Amount  Category  Amount  

State 0 1200 State 2 1200 

State 1 1200 State 3 1200 

In total   4800 

 

 

Fig. 4.19 An example of vibration data of the long steel girder bridge database 

 

4.4.2 CNN configuration 

    The detailed construction of the applied CNN for structural state identification is shown in 

Table 4.13. The CNN shares the main architecture with the CNNs for the T-shaped beam in 

Section 4.2 and the short steel girder bridge in Section 4.3, as displayed in Fig. 4.1, even though 

the amounts of accelerometers, shapes of input data, shapes of output data in each layer, and 

amounts structural states are different in each case. 
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Table 4.13 Configuration of the CNN for the long steel girder bridge database  

Layer Output Shape Parameter Activation Variables 

Input  20000×15 None None 0 

Convolution  

1-D 
19991×5 

Kernel number: 

5; 

Kernel size: 

10×9; 

Stride: 1; 

Padding: Valid 

Linear 755 

Batch 

normalization 
19991×5 None None 20 

Max Pooling  

1-D 
6663×5 Kernel Stride: 3; None 0 

Flatten 33315 None None 0 

Dropout 33315 Rate: 0.25 None 0 

FC 40 None ReLU 1,332,640 

Output 4 None Softmax 164 

Total parameters    1,333,569 

 

    The labels are also one-hot encoding. The detailed labels of all the structural states are shown 

in Table. 4.14. The location of “1” in the vector indicates the structural state. 

 

Table 4.14. Labels of data in the long steel girder bridge database 

State Encoding 

0 1 0 0 0 

1 0 1 0 0 

2 0 0 1 0 

3 0 0 0 1 

 

    All the weights in the network are initialized with Variance Scaling initializer, and all the 

biases are initialized with zeros.  

    The loss function of the CNN is categorical cross entropy, as introduced in Subsection 3.4.1. 

    The CNN has training by the Adam optimizer as introduced in Subsection 3.5.2. The detailed 

parameters are as follows: learning rate of 0.0001, ρ1 of 0.9, ρ2 of 0.999, 𝛿 of 1e-8, and decay 

of 0. 
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    The batch size is 256 in the training process. Thus the network updates 15 times (4800 × 0.8 

/ 256) in each epoch. 

 

4.4.3 Results 

Table 4.15 shows the result of cross validation of the long steel girder bridge database. The 

training and validation accuracies obtained in the five cross-validations were all 100.00% and 

ranged from 96.15% to 98.12%, respectively, averaging 100.00% and 97.23% respectively. 

The detailed validation results of the Fold 1 model are shown in Fig. 4.20 as an example. There 

are only 18 wrong predictions in the 960 validation data. Comparing to the results in 

Subsections 4.2.3 and 4.3.3, the accuracy decreases a little. Considering the complexity of the 

structure and loads, the accuracy is still very high. The high accuracy confirms the high 

sensitivity of the CNN model to tiny local structural changes in the actual operating bridge, 

even though the bridge has complex structure, and excited by white noise and traffic load. 

 

Table 4.15 Accuracy of 5-fold cross validation of the long steel girder bridge database (%) 

 Training  Validation Validation (SVM) 

Fold 1 100.00 98.12 23.85 

Fold 2 100.00 98.12 29.79 

Fold 3 100.00 96.35 26.35 

Fold 4 100.00 97.40 31.35 

Fold 5 100.00  96.15 28.33 

Average 100.00 97.23 27.93 
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Fig. 4.20 Confusion matrix of the validation results of the Fold 1 model of the long steel 

girder bridge 

 

The SVM predictions only show 27.93% accuracy in the overall result, as shown in Table 

4.15. Comparing to the results of the T-shaped beam and the short steel girder bridge as 

discussed in Subsections 4.2.3 and 4.3.3, the accuracy decreased about 70% suddenly. Firstly, 

changing the excitation method to white noise and traffic load is considered as the main reason 

of the accuracy decrease, since the complexity of the data are highly increased. In previous two 

cases introduced in Subsections 4.2.3 and 4.3.3, the excitation method is hammer impact, and 

the data are regular free damped vibration. In this case, random data are obtained owing to the 

white noise excitation. Secondly, in previous two cases, the shapes of data are 10000 × 9 and 

6000 ×15 respectively. In this case, the shape of each data is increased to 20000 ×15, and the 

amount of sample in each data is 3.3 times of the previous two cases. The expanding of data 

shape is also an important reason, because enlarging the number of dimensions of data will 

highly increase the difficultly of SVM to define the hyperplane between different categories of 

data.  

To better understand the reason of the low accuracies of the SVM results in this case, the 

data structures of the databases of the T-shaped beam, the short steel girder bridge, and the 

long steel girder bridge are visualized by the T-SNE method (introduced in Section 3.8) in Figs. 

4.21 - 4.23. Comparing the complexity of the three data structures, the data structures of the T-

shaped beam and the short steel girder bridge show many small clusters of a certain category 

of data, but the data structure of the long steel girder shows no accurate cluster with an 

incomprehensible data distribution. The database of the long steel girder bridge shows more 
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complex data structure than databases of the T-shaped beam and the short steel girder bridge, 

which causes low accuracies of the SVM results of the long steel girder bridge database.  

 

 

 

Fig. 4.21 Data structure of the T-shaped steel beam database 
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Fig. 4.22 Data structure of the short steel girder bridge database 

 

 

 

Fig. 4.23 Data structure of the long steel girder bridge database 
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The reason of that why the CNN obtained very high accuracies and the SVM obtained very 

low accuracies as shown in Table 4.51 could be explained by the fundamental concepts or 

algorithms of the two methods. Generally, CNN processes a high-dimensional data through a 

series of operations to output a low-dimensional prediction. The data dimension flows from a 

high dimension to a low dimension, which continuously decreases the complexity of data. As 

a comparison, the SVM method increases the dimension of data to define the hyperplane 

between each category of data, which increases the complexity of data. Therefore, when 

dealing with the classification tasks with high-dimensional of data, the CNN method could 

show better performance than the SVM method. 

Fig. 4.24 shows the training procedure of Fold 2 as an example. The training procedure is 

smooth and fast even though the data were acquired from an actual in-service bridge excited 

by white noise and vehicle load. The fast convergence also proves the sensitivity of the 

proposed simple CNN to the small local structural changes of an operating bridge. 

 

 

Fig. 4.24 Training procedure of the CNN for the long steel bridge database (Fold 2) 

 

 

4.5 Conclusions 

    The proposed CNN shows very high accuracies of identifying tiny local structural changes 

in the T-shaped steel beam, the short steel girder bridge, and the long steel girder bridge. The 

CNNs abstract the features of vibration data automatically. The sensitivity of the proposed 

CNN to the tiny local structural changes of actual structures has been proved. The results of 

the long steel girder bridge experiment also show good inclusiveness for different excitation 
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methods of the proposed CNN, since the vibration data acquired on the long steel girder bridge 

was excited by white noise with the component of traffic load. 

    The limitation of the proposed CNN is that only structural changes in trained categories are 

validated with data acquired in relative stable temperature conditions. The robustness of the 

CNN to location of structural change and temperature effect is unknown. Thus, the robustness 

of the CNN to location of structural change and temperature effect is examined and discussed 

in Chapter 6. 

 



Chapter 5: Visualization and Analyses of CNN Model 

60 

 

Chapter 5 

Visualization and Analyses of the CNN Model 

 

5.1 Introduction  

Chapter 4 confirmed that the CNNs accurately identify tiny local structural changes in the 

T-shaped beam, the short steel girder bridge, and the long steel girder bridge. These results of 

CNN performance are very encouraging. However, as structural damage detection is a highly 

responsible task, the classification rules of the CNN that link the abstract CNN algorithm with 

the classical dynamics must be understood. To this end, this section visualizes and discusses 

the parameters and data flow processes of the CNN, which will help to elucidate the physical 

mechanism of structural state identification by the CNN-based method.  

 

5.2 Convolutional Kernel Visualization  

To understand the features in the training data learned by the convolutional layer, many 

researchers visualize the convolutional kernels as heatmaps. In image-related tasks, the kernels 

usually exhibit some oriented strips or blobs (Krizhevsky et al., 2012), which are considered 

as the features learned from the images. Therefore, the author generated heatmaps of 

convolutional kernels sized (10 × 9), (10 × 15), and (10 × 15) in the proposed CNNs of the T-

shaped beam, the short steel girder bridge, and the long steel girder bridge databases, 

respectively. The results are shown in Figs. 5.1-5.3, respectively. The color intensities of the 

kernels indicate the weight values (the darker the color, the heavier the kernel weight). Unlike 

the CNN kernels in image-related tasks, the kernels in the vibration-based structural-state 

identification show no strip or blob. Whereas the pixels in images are strongly correlated with 

the 2-D surrounding pixels, the vibration data were strongly correlated only with their 

neighboring data in the 1-D temporal dimension. In Figs. 5.1-5.3, the high and low values in 

each kernel alternate along the temporal dimension, implying vibrational characteristics. Thus, 

attention is focused on the 1-D features of the kernels along the temporal dimension.  
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Fig. 5.1 Kernels for the T-shaped beam database 

 

 

Fig. 5.2 Kernels for the short steel girder bridge database 
 

 

Fig. 5.3 Kernels for the long steel girder bridge database 
 

 

As an example, Fig. 5.4 plots the 1-D window functions in each channel of the five 

convolutional kernels for the T-shaped beam database. Clearly, the convolutional kernels 

learned the vibration features in the training data corresponding to each channel of the raw 

acceleration data. In all channels of the five kernels, the learned vibration features were 

approximately constant in amplitude (~0.2), but obviously differed in their vibration 

frequencies. For example, the approximate number of periods in the limited length of the kernel 

was 3.5 in Channel 6 of Kernel 1, but 2 in Channel 8 of Kernel 1. The convolutional kernels 

operate as dynamic filters in each channel of the acceleration data.  
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Fig. 5.4 Visualization of kernels for the T-shape beam database in the view of window 

function by channel 

 

    The convolutional kernels of the CNNs for the short steel girder bridge database and the 

long steel girder database are also visualized as 1-D functions in Figs. 5.5 and 5.6 respectively. 

Even though the specimens are quite different, the convolutional kernels of the two bridges 

show same characteristics to the convolutional kernels for the T-shaped beam database as 

shown in Fig. 5.4. The amplitude of each channel are all in an approximate range of ±0.2 with 

different vibration frequencies.  

As shown in Figs. 5.4-5.6, the configurations of the convolutional kernels largely differ from 

those of traditional filters. One benefit of filtering through convolutional layers is that (unlike 

traditional filters) the parameters of each filter need not to be manually designed. Instead, the 

filter parameters are trained by the CNN, rendering them more compatible with the specific 

data structure. Meanwhile, the kernel parameters are considered as features of the data 

corresponding to the structural-state identification problem, which defies a physical 

explanation. 
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Fig. 5.5 Visualization of kernels for the short steel girder bridge database in the view of 

window function by channel 
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Fig. 5.6 Visualization of kernels for the long steel girder bridge database in the view of 

window function by channel 

 

 

5.3 Visualization of the Hidden Layer Outputs 

To better understand the identification mechanism of the CNN, this section visualizes the 

outputs of the convolutional layer and the max pooling layer. The outputs of both layers are 

presented in the time-domain and frequency-domain views.  
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5.3.1 CNN for the T-shaped beam database 

To investigate the process of data flow through the CNN, many data were traced sequentially 

through the CNN layers, from input to output. As an example, the author demonstrates the data 

flow of a datum in State 1 of the T-shaped beam database. Figs. 5.7 and 5.8 show the input 

data in the time and frequency domains, respectively. Free damped vibration is clarified in Fig. 

5.7 and the obvious peaks at 184 Hz, 425 Hz, 630 Hz, and 680 Hz in Fig. 5.8, indicating the 

modes of the vibration. The corresponding mode shapes are shown Fig. 5.9. As no 

accelerometer was set on the flange, no mode shape of flange could be obtained. Therefore, for 

easy understanding, numerical analysis results are also presented to show the mode shapes of 

the flange. 

 

 

Fig. 5.7 Input data in time domain (example in the T-shaped steel beam database) 
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Fig. 5.8 Input data in frequency domain (example of the T-shaped steel beam database) 

 

 

 

               

(a) mode 1 (184 Hz) 

 

              

(b) mode 2 (425 Hz) 

 

Fig.5.9 Analytical and numerical mode shapes  
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(c) mode 3 (630 Hz) 

 

              

(d) mode 4 (680 Hz) 

 

Fig.5.9 Analytical and numerical mode shapes (continue) 

 

Figs. 5.10 and 5.11 show the output of the convolutional layer in the time and frequency 

domains, respectively. In Fig. 5.10, the envelope of each feature map is a free damped 

vibrational waveform, implying that the convolutional layer maintains the features of the input 

data. In Fig. 5.11, the peaks in the power spectral density (PSD) of the convolutional layer 

output correspond to those of Fig. 5.8 (i.e., 184 Hz, 425 Hz, 630 Hz, and 680 Hz), but the 

relative amplitudes of the modal peaks are adjusted. In particular, the relative amplitude of the 

first mode is decreased in Fig. 5.11, while the relative amplitudes of the higher modes are 

increased. This indicates the presentation of more modes in the output of the convolutional 

layer. Thus, the convolutional layer works as a band-pass filter in this case.  

 

 

Fig. 5.10 Output of the convolutional layer (example of the T-shaped steel beam database) 
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As the convolution change the amount of channel of data from 9 to 5, the output of 

convolutional layers only maintained of mode frequencies and loss the information of mode 

shapes. 

 

 

Fig. 5.11 Output of the convolutional layer in frequency domain (example of the T-shaped 

steel beam database) 

 

Figs. 5.12 and 5.13 show the output of the max pooling layer in the time and frequency 

domains, respectively. The kernel length of the max pooling was 3, so the mean dynamic 

sampling of the max pooling layer was set to 3333.33 Hz. The max pooling algorithm filtered 

many of the acceleration data in the negative range (Fig. 5.12), shrinking the lower parts of the 

waveforms. However, the PSD of the max pooling layer output (Fig. 5.13) was almost identical 

in shape to the PSD of the convolutional layer output, indicating that the max pooling operation 

extracted and maintained the features while reducing the data size.  

 

 

Fig. 5.12 Output of the max pooling layer (example of the T-shaped steel beam database) 

 

 

Fig. 5.13 Output of the max pooling layer in frequency domain (example of the T-shaped 

steel beam database) 
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    Overview the PSD figures of the convolutional layer output and the max pooling layer output 

as shown in Figs 5.11 and 5.13, since the number of channels is reduced from 9 to 5 in the 

convolution operation, the information of mode shapes of structure is lost. However, the 

information of natural frequencies is well maintained by the convolution and max pooling. The 

reason is that the input data is free damped vibration accelerometer data, whose dynamic 

characteristics be easily abstracted.  

 

5.3.2 CNN for the short steel girder bridge database 

    By implementing the same process as introduced in Subsection 5.3.1, the input data, 

convolutional layer output, and max pooling layer output of the CNN for the short steel girder 

bridge database are visualized substantially to investigate the process of data flowing. 

    Firstly, one of input data is chosen randomly for demonstration. The input data is shown in 

time domain and frequency domain in Figs. 5.14 and 5.15 respectively. As the specimen 

becomes more complex as shown in Fig. 4.9, the free damped vibration waveforms in Figs 

5.14 are not as ideal as the waveforms of the T-shaped beam as shown in Fig. 5.7. There are 

distinct protrusions or missing parts in the envelopes of the waveforms.  

 

 

Fig. 5.14 Input data in time domain (example of the short steel girder bridge database) 
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The PSD figure of each channel of the input data is shown in Fig. 5.15 to identify the 

vibration modes. Overview the PSD of the 15 channels, there are obvious peaks on 234 Hz, 

400 Hz, 500 Hz, 770 Hz, and 1030 Hz. The corresponding mode shapes are also presented in 

Fig. 5.16. All the identified modes are bending modes. 

 

 

Fig. 5.15 Input data in frequency domain (example of the short steel girder bridge database) 

 

 

    

(a) mode 1 (234 Hz) (b) mode 2 (400 Hz) 

 

Fig. 5.16 Identified mode shapes 
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(c) mode 3 (500 Hz) (d) mode 4 (770 Hz) 

 

    

(e) mode 5 (1030 Hz)  

 

Fig. 5.16 Identified mode shapes (continue) 

 

Secondly, the convolutional layer output is visualized in time domain and frequency domain 

in Figs 5.17 and 5.18 respectively. Same characteristics to the convolutional layer output of 

the T-shaped beam case as introduced in Subsection 5.3.1 are presented. The waveforms of the 

convolutional layer output remain the envelopes of free damped vibration in 5.17. Meanwhile, 

the features of mode frequencies on 234 Hz, 400 Hz, 500 Hz, 770 Hz, and 1030 Hz are well 

maintained with adjusted amplitudes. Since the convolution operation reduces the amount of 

data channel from 15 to 5, the convolution operation can only mountain the features of mode 

frequencies and losses the information of mode shapes. 

 

 

Fig. 5.17 Output of the convolutional layer (example of the short steel girder bridge database) 
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Fig. 5.18 Output of the convolutional layer in frequency domain (example of the short steel 

girder bridge database) 

 

Thirdly, the output of the max pooling layer is visualized in time domain and frequency 

domain respectively. The characteristics of the max pooling layer output are also same to the 

T-shaped beam case as introduced in Subsection 5.3.1. The waveforms of the max pooling 

output remain the envelopes of free damped vibration with shrunk negative component of the 

waveforms. Meanwhile, the features of mode frequencies on 234 Hz, 400 Hz, 500 Hz, 770 Hz, 

and 1030 Hz are well maintained. 

 

 

Fig. 5.19 Output of the max pooling layer (example of the short steel girder bridge database) 

 

 

Fig. 5.20 Output of the max pooling layer in frequency domain (example of the short steel 

girder bridge database) 
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The visualizations of the layer outputs of the short steel girder bridge case show same 

characteristics to the case of the T-shaped beam, since both database consist only free damped 

vibration data samples, which contains much features of the structure. 

 

5.3.3 CNN for the long steel girder bridge database 

    Data in the long steel girder bridge flowing in the CNN is also traced and visualized. Since 

the raw data is random vibration data excited by white noise, the raw data shows obvious 

differences to the cases of the T-shaped beam and the short steel girder bridge databases.  

    Fig. 5.21 shows an input datum, and the corresponding PSD is shown in Fig. 5.22. Since the 

data is random vibration, the response of the bridge is very complicated. Unlike the cases of 

the T-shaped beam and the short steel girder bridge in Figs. 5.8 and 5.15, there is no common 

peaks in the PSD of all the channel in Fig. 5.22. In each channel of the PSD figure, the 

amplitude of each frequency component are distinct, which represents the features of random 

excitation. 

 

 

Fig. 5.21 Input data in time domain (example of the long steel girder bridge database) 
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(a) individual range of y axis for easy reading 

 

 

(b) uniformed range of y axis for easy comparison  

Fig. 5.22 Input data in frequency domain (example of the long steel girder bridge database) 
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    Subsequently, the output of convolutional layer is visualized in time domain and frequency 

domain in Figs 5.23 and 5.24. The data maintains the envelopes of waveforms of random 

vibration in Fig. 5.23. However, the PSD plots in Fig 5.24 cannot maintain the information of 

frequency component of the input data very well. For example, there is an obvious peak near 

3000 Hz in Channels 12 in Fig. 5.22, but in Fig. 5.24 the amplitude of the peak near 3000 Hz 

is very small. The phenomenon means that when using random vibration data to train a CNN, 

the convolution operation will discard some information. One possible explanation could be 

that CNN must find the most effective information from the random vibration data during 

training, thus CNN pays more attention to those features that have a great impact on the 

prediction results, and ignores the features that have little impact on the prediction results. To 

make easy comparison to the PSD plots of the max pooling layer output, the x axis of Fig. 5.24 

is limited in the range from 0 Hz to 1500 Hz as shown in Fig. 5.25. 

 

 

 

Fig. 5.23 convolutional layer output in time domain (example of the long steel girder bridge 

database) 
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Fig. 5.24 convolutional layer output in frequency domain (example of the long steel girder 

bridge database) 

 

 

 

Fig. 5.25 convolutional layer output in frequency domain in range of 0 Hz -1500 Hz 

(example of the long steel girder bridge database) 
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Finally, the output of the max pooling layer is visualized in both time domain and frequency 

domain in Figs. 5.26 and 5.27. By the max pooling operation, the negative components of the 

data are slightly shrunk as shown in Fig. 5.26 when comparing to the output of convolutional 

layer output presented in Fig. 5.23. In frequency domain of the output of the max pooling layer 

as shown in Fig. 5.27, most features are also remained after the pooling operation. For example, 

the peaks in approximate 700 Hz in Channels 1-4 are maintained from the output of the 

convolutional layer. 

In summary, the process of random vibration data flowing through the CNN for the long 

steel girder bridge are generally same to the cases of the T-shaped steel beam and the short 

steel girder bridge which use free damped vibration data as input data. Convolution and max 

pooling operations reduce the dimension of data and abstract features simultaneously. The only 

difference is that when using random vibration data as input or training data, more frequency 

components are ignored since the CNN must determine the most effective features from the 

complex raw data. 

 

 

 

Fig. 5.26 Max pooling layer output in time domain (example of the long steel girder bridge 

database) 
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Fig. 5.27 Max pooling layer output in time domain (example of the long steel girder bridge 

database) 

 

5.4 Variation of Data Structure in Each Layer  

    To understand the effect of each layer from the view of data structure, changes of data 

structure flowing through the CNN are investigated by visualizing the data structure variation 

of the CNNs for the three databases. 

 

5.4.1 Data structure visualization of the CNN for the T-shaped beam  

Data structures of the Fold 1 validation data of the T-shaped beam database from the input 

to the output via each hidden layer of the CNN are visualized in Figs. 5.28-5.33 by the T-SNE 

algorithm (introduced in Section 3.8) with same learning rates of 400. 

The T-SNE algorithm is a nonlinear data dimensionality reduction algorithm which preserve 

local structure of the database and projecting the data in a new low-dimensional space which 

is much easier to see the clusters of same categories of data. In this study, the raw vibration 

data which are in 90000-dimensional space remain close in the new 2-dimensional space. As 

the projecting is highly nonlinear, the 2 dimensions can be seen as 2 highly nonlinear feature 

sets which cannot be physically explained. 
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In Figs. 5.28-5.33, each scatter plots a datum in the validation set of the T-shaped beam 

database. Different colours of the scatters indicate different structural states of data. The 

distance between two scatters means the correlation or similarity of the two data. Close 

distance between the scatters shows high correlation or similarity of the data.  

Fig. 5.28 shows the data structure of the raw vibration data. The distribution of data in each 

structural state is highly discrete and irregular. Clear big clusters of a certain category of data 

of all the structural states are not formed.  

Fig. 5.29 shows the data structure of the convolutional layer output. The clusters of each 

structural state starts to gather. Comparing to the data structure of input data as shown in Fig. 

5.10, the obvious gap in Fig. 5.10 has been fulfilled.  

Fig. 5.30 is the data structure of the batch normalization layer output. The clusters of each 

structural state gather obviously. The overall data distribution is more compact and dense than 

the outputs of previous layers.  

Fig. 5.31 is the data structure of the max pooling layer outputs. The data distribution begins 

to change to discrete clusters. The clusters of each structural state begin to form.  

Fig. 5.32 is the data structure of the FC layer. Obvious isolated clusters of different structural 

state are visible, such as data in States 0, 1, 2, 4, 5, and 8.  

Fig. 5.33 is the data structure of the network outputs. Clusters of each structural states are 

classified with a shape of willow leaf. There is clear boundary between all the clusters. 

Overview Figs. 5.28-5.33, for one thing, the first several layers (convolutional layer, batch 

normalization layer, and max pooling layer) only change the data structure slightly while 

operating. The data structure after the fully connected layer changes obviously. To some 

extent, this phenomenon supports why some people use the network the before FC layer as 

feature extractor, and the network after the FC layer as classifier. For another, Figs. 5.28-5.33 

are evidences to show that the CNN can clearly define the boundary between each structural 

state and classify the structural state correctly, indicating good capacity of structural state 

identification of the CNN. 
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Fig. 5.28 Data structure of the input data (case of the T-shaped steel beam) 

 

 

 

Fig. 5.29 Data structure of the convolutional layer outputs (case of the T-shaped steel beam) 



Chapter 5: Visualization and Analyses of CNN Model 

81 

 

 

Fig. 5.30 Data structure of the batch normalization layer outputs (case of the T-shaped steel 

beam) 

 

 

Fig. 5.31 Data structure of the max pooling layer outputs (case of the T-shaped steel beam) 
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Fig. 5.32 Data structure of the FC layer outputs (case of the T-shaped steel beam) 

 

 

 

Fig. 5.33 Data structure of the network outputs (case of the T-shaped steel beam) 
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5.4.2 Data structure visualization of the CNN for the short steel girder bridge 

    The variation of data structure of the CNN model of the short steel girder bridge from the 

input to the output through the convolutional layer, batch normalization layer, max pooling 

layer FC layer, is visualized in Figs. 5.34-5.39 by the T-SNE method. 

    Overview the process of data structure variation as shown in Figs. 5.34-5.39, same 

phenomenon to the case of the T-shaped beam as introduced in Subsection 5.4.1 is presented, 

that in the first several layers (convolutional layer, batch normalization layer, and max pooling 

layer), the data structure only changes slightly comparing to the data structure of the input data. 

The dramatic data structure variation begins in the FC layer, and almost perfect clusters are 

obtained in the output layers, which shows the good performance of the CNN. 

    There is another interesting phenomenon that some data points are far away from the main 

group in the input, convolutional layer, and batch normalization layer. The reason should be 

the structural complexity of the short steel girder bridge is much higher than the T-shaped steel 

beam. Thus, there are more uncertainties of the structural response. Then after the max pooling 

layer those data points approach the main group, which demonstrates the good performance of 

the CNN to process the free damped vibration data acquired on a more complex structure. 

 

 

Fig. 5.34 Data structure of the input data (case of the short steel girder bridge) 
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Fig. 5.35 Data structure of the convolutional layer outputs (case of the short steel girder 

bridge) 

 

 

Fig. 5.36 Data structure of the batch normalization layer outputs (case of the short steel 

girder bridge) 
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Fig. 5.37 Data structure of the max pooling layer outputs (case of the short steel girder 

bridge) 

 

 

Fig. 5.38 Data structure of the FC layer outputs (case of the short steel girder bridge) 
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Fig. 5.39 Data structure of the network outputs (case of the short steel girder bridge) 

 

5.4.3 Data structure visualization of the CNN model for long steel girder bridge 

    The process of data structure variation of the CNN for the long steel girder bridge is also 

visualized by the T-SNE method as shown in Figs. 5.40-5.45. 

    Since the input data is the bridge response of the white noise excitation and traffic load with 

a large data shape of 20000×15, the complexity of the input data is much higher than the input 

data of the T-shaped beam database and the short steel girder bridge database which only 

consist of free damped vibration data. The data structures of the first several layers (input, 

convolutional layer, batch normalization layer, and the max pooling layer) are very complex 

as shown in Figs. 5.40-5.43. Highly discrete data points surround a core of data points. There 

is no clear small cluster of a certain category of data. The data structure changes dramatically 

in the FC layer. Clear clusters can be formed in Fig. 5.44. Some data of State 0 are wrongly 

clustered with data of State 1, the reason should be that the additional mass of State 1 is very 

close to the support and has very small effect to the structural state. Finally, the data structure 

of the output layer shows better clusters than the FC layer, even though there are overlapped 

area between the State 0 and State 1. The process of data structure variation also shows the 

CNN is also capable to process the complex random vibration data. 
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Fig. 5.40 Data structure of the input data (case of the long steel girder bridge) 

 

 

Fig. 5.41 Data structure of the convolutional layer outputs (case of the long steel girder 

bridge) 
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Fig. 5.42 Data structure of the batch normalization layer outputs (case of the long steel girder 

bridge) 

 

 

Fig. 5.43 Data structure of the max pooling layer outputs (case of the long steel girder bridge) 
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Fig. 5.44 Data structure of the FC layer outputs (case of the long steel girder bridge) 

 

 

Fig. 5.45 Data structure of the network outputs (case of the long steel girder bridge) 
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5.5 Conclusions  

In this chapter, visualizations of the CNN have been carried out. Some working mechanisms 

of the proposed CNN have been found. Firstly, the convolutional kernels extract and learn the 

vibration features in the acceleration data with approximately the same amplitude but different 

frequencies, computing the acceleration data as a band-pass filter. Secondly, the max pooling 

layer maintains the features of mode frequencies while reducing the size of the data. Finally, 

by observing the variation of data structure of the validation data flowing through each layer 

of the CNN, the effectiveness of structural state identification of the proposed CNN model has 

been proved. 
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Chapter 6 

Robustness Tests of the Classification CNN Model  

 

6.1 Introduction  

In Chapter 4, the sensitivity of CNN to small local structural changes has been proved. Very 

high accuracies of identifying trained local structural changes are obtained. However, two 

points are unclear in Chapter 4: (1) the performance of classification CNN model predicting 

data in untrained structural states; (2) the performance of the CNN model predicting data 

acquired in untrained temperature. Meanwhile, Chapter 2 shows the low robustness of the 

dynamic parameters to the temperature effects which is one the major difficulties of the 

conventional SDD methods. Thus, the author is very interested in the robustness of the CNN 

to both location of structural change and the temperature effect. 

In this chapter, robustness tests on (1) location of structural change and (2) temperature 

effect of the proposed classification CNN model have been performed. New vibration data 

acquired in untrained structural states and untrained temperature are fed into the classification 

CNN models to test the robustness of the proposed CNN model.  

Firstly, two rounds of tests are performed to investigate the robustness of the CNN to the 

location of structural change. In the first round of the robustness tests, the CNN models 

introduced in Section 4.2 are used, which are trained by the T-shaped beam database. In the 

second round of the robustness tests, new CNN models trained by extended T-shaped beam 

database have been used. The purpose of expanding the database is to increase the diversity of 

the data and the range of data distributions of each structural state to promote the performance 

of the CNN model. Secondly, tests of the robustness to the temperature effect is performed on 

the CNN for the short steel girder bridge. The robustness of the classification CNN models to 

locations of structural changes and temperature effect are tested and discussed. 

 

6.2. Tests of the Robustness to Locations of Structural Changes 

    The robustness tests of the proposed CNN to the locations of structural changes are 

performed on the T-shaped steel beam as introduced in Section 4.2. New vibration data 

acquired in untrained structural states are fed into the generated CNN models (also introduced 

in Section 4.2) to evaluate the robustness of the CNN to location of structural change. 
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6.2.1 Vibration experiment for test data generation 

A vibration experiment was carried out on the T-shaped steel beam introduced in Section 

4.2 to generate test data.  

The data acquisition system and the excitation method are all identical to the experiment 

introduced in Section 4.2. The only difference to the experiment in Section 4.2 is the locations 

of the additional mass. The layout of the experiments is shown in Fig. 6.1. The database 

generated in Section 4.2 is named Experiment 1 here, marked with blue rectangles (S1-S8). 

The new experiment is named Experiment 2, and the locations of the additional mass are S1’-

S9’, marked with orange rectangles, generating the test data for the robustness tests. The 

detailed data distribution is shown in Table 6.1. There are about 240 data in each structural 

state. In total the amount of test data is 2151. 

 

Fig. 6.1 Layout of the vibration experiments 

 

Table 6.1 Data distribution of test data 

Category  Amount  Category  Amount  

State 1’ 238 State 6’ 239 

State 2’ 239 State 7’ 239 

State 3’ 239 State 8’ 238 

State 4’ 239 State 9’ 240 

State 5’ 240   

In total   2151 
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6.2.2 Robustness tests (Round 1) 

6.2.2.1 Test set up 

To exam the capacity of the 1-D CNN models to identify untrained local structural changes, 

the test data in Table 6.1 are fed into the 5-fold models trained and introduced in Section 4.2.  

Here the author manually define that an accurate prediction should be in a range within the 

adjacent structural states. For example, the test data is in State 2’, thus both States 1 and 2 are 

accurate predictions. In another word, a sample with an error of less than ±10 cm is considered 

as a correct prediction.  

 

6.2.2.2 Results 

By evaluating the robustness with the correctness standard as defined in Subsubsection 

6.2.2.1, the detailed results of the robustness tests of the 5-fold models are shown in Figs. 6.2-

6.6, and the accuracies of the robustness tests are summarized in Table 6.2. 

 

 

Fig. 6.2 Confusion Matrix of the robustness test results of Fold 1 model (round 1) 
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Fig. 6.3 Confusion Matrix of the robustness test results of Fold 2 model (round 1) 

 

 

Fig. 6.4 Confusion Matrix of the robustness test results of Fold 3 model (round 1) 
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Fig. 6.5 Confusion Matrix of the robustness test results of Fold 4 model (round 1) 

 

 

Fig. 6.6 Confusion Matrix of the robustness test results of Fold 5 model (round 1) 
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Table 6.2 Accuracies of the robustness tests (Round 1) 

Model 
Amount of accurate 

predictions  
Accuracy (%) 

Fold 1  160  7.43 

Fold 2 284  13.2 

Fold 3 96   4.46 

Fold 4 182   8.46 

Fold 5 86 4.00 

Average  162 7.51 

 

 

It is expected that the prediction of the test data in untrained structural states should be the 

closest trained structural states, which are the diagonal and the upper secondary diagonal in 

Figs. 6.2-6.6. However, the test accuracies in all the 5 models are very low, with 162 accurate 

predictions and 7.51% accuracy on average, which shows the low robustness of the 

classification CNN models identifying untrained structural changes. Meanwhile, it was found 

that the results are more likely to be predicted as the intact state (S0). Therefore, the 

classification CNN models trained in Section 4.2 is not feasible to predict the structural state 

when vibration data is acquired in untrained structural state. 

 

6.2.3 Robustness tests (Round 2) with expanded training data 

    Generally, increasing the amount of training data is a common way to improve the 

performance of a neural network, since the network is able to learn wider range of the data 

distribution and more features. Therefore, in this subsection, new 1-D CNN models are trained 

with expanded training data to improve the robustness of the CNN models to identify untrained 

local structural changes. 

 

6.2.3.1 Introduction of the extended training data 

    To acquire additional training data, a new vibration experiment was performed on the T-

shaped steel beam as introduced in Section 4.2. The detailed procedures are totally identical to 

the experiment as introduced in Subsection 4.2.1. In total there are 9 structural states, which 

are S0, S1…, and S8, as shown in Fig. 4.4. The only difference is the amounts of data. The 

amounts of the new acquired data are shown in Table 6.3. By emerging the existed database 
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introduced in Table 4.2 and the newly acquired data in Table 6.3, an emerged database is 

generated. The data distribution of the emerged database is shown in Table 6.4. Therefore, the 

amount of data increased 15.24% (14465 → 16670) in the database. 

 

Table 6.3 The amounts of the newly acquired data  

Category  Amount  Category  Amount  

State 0 299 State 5 238 

State 1 238 State 6 239 

State 2 238 State 7 238 

State 3 239 State 8 238 

State 4 238   

In total   2205 

 

 

Table 6.4 Data distribution of the emerged database 

Category  Amount  Category  Amount  

State 0 1886 State 5 1860 

State 1 1833 State 6 1862 

State 2 1833 State 7 1857 

State 3 1850 State 8 1831 

State 4 1858   

In total   16670 

 

 

6.2.3.2 CNN models preparation 

After extending the amount of training data, new CNN models are trained and validated by 

using the new emerged database as introduced in 6.2.3.1. The CNN configurations are totally 

identical to the descriptions in Subsection 4.2.2. The only differences are the amounts of 

training and validation data. To follow the common way in Chapter 4, 80% of the new emerged 

database are used for training, and other 20% of the new emerged database are used for 

validation, with no overlap between the training set and validation set. Meanwhile, 5-fold 

validation is conducted to ensure the performance of the CNN models. 

The new CNN models are trained with very high accuracies, as shown in Table 6.5, with 

99.99% training accuracy and 99.68% validation accuracy on average. Those newly trained 

models are used to examine the robustness of identifying untrained local structural changes. 
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Table 6.5 Accuracies of 5-fold cross validation of models trained by the extended T 

-shaped steel beam database (%) 

 Training  Validation 

Fold 1 100.00 99.64 

Fold 2 99.99 99.58 

Fold 3 99.99 99.67 

Fold 4 100.00 99.67 

Fold 5 99.99  99.85 

Average 99.99 99.68 

 

 

6.2.3.3 Test set up 

The procedure of robustness tests follow the way as introduced in Subsubsection 6.2.2.1. 

The test data generated in Subsection 6.2.1 are fed into the CNN models trained by the emerged 

database as introduced in Subsubsection 6.2.3.1. To evaluate the robustness of the CNN model, 

same correctness standard is used as Subsubsection 6.2.2.1. 

 

6.2.3.4 Results 

The detailed results of the robustness tests of the new 5-fold CNN models are shown in Figs. 

6.7-6.11. As the same correctness standard as defined in Subsubsection 6.2.2.1 has been used, 

the predictions in the diagonal (except the S1’-S0 cell) and the upper secondary diagonal in 

Figs. 6.7-6.11 are correct predictions.  
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Fig. 6.7 Confusion Matrix of the robustness test results of Fold 1 model (Round 2) 

 

 

Fig. 6.8 Confusion Matrix of the robustness test results of Fold 2 model (Round 2)  
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Fig. 6.9 Confusion Matrix of the robustness test results of Fold 3 model (Round 2) 

 

 

Fig. 6.10 Confusion Matrix of the robustness test result of Fold 4 model (Round 2) 
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Fig. 6.11 Confusion Matrix of the robustness test results of Fold 5 model (Round 2) 

 

Overview Figs. 6.7-6.11, and comparing to the Round 1 results in Figs. 6.2-6.6, the Round 

2 results improved obviously. There are less negative errors in the Round 2 results. Meanwhile, 

there are also many correct predictions of the S3’ and S4’ data. The reason should be the 

increase of the amount of training data, so the CNN models learning more features of the 

vibration data, and determining more accurate boundary between the structural states. 

The amount of accurate predictions and accuracies of the robustness tests are summarized 

in Table 6.6. Comparing to the Round 1 results, the amount of average accurate predictions 

increased from 162 to 463, and the corresponding accuracy increased from 7.51% to 21.53%. 

The improvement of the robustness of identifying untrained structural changes proves the 

effectiveness of the operation of increase the amount of training data. However, the robustness 

of the model is still not high. Therefore, update of the CNN architecture should be pay more 

attention to improve the robustness of the CNN to location of structural change. 
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Table 6.6 Accuracies of the robustness tests (Round 2) 

Model Amount of accurate predictions  Accuracy (%) 

Fold 1  532 24.73 

Fold 2 424 19.71 

Fold 3 544 25.29 

Fold 4 346 16.09 

Fold 5 470 21.85 

Average  463 21.53 

 

 

6.3 Tests of the Robustness to Temperature Effect 

    The robustness tests of the proposed CNN to the temperature effect are performed on the 

short steel girder bridge as introduced in Section 4.3. New vibration data acquired in different 

temperature conditions to the training data are fed into the generated CNN models (also 

introduced in Section 4.3) to evaluate the robustness of the CNN to temperature effect. 

 

6.3.1 Vibration experiment for test data generation 

A vibration experiment was carried out on the short steel girder bridge as introduced in 

Section 4.3 to generate test data. The data acquisition system and the excitation method are all 

identical to the experiment introduced in Section 4.3. The layout of the experiments is also 

identical to in Fig. 4.10. In total there are 6 different structural states, which are State 0 for the 

original state, States 1-4 for 4 structural states with a steel plate fixed on 4 locations on the 

lower flange, and State 5 for the state of a mass block attached on the center of upper flange. 

The detailed data distribution is shown in Table 6.7. There are about 290 data in each structural 

state. In total the amount of test data is 1733. 

 

Table 6.7 The amounts of the newly acquired data  

Category  Amount  Category  Amount  

State 0 281 State 3 290 

State 1 286 State 4 291 

State 2 291 State 5 294 

In total   1733 
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    Owning to some technical problem, there no air temperature data acquired near the specimen. 

The air temperature data of the Amedas system is utilized as an alternative. Based on the 

author’s experience, the difference of air temperature between the local measurement and the 

Amedas system is approximate 3-5 °C in average. Thus, using the air temperature data of the 

Amedas system for qualitative study is also a practical way. Fig. 6.12 shows the air temperature 

information of the experimental days. The data introduced in Section 4.3 is acquired on 

2017.10.31 and 2017.11.1. The new test data is acquired on 2018.10.4. There is approximate 

1.5 °C - 15.8 °C temperature difference between the two experiments. 

 

 

Fig. 6.12 Temperature of the three experimental days on Amedas system 

 

6.3.2 Results 

    Feeding the newly acquired test data into the five generated CNN models introduced in 

Section 4.3, five sets of test results are obtained which are shown as confusion matrices in Figs. 

6.13-6.18. Overview these confusion matrices, the numbers of correct predictions are very 

small. Most data are wrongly predicted as State 3 or 4. The number of correct predictions are 

summarized in Table 6. The average number of correct predictions is 297, and the average 

accuracy is 17.15% which is just a little higher than randomly guessing the result (16.67%). 

Thus, the robustness of the CNN to temperature effect is very low. 
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Fig. 6.13 Confusion Matrix of the robustness test result of Fold 1 model  

 

 

 

Fig. 6.14 Confusion Matrix of the robustness test result of Fold 2 model  
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Fig. 6.15 Confusion Matrix of the robustness test result of Fold 3 model  

 

 

 

Fig. 6.16 Confusion Matrix of the robustness test result of Fold 4 model  
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Fig. 6.17 Confusion Matrix of the robustness test result of Fold 5 model  

 

Table 6.8 Accuracies of the robustness tests 

Model Amount of accurate predictions  Accuracy (%) 

Fold 1  299 17.25 

Fold 2 288 16.62 

Fold 3 297 17.14 

Fold 4 299 17.25 

Fold 5 303 17.48 

Average  297 17.15 

 

 

The reason of the low robustness of the CNN to the temperature effect should be same to be 

the reason of the low robustness of the dynamic parameters to the temperature effect as 

discussed in Chapter 2. Temperature influences the material properties, constrains, and support 

conditions of structure which vary the dynamic response of structure. Since the CNN has not 

been trained with these vibration data in diverse temperature conditions, the CNN are not able 

to identify the structural state correctly. Therefore, according to the above reason of the low 

robustness of the CNN to the temperature effect, an assumption of how to improve the 

robustness is proposed, that expanding the training data which are acquired in a wide range of 

temperature conditions. 
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6.3.3 Solution 

    Based on the assumption proposed in last paragraph, in this subsection, a new CNN is trained 

and validated to improve the robustness of the CNN to the temperature effect. The architecture 

and detailed settings of the CNN are all identical to the CNN as introduced in Section 4.3. The 

only differences are training data and validation data.  

    The data acquired in the first experiment (introduced in Subsection 4.3.1) is named Database 

1, and the data acquired in the second experiment (introduced in Subsection 6.3.1) is named 

Database 2. The training data of the new CNN consists of 80% of the Database 1 (6876) and 

80% of the Database 2 (1386). The validation data of the new CNN consists of other 20% of 

the Database 1 (1719) and other 20% of the Database 2 (347). In total, there are 8262 training 

data and 2066 validation data respectively. Note that there is no overlap between the training 

data and validation data. 

The CNN was trained for 100 epochs. The training history is shown in Fig. 6.18. The training 

process is very smooth. Finally, the training accuracy reached 100%, and the validation 

accuracy obtained 98.11%. The detailed validation result is shown as a confusion matrix in Fig. 

6.19. Most data are correctly predicted (2027 / 2066). The high validation accuracy proves the 

feasibility of the solution of improving the robustness of CNN to the temperature effect. 

 

 
Fig. 6.18 Training history of the new CNN  
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Fig. 6.19 Confusion Matrix of the validation results  

 

To observe the validation results deeply, the components of the validation results in Database 

1 and Database 2 are shown individually in Figs. 6.20 and 6.21. The component of Database 1 

has 1707 accurate predictions (1707 / 1719), with 99.3% validation accuracy. The component 

of Database 2 has 320 accurate predictions (320 / 347), with 92.22% validation accuracy. There 

are about 7% difference between the two validation accuracies. The reason should be the 

amounts of training data of the two databases are quite difference (6876 and 1386), with an 

approximate ratio of 5:1. The training data in Database 2 is insufficient to learn the maximum 

amount of features of data. Thus, the CNN learned more features from the training data in 

Database 1 than Database 2. If increasing the amount of training data in Database 2, the 

validation result could be easily improved. 
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Fig. 6.20 Confusion Matrix of the validation results in Database 1 

 

 

 

Fig. 6.21 Confusion Matrix of the validation results in Database 2 
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    Overview the proposed solution of improving the robustness of CNN to the temperature 

effects, the concept can be summarized as Fig. 6.22. For the structural state identification 

problem, a distribution which can well express the target structural state is desired. However, 

by using limited amount of training data only partial features of the data can be abstracted to 

establish an approximate distribution. By expanding the diversity of training data, which means 

training a CNN by using data acquired in different conditions, the established distribution will 

become closer to the target distribution. The process can be seen as continuous 

complementation and improvements. When the training data have enough high diversity, the 

established distribution can be infinitely close to the target distribution. Therefore, the way of 

improving the robustness of CNN to the temperature effect can be simply expending the 

training data in diverse temperature conditions, which overcome the low robustness of the 

dynamic parameters to the temperature effect of the conventional SDD methods as introduced 

in Chapter 2. 

 

 

Fig. 6.22 Illustration of the mechanism  

 

 

6.4 Conclusions 

    In this chapter, robustness tests of the proposed CNN to the location of structural change 

and temperature effect are performed.  

For the tests of the robustness to the locations of structural changes, a vibration database 

contains untrained structural states is established for the two rounds of tests. In the first round, 

the new test data are feed in the CNN models introduced in Section 4.2. The results show very 

low robustness of the CNN models. In the second round, the training data are extended, and 

new CNNs are trained for better universality. The robustness of the newly trained CNN models 
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is examined. The robustness of the Round 2 tests improved obviously, which indicating the 

effectiveness of the operation of increase the amount of training data. However, the robustness 

is still not high, and further development are needed. Thus, using classification CNN models 

are difficult to identify untrained local structural changes, and updates of the CNN architecture 

are needed. The content of updates of the CNN architecture is presented in Chapter 7. 

For the tests of the robustness to the temperature effect, a vibration database acquired in 

different temperature conditions was established. The CNNs show very low robustness to the 

temperature effect. To solve this problem, a solution is proposed that expanding the training 

data which are acquired in different temperature conditions. The solution is validated and very 

high accuracy of 92.22% is obtained. The approach of improving the robustness of the CNN 

based structural state identification method overcome the difficulty of the low robustness of 

the dynamics parameters to the temperature effect of the conventional SDD methods as 

discussed in Chapter 2. 
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Chapter 7 

Updates of the CNN Model 

 

7.1 Introduction  

Since the 1-D classification CNN models proposed in Chapter 4 use softmax outputs and 

one-hot encoding labels as introduced in Subsections 4.2.2, 4.3.2, and 4.4.2, the CNN models 

can only identify or classify limited discrete trained structural states with very high accuracies, 

as shown in Subsections 4.2.3, 4.3.3, and 4.4.3. Based on the robustness test results in Chapter 

6, the classification CNN models almost cannot predict approximate locations of the untrained 

structural changes accurately. 

Therefore, this chapter aims to update the performance of the 1-D CNN to identify untrained 

structural states with better expression of location of structural change and higher robustness. 

Based on the classification CNN model as introduced in Chapter 4, several updates of the CNN 

have been proposed as follows: 

 First, a regression CNN model has been proposed, which updates the encoding of labels 

and corresponding output layer of the CNN model. 

 Second, to further improve the robustness of the CNN to identify untrained structural 

states, a deep network with multi-convolution blocks and multi-task outputs has been 

proposed. 

 

 

7.2 Regression CNN Model 

7.2.1 Details of the regression CNN model 

The architecture of the regression CNN model is shown in Table 7.1. The architecture of the 

regression CNN model is almost same to the architecture of the classification CNN model as 

introduced in Subsection 4.2.2. Only the output layer and corresponding label encoding have 

been updated. The new label consists two units as shown in Fig. 7.1. The first unit is a value 

between 0 and 1 for the confidence of existence of structural change. The second unit is a value 

which is greater than 0 and less than 1 representing the relative location of structural change. 

The far left and the far right of the beam are 0 and 1. The updated output layer has only 2 units 
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corresponding to the new labels, and excited by the sigmoid function. The definition of the 

sigmoid function is shown in Equation 7.1, and corresponding figure is shown in Fig 7.2. 

 

 

Table 7.1 Configuration of the classification and regression CNNs 

Layers Output Shape Parameter Activation Variables 

Input Layer 10000×9 None None 0 

Convolution 1-D 9991×5 

Kernel number: 5; 

Kernel size: 10×9; 

Stride: 1; 

Padding: Valid 

Linear 455 

Batch normalization 9991×5 None None 20 

Max Pooling 1-D 3330×5 
Kernel number: 3; 

Stride: 1 
None 0 

Flatten 16650 None None 0 

Dropout 16650 Rate: 0.25 None 0 

FC 40 None ReLU 666,040 

Output 2 None Sigmoid 82 

Total parameters     666,597 

 

 

 

Fig. 7.1 Label of the regression CNN model 

 

 

𝑓(𝑥) =  
1

1+𝑒−𝑥                                                                  (7.1) 
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Fig. 7.2 Sigmoid function 

 

The loss function of the new regression CNN is changed to mean squared error, as introduced 

in Subsection 3.4.2. Other parameters, such as optimizer (Adam, learning rate: 0.0001, ρ1: 0.9, 

ρ2: 0.999, 𝛿: 1e-8, and decay: 0), initializers (weights: Variance Scaling, biases: zeros), and 

batch size (256) are all identical to the classification CNN model introduced in Section 4.2. 

 

7.2.2 Validation set up 

    To validate the capacity of the proposed regression CNN model, the databases of T-shaped 

steel beam introduced in Tables 6.1 and 6.4 in Chapter 6 are used. The database in Table 6.4 

consists of data in States 0-8, which are used for training the regression CNN model. The 

database in Table 6.1 consists of data in States 1’-9’ is used for validating the regression CNN 

model. For easy reading, the layout of the structural state is shown in Fig. 7.3, and the training 

and validation data are shown in Tables 7.2 and 7.3 once again. 

 

 

Fig. 7.3 Layout of the vibration experiments 
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Table 7.2 Data distribution of the Training data  

Category  Amount  Category  Amount  

State 0 1886 State 5 1860 

State 1 1833 State 6 1862 

State 2 1833 State 7 1857 

State 3 1850 State 8 1831 

State 4 1858   

In total   16670 

 

Table 7.3 Data distribution of validation data 

Category  Amount  Category  Amount  

State 1’ 238 State 6’ 239 

State 2’ 239 State 7’ 239 

State 3’ 239 State 8’ 238 

State 4’ 239 State 9’ 240 

State 5’ 240   

In total   2151 

 

    Based on the design concept of label as explained in Subsection 7.2.1, the encoding of the 

labels of data in each structural state are shown in Table 7.4. There are two units in each label. 

Unit 1 is the health confidence of the structure that “0” for intact and “1” for changed. Unit 2 

is the relative location of structural change. For instance, structural mass change of State 1’ 

occurred on 245 mm of the beam. Corresponding Unit 2 of label is 245 divided by the length 

of the beam 2090. Thus the Unit 2 is 0.117225. 

Table 7.4 Encoding of the labels 

Category  
Label 

Category  
Label 

Unit 1 Unit 2 Unit 1 Unit 2 

State 0 0 0 State 1’ 1 0.117225 

State 1 1 0.165072 State 2’ 1 0.212919 

State 2 1 0.260766 State 3’ 1 0.308612 

State 3 1 0.356459 State 4’ 1 0.404306 

State 4 1 0.452153 State 5’ 1 0.500000 

State 5 1 0.547847 State 6’ 1 0.595694 

State 6 1 0.643541 State 7’ 1 0.691388 

State 7 1 0.739234 State 8’ 1 0.787081 

State 8 1 0.834928 State 9’ 1 0.882775 
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7.2.3 Results 

The progress of training is evaluated by monitoring the error of the validation results. Here 

error is defined as Equation 7.2. The mean abstract error between the predicted locations of 

structural changes y and the Unit 2 of label 𝑦̂ in each epoch was calculated, and n represents 

the amount of validation data. The CNN model in each epoch has been saved. The model with 

minimum error is chosen to be used. 

 

𝐸 =  
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|𝑛

𝑖=1                                                             (7.2) 

 

The model has been trained for 5000 epochs. The error of model in each epoch during 

training is shown in Fig. 7.4. The model in Epoch 4435 has been used according to its minimum 

error of 0.254. 

 

 

Fig. 7.4 Error of the regression model in each epoch 

 

Fig. 7.5 is the predictions of the training data by using the regression CNN model in Epoch 

4435, which shows that the regression CNN model has learned the features of the training data, 

since in Fig. 7.5 only values close to 0 or 1 are outputted in the Unit 1, and in the Unit 2 all the 

predicted locations of structural changes are close to the actual locations.  
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Fig. 7.5 Prediction of the training data 

 

Fig. 7.6 shows the validation results of the regression CNN model in Epoch 4435. Generally, 

most data were correctly predicted as damaged cases. However, a large number of data in S8’ 

are wrong predicted in intact state. The mean error of the Unit 1 predictions is 0.068. For the 

Unit 2 of the predictions of the validation data, relative location of the structural damage, data 

in S4’, S5’, and S7’ show very good results that the predictions are mainly in the areas near the 

labels, indicating that for the validation data in S4’, S5’, and S7’, the regression CNN model 

can predict the correct damage locations even though those cases are not trained. The error of 

the Unit 2 of the predictions of the validation data in S2’, S3’, S6’ and S9’ are in a range with 

0.2 and 0.4 which are obviously higher than validation results of data in S4’, S5’, and S7’. The 

big errors of the predictions are in S1’ and S8’, since the structural changes on the two ends of 

the beam. The mean error of the predictions of the relative locations of structural is 0.254. 
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Fig. 7.6 Prediction of the validation data 

 

Here the definition of accurate prediction is identical to that introduced in Subsubsection 

6.2.2.1, that the predictions of structural states in adjacent locations of the actual structural state 

are considered as correct predictions. For example, the correct prediction of the validation data 

in State 2’can be either State 1 or State 2. In another word, a sample with an error of less than 

±10 cm is considered as a correct prediction. Thus, the amount of correct predictions of the 

regression CNN model is 607, and the accuracy is 28.22%, which shows better results than the 

classification CNN models as discussed in Section 6.2. 

Comparing the results of the regression CNN model to the results of the classification CNN 

model introduced in Section 6.2, firstly, better expression capacity of the CNN has been 

achieved by the regression CNN model, since the locations of structural changes of most data 

in States 4’, 5’, and 7’ are accurately predicted. While classification CNN model can only 

predict an approximate location of structural change to the best of its capacity in ideal condition. 

Secondly, since the regression CNN model use more 20% training data than the classification 

CNN model introduced in Subsection 6.2.3, the 6.69% accuracy increase shows good 

agreement of the phenomenon in Chapter 6 that, expanding training data is an effectiveness 

way to improve the performance of a CNN model. The classification model in Subsection 6.2.3 

tends to predict more data as S0 (intact) state than the regression model, and the regression 

CNN model predicts most data as non-S0 states correctly. Overall, the regression model shows 

better performance than the classification model when predicting data acquired in untrained 

states. 
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Moreover, even though the data in States 1’-3’, 6’, and 9’ are predicted in wrong locations, 

the data in each state are predicted in a small range of location, and data in different states are 

generally predicted in different range of locations. Above phenomenon shows the regression 

CNN model can classify the structural states of data, even though it fails to predict the accurate 

locations of structural change. In this case, the regression CNN doesn’t learn the right features 

of location of structural change, but it still demonstrates the sensitivity of the regression CNN 

to tiny structural changes successfully. 

 

 

7.3 Deep Network with Multi-Convolution Blocks and Multi-Task Outputs 

7.3.1 Motivation 

Chapter 4 presents the high accuracies of the classification CNN models for identifying tiny 

local structural changes in trained categories. Chapter 6 shows the low robustness of the 

classification CNN model identifying untrained structural states. Subsequently, a regression 

CNN model was proposed in Section 7.2 to improve the expression capacity of the 

classification CNN model and the robustness. Based on the previous results, in this section, 

multi-convolution block and multi-task outputs are designed, and a new network with two 

multi-convolution blocks and the multi-task outputs is proposed to further increase the 

robustness of CNN for identifying untrained structural states. 

One of the advantages of neural network is automatic feature abstraction of data. Thus, 

CNNs are widely used for feature extraction tasks. For CNNs, convolutional kernels work as 

receptive fields which are sensitive to corresponding size of features. A neural network with 

only single-size convolution kernel may not be sensitive to larger or smaller features of data, 

which may lead to low performance of the neural network. In order to make the networks 

sensitive to different sizes of features of data, convolutional blocks with different sizes of 

kernels were proposed for image classifications tasks by Google. Such as GoogLeNet with 

Inception V1-V4 blocks (Szegedy et al., 2015; Szegedy et al., 2016; Szegedy et al., 2017).  

For civil structures, when observing a free vibrating structure, the deflected shape can be 

expressed in terms of translational displacements at different levels (Clough and Penzien, 

2003). The displacement vector v for the structure can be developed by superposing suitable 

amplitudes of normal modes, which means summing the modal vectors as Eq. 7.3. Here φn is 

the mode-shape vector, and Yn is the modal amplitude. Eq. 7.4 shows that by using the mode 
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shapes and corresponding amplitudes, structure dynamic behavior can be expressed. If extend 

the 1-D weight vector Yn to a 2-D weight matrix Ynt with a time dimension, the procedure of 

structural vibration vt can be described as mode-shape vector φn multiplied by 2-D weight 

matrix Ynt. Expression of above approach is very similar to the mechanism of neural network. 

Since the mechanism of a neural network approximating a function is also mainly based on 

summing the features of data multiplied by different weights.  

 

𝑣 =  ∅1𝑌1 +  ∅2𝑌2 + ⋯ + ∅𝑁𝑌𝑁 =  ∑ ∅𝑛𝑌𝑛
𝑁
𝑛=1                                         (7.3) 

 

𝑣𝑡 =   ∑ ∅𝑛𝑌𝑛𝑡
𝑁
𝑛=1                                                               (7.4) 

 

If considering vibration data from the view of data science, the normal modes of the structure 

should be dominant features. Generally, vibration measurement data consists of discrete 

acceleration samples. To show an example, Fig. 7.7 plots of a free damped vibration data of 

the steel beam introduced in Section 4.2, and the power spectral density of the measurement 

data is shown in Fig. 7.8. As we know, power spectral density describes the distribution of 

power into frequency components composing the signal, and frequency response functions 

reach extreme values approximately at the natural frequencies. In Fig. 7.8, natural modes can 

be identified on 184 Hz, 424 Hz, 636 Hz, 670 Hz, and 798 Hz, where have obvious peaks of 

magnitude and are marked with red scatters. Thus, Fig. 7.8 also can be explained as summing 

diverse features multiplied by different weights, which has the same concept as neural network. 

 

  

Fig. 7.7 Waveform of a vibration data  
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Fig. 7.8 Power spectral density the data 

 

Meanwhile, according to the Nyquist-Shannon sampling theorem, the sampling rate has to 

be at least twice as high as the maximum frequency of interested modes. It is an evidence to 

show that: there is a limitation of the size of scoop to identify the interested mode. Thus, the 

author got the question that: when designing a CNN, should the CNN have different sizes of 

kernels which are sensitive to different sizes of features of vibration data accordingly? 

Therefore, based on the results of previous works as introduced in Chapters 4, 6, and 7, and 

learning the experience from GoogLeNet, a deep network with multi-convolution blocks and 

multi-task outputs was proposed to fit the vibration-based structural state identification task, 

and was validated on the databases of the T-shaped steel beam. 

 

7.3.2 Network details 

    The detailed architecture of the network is shown in Fig. 7.9. The network consists of three 

parts: two multi-convolution blocks, hidden layers, and multi-task output layers. The 

parameters of the three parts are shown in Tables 7.5-7.7 respectively.  
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Fig. 7.9 Architecture of the network with multi-convolution blocks and multi-task outputs 
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Table 7.5 Architecture of the multi-convolution blocks 

 Convolutions 

 Conv_1 Conv_2 Conv_3 Conv_4 Conv_5 Conv_6 

Kernel length 10 20 30 50 80 100 

Number of 

kernel 
5 5 5 5 5 5 

Strides 1 1 1 25 40 50 

Padding valid valid valid valid valid valid 

Batch 

Normalization  
True True True True True True 

Max pooling 

Strides 
3 3 3 3 3 3 

Parameters 1 475 925 1375 2275 3625 4525 

Parameters 2 275 525 775 1275 2025 2525 

Total Para.      20,600 

 

 

Table 7.7 Architecture of the multi-task output layers 

Output 1 

Layer Output Shape Parameter Activation Variables 

FC 32 None ReLU 2080 

FC 16 None ReLU 528 

Output 1 2 None Softmax 34 

Output 2 

Layer Layer Layer Layer Layer 

FC 32 None ReLU 2080 

FC 16 None ReLU 528 

Output 2 1 None Sigmoid  17 

Total 

parameters 
   666,884 
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Table 7.6 Architecture of hidden layers 

Layer Output Shape Parameter Activation Variables 

Convolution 

1-D 
10522×5 

Kernel number: 

5; 

Kernel size: 

10×9; 

Stride: 1; 

Padding: Valid 

Linear 255 

Batch 

normalization 
10522×5 None None 20 

Max Pooling 

1-D 
3507×5 Strides: 3; None 0 

Convolution 

1-D 
1749×5 

Kernel number: 

5; 

Kernel size: 

10×9; 

Stride: 1; 

Padding: Valid 

Linear 255 

Batch 

normalization 
1749×5 None None 20 

Max Pooling 

1-D 
583×5 Strides: 3; None 0 

Convolution 

1-D 
192×5 

Kernel number: 

5; 

Kernel size: 

10×9; 

Stride: 1; 

Padding: Valid 

Linear 255 

Batch 

normalization 
192×5 None None 20 

Max Pooling 

1-D 
64×5 Strides: 3; None 0 

Flatten 320 None None 0 

Dropout 320 Rate: 0.25 None 0 

FC 128 None ReLU 41,088 

FC 64 None ReLU 8259 

Total 

parameters 
   50,172 
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    The multi-convolution block consists of 6 parallel convolutional units with different kernel 

sizes and strides to fit different sizes of features, as shown in Table 7.5. The kernel lengths are 

in a range between 10 to 100. The first three convolutional units are designed for capturing 

small features of sizes, with only 1 stride. The last three convolutional units are designed for 

capturing large features, and the strides are set to half of the kernel length. Finally, the 6 parallel 

convolutional units are concatenated vertically to output. In the proposed network, two multi-

convolution blocks have been used in the beginning. 

    The hidden layers are common layers of a typical feed-forward neural network, as shown in 

Table 7.6. Data flows through the layers straightly. Three convolutional units stack together in 

front of the flatten layer with 0.25 dropout ratio. Then data propagates to the two FC dense 

layers. 

    The multi-task outputs are updated according to the new label encoding, as shown in Fig. 

7.10 and Table 7.7. One output is in one-hot encoding for a binary classification task, indicating 

the structure in intact or changed state. The other output has only one unit, representing the 

relative location of structural change. The detailed label encodings of each structural state are 

shown in Table 7.8. 

 

 

 

Fig. 7.10 Label encodings of the network with multi-task outputs 
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Table 7.8 Encoding of labels 

Category  
Label 

Category  
Label 

Task 1 Task 2 Task 1 Task 2 

State 0 1 0 0 State 1’ 0 1 0.117225 

State 1 0 1 0.165072 State 2’ 0 1 0.212919 

State 2 0 1 0.260766 State 3’ 0 1 0.308612 

State 3 0 1 0.356459 State 4’ 0 1 0.404306 

State 4 0 1 0.452153 State 5’ 0 1 0.500000 

State 5 0 1 0.547847 State 6’ 0 1 0.595694 

State 6 0 1 0.643541 State 7’ 0 1 0.691388 

State 7 0 1 0.739234 State 8’ 0 1 0.787081 

State 8 0 1 0.834928 State 9’ 0 1 0.882775 

 

 

    There are two different loss functions for the two output tasks. The loss function of the first 

output (structural state) is categorical cross entropy, named L1. The loss function of the second 

output (relative location of structural change) is mean squared error, named L2. The total loss 

of the network is the sum of the two losses multiplied by different weights. In the network, the 

total loss is calculated as Equation 7.5. The weights 1 and 3 are determined by trial and error. 

As the relative locations of structural changes are paid more attention, when descending the 

gradient of the CNN, the loss of relative locations of structural changes (Unit 2) should have 

high weight than the structural state (Unit 1). Therefore, the multi-task outputs were designed 

to manually assign the ratio of each loss component of the two tasks. 

 

L = L1 × 1 + L2 × 3                                                             (7.5) 

 

    The optimizer of the network is SGD. The learning rate is 0.0005 with decay of 1e-6, and 

momentum of 0.9 with Nesterov momentum applied.  

    All the weights in the network are initialized with Variance Scaling initializer, and all the 

biases are initialized with zeros.  
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7.3.3 Validation set up 

The validation set up is totally identical to those introduced in Section 7.2. The training data 

and validation data are acquired from the T-shaped steel beam. Local structural changes are 

different between the training data and the validation data. The locations of structural changes 

are shown in Fig. 7.3. The detailed data distributions of training data and validation data are 

shown in Tables. 7.2 and 7.3. 

The model has been trained for 9800 epochs. The error of the average relative location of 

local structural changes of model in each epoch has been monitored. The definition of error is 

identical to that introduced in Section 7.2, that a sample with an error of less than ±10 cm are 

considered a correct prediction. The models with local minimum error are used for the 

structural state identification 

 

7.3.4 Results 

    The error of the model in each epoch is shown in Fig. 7.11. There are two obvious local 

minimum errors which are marked with red scatters in Fig. 7.11. One is the model of Epoch 

2824 with 0.160 error, and the other is the model of Epoch 5709 with 0.155 error. Therefore, 

above two models are used for validating the robustness of the network. The training results 

and validation results of the above two models are shown in Figs. 7.12-7.15. The amounts of 

accurate predictions and accuracies are summarized in Table 7.9. 

 

 

Fig. 7.11 Error of model in each epoch 
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Fig. 7.12 Training result of the model in Epoch 2824 

 

 

 
Fig. 7.13 Validation result of the model in Epoch 2824 
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Fig. 7.14. Training result of the model in Epoch 5709 

 

 
Fig. 7.15 Validation result of the model in Epoch 5709 

 

 

Table 7.9. Accuracies of the validation results 

Model 
Amount of accurate 

prediction  
Accuracy (%) 

1  1343 62.43 

2 1481 68.85 

Average  1422 65.64 
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    Comparing the validation results of the networks with multi-convolution blocks and multi-

task outputs to the regression CNN model discussed in Section 7.2, the accuracies are 

obviously increased from 28.22% to 65%. More data can be predicted accurately, such as data 

in States 6’ and 8’. The results show the improvement of the performance of network for 

structural state identification. Meanwhile, the feasibility of using the multi-convolution blocks 

and multi-task outputs for structural state identification task is proved. 

 

7.4 Conclusions  

    This chapter aims to improve the expression capacity and the robustness of the classification 

CNN model to identify untrained local structural changes. Several updates of the network are 

proposed. 

    Firstly, a regression CNN model is proposed, which redefines the encoding of labels and 

corresponding output layer in the CNN model. The results of the robustness tests show higher 

accuracy than the classification CNN models as shown in Chapter 6, which proves the 

effectiveness of using regression form of label and output layer for structural state 

identification task. 

    Secondly, to further improve the robustness of the CNN model, the CNN is going deeper 

with multi-convolution blocks and multi-task outputs. Higher results of the robustness tests are 

obtained comparing to all the previous results. The accuracy reaches 65%, which shows the 

effectiveness and rationality of using multi-convolution block and multi-task outputs in the 

CNN for structural state identification.  
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Chapter 8 

Conclusions and Future Works 

8.1 Conclusions  

    The rapid deterioration of the bridges has become a major global problem. To address on the 

above problem, this study proposed a vibration-based structural state identification method by 

using Deep Learning. This study aims to boost the development of new Deep-Learning-based 

SHM and SDD schemes, and promote the development of technology that guarantees human’s 

daily safety. 

    In Chapter 1, the backgrounds of rapid deterioration of the infrastructure, SHM and SDD 

technologies, Deep Learning in civil engineering, conventional vibration-based SDD 

methodologies, and Deep-Learning-based SDD methodologies are introduced respectively. 

The purposes and layout of the thesis are also explained.  

    In Chapter 2, a series of vibration experiments are performed on a ballasted multi-span 

concrete railway bridge. In the first eight experiments, the railways and sleepers have been 

removed. In the last experiment, all the subsidiary elements (ballasts, walkways, handrails) of 

the bridge are removed. The acceleration data are acquired, and dynamic parameters are 

identified. Several conclusions are drawn as follows: 

 First, all the basic dynamic parameters, such as natural frequencies, damping ratios, and 

mode shapes, are not stable indicators to present accurate structural state. The dynamic 

parameters are easily biased by the environmental changes, measurement errors, or 

other uncertainties. The robustness of the dynamic parameters to the temperature effect 

is very low. Thus, the dynamic parameters are difficult to be used as indicators of small 

local structural changes. 

 Second, only arbitrary signal processing methods have been used to analyze the 

vibration data. The vibration data cannot be used effectively. Designing an indicator for 

identifying small local structural changes by using Deep Learning is highly needed. 

 

    In Chapter 3, the basic concept of Deep Learning is introduced. Subsequently, layers of 

neural network, mechanisms of learning, loss functions, optimizers, are explained in detail. 

Then, the layout of using Deep Learning for structural state identification is interpreted. 

Meanwhile, the mechanisms of SVM and T-SNE are also explained. 
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In Chapter 4, a 1-D CNN is developed to identify structural states by using raw vibration 

data. The proposed CNN is validated on three independent databases, based on a T-shaped 

steel beam (in lab), a short steel girder bridge (in test field), and a long steel girder bridge (in 

service) respectively. The structural states are varied by affixing additional elements on the 

structures. The proposed 1-D CNN accurately identified the different structural states in all 

the databases.  

 First, the proposed 1-D CNN model is very sensitive to tiny changes in the local 

stiffness and mass values. Very high accuracies (99.79%, 99.36% and 97.23% in the T-

shaped beam, the short steel girder bridge, and the long steel girder bridge experiments, 

respectively) are obtained even by the very simple CNN architecture. Such sensitivity 

demonstrates the high applicability potential of 1-D CNN models to detect structural 

damages in actual bridges in future phases.  

 Second, the CNN-based method identifies structural states without pre-processing, 

post-processing, or manual feature extraction of the acceleration data. The raw 

acceleration data are directly input to the CNN. Feature extraction and structural state 

identification are also automated by the CNN. 

 Third, the CNN has good inclusiveness for different excitation methods, since the 

vibration data acquired on the long steel girder bridge is excited by white noise with the 

component of traffic load. 

 

In Chapter 5, the mechanism of the proposed CNN is investigated by visualizing the 

convolutional kernels and the outputs of the convolutional layer and the max pooling layer. 

Meanwhile, variation of the data structure flowing through the CNN via each layer is visualized 

by the T-SNE method. Following conclusions are drawn from the results: 

 First, it is found that the convolutional kernels learn the vibration features with 

approximately the same frequencies but different amplitudes in each channel. The 

convolutional kernels perform as band-pass filters that properly fit the target structure 

and vibration data of the SDD problem.  

 Second, the convolutional and max pooling layers extracted and maintained the features 

but adjusted the amplitudes of the modes, improving the expressions of the features. 
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 Third, by observing the variation of data structure flowing through the CNN via each 

layer visualized by the T-SNE method, it is found that clusters of data in each structural 

state can be formed, and clear boundary between each structural state can be determined. 

The variation of data structure proves the effectiveness of using CNN for structural state 

identification. 

 

In Chapter 6, robustness of the proposed CNN to the locations of structural changes and 

temperature effect are tested. In the beginning, two rounds of tests are performed on the T-

shaped steel beam to evaluate the robustness of the CNN to the location of structural change. 

The vibration data acquired from the T-shaped steel beam in untrained structural states have 

been used for examining the robustness of the classification CNN models. In the first round of 

robustness tests, the test data were fed into the CNN models trained in Section 4.2. In the 

second round of robustness tests, new CNN models trained by expanded database were used. 

Subsequently, the robustness of the proposed CNN to the temperature effect is investigated by 

feeding the test data acquired in different temperature conditions into the existed CNNs of the 

short steel girder bridge. Also a solution is proposed to improve the robustness of the CNN to 

the temperature effect. The conclusions are as follows: 

 First, the classification CNN models has very low robustness to locations of structural 

changes, that the CNNs cannot have good performance to predict the approximate 

locations of the untrained structural changes. When the training data is not sufficient, 

the CNNs tend to predict the data in intact structural state (State 0). 

 Second, increasing the amount of training data can improve the robustness of the CNN 

to the locations of structural changes. However, if only small amounts of training data 

are extended, the improvement of CNN model performance is also very limited. 

Therefore, updates of the architecture of the CNN model are needed. 

 Third, the robustness of the CNN model to temperature effect is very low. Fortunately, 

the robustness to temperature effect can be easily improved by expanding the training 

data acquired in a wide range of temperature conditions. Thus, the difficulty of the 

conventional SDD method which caused by the low robustness of the dynamic 

parameters to the temperature effect can be overcome by using the CNN based 

structural state identification method. 
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In Chapter 7, to improve the performance of the CNN model for identifying local structural 

changes in untrained locations, some updates of the CNN model are proposed. Firstly, a 

regression CNN model is proposed which changes the output layer and corresponding label 

encoding of the classification CNN model introduced in Chapter 4. Secondly, to further 

improve the performance of the CNN model, a deep network with two multi-convolution 

blocks and multi-task outputs is proposed. Validations are carried out on the networks. Some 

conclusions are drawn as follows: 

 First, the regression CNN model predict the locations of structural changes of many data 

in the inner area of the beam successfully. However, the structural changes in the two 

ends of the beam tend to be predicted with big errors. Overall, the regression CNN model 

has better expression capacity than the classification CNN model when predict the data 

in untrained categories, indicating the effectiveness of the regression encoding of label.  

 Second, comparing the deep network to the classification CNN model in Chapter 4 and 

the regression CNN model in Section 7.2, the performance and the robustness of the deep 

network increase obviously. The effectiveness and feasibility of using the multi-

convolution blocks and multi-task outputs for structural state identification are proved. 

 

 

8.2 Future Works 

Future work will target the limitations of the proposed structural-state identification method.  

First, the resolution of detecting local changes in the structural state by the proposed CNN 

must be clarified.  

Second, the experiments in this thesis have been performed by short-term measurements in 

relatively stable conditions, unlike most bridge SHM projects which measure the vibration 

continuously with more uncertainties. Thus, for future applications of the proposed CNN on 

long-term monitored bridges, representative training data could be acquired in various 

conditions to test the robustness of the CNN model.  

Third, all supervised learning cases require a large volume of labeled training data to build a 

high-performance CNN. In other words, based on the success of supervised learning by the 

proposed CNN method, the labeled data burden of the CNN must be reduced by developing 

semi-supervised or unsupervised learning algorithms for SDD problems. 
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Fourthly, no vibration data acquired on actual damaged structural is used in these study, since 

the high difficulty of acquirement. To address this problem, vibration data of actual damaged 

structural states will be simulated by using FE models. 

Finally, this thesis only proposed a method of identifying a single location of structural 

change. The method of identifying multiple structural changes by using Deep Leaning should 

be updated in future works. 
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