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Abstract 

 

This thesis deals with the coordinated frequency control method of hybrid onshore power system 

by using variable speed wind turbines with permanent magnet synchronous generators (VSWT-

PMSGs) based offshore wind farm (OWF), which is connected to the main onshore grid through 

voltage source converter (VSC) based high voltage DC (HVDC) transmission system. Penetration 

of large-scale WF into the power grid has increased significantly and it inevitably leads to the 

retirements of conventional synchronous generators (SGs). Thus, the frequency fluctuations of the 

power system due to the high penetration of WF is a major concern. Therefore, to maintain the 

frequency stability of the power system WF is required to operate like conventional unit. They 

need not only supply power to the grid, but also need to damp frequency fluctuations. Therefore, 

the interaction of large-scale WF along with the existing power system is an important issue to be 

analyzed in order to minimize the frequency fluctuations.  

Normally, VSWT-PMSG is preferable for OWF due to its gear-less feature, brushless 

operation, and lower losses compared to doubly fed induction generator (DFIG). Additionally, to 

integrate large-scale OWF into the onshore grid, VSC-HVDC transmission system is attractive 

and more preferable than high voltage AC (HVAC) transmission system from an economic and 

technical point of view. Normally, detailed model of VSC-HVDC is used in the simulation analysis, 

which requires, however, large computational time due to the switching phenomena of the power 

converters. Therefore, detailed model of the VSC-HVDC should be simplified in the analysis in 

order to diminish complexity and long simulation time. In this thesis, a simplified model of VSC-

HVDC transmission system is developed for fast dynamic simulation analysis. Comparative 

analysis between the proposed simplified and detailed models of VSC-HVDC is also performed 

and presented. The simulation results show that the proposed simplified model of VSC-HVDC has 

sufficient accuracy for analyzing dynamic characteristics. 

Usually, the characteristics of VSWT-PMSG based OWFs are different from that of the 

conventional power plants. To contribute to the primary frequency regulation in a similar way to 

conventional SGs, the VSWT-PMSG based OWF requires additional active power control loop 

and primary reserve.  In this case, power reserve is possible by operating the VSWT-PMSGs at a 

reduced power level instead of maximum power point tracking (MPPT) mode which is called 



 

ii 

 

deloaded operation. Therefore, this thesis proposes firstly a primary frequency regulation method 

of hybrid power system by fixed deloaded operation of PMSG-based OWF. A new centralized 

droop control technique is also embedded for VSWT-PMSGs based OWF connected through 

VSC-HVDC transmission system to damp frequency oscillation of the main power grid in which 

a large-scale of WF composed of fixed speed wind turbines with squirrel cage induction generators 

(FSWT-SCIGs) and photovoltaic (PV) power station are installed. The centralized droop control 

technique is implemented with the dead band to limit the frequency variation within the 

permissible limit. Thus, better frequency regulation performance can be achieved.  

The active power injected to the grid system from OWF is reduced by a fixed ratio at all times 

in the fixed deloaded operation, and hence, the energy loss become large. Therefore, this thesis 

also proposes secondly a centralized frequency control scheme with a novel variable deloaded 

operation for VSWT-PMSGs based OWF connected to the onshore grid through VSC-HVDC 

transmission system. This is one of the salient features of this thesis. A centralized droop controller 

with dead band is designed for VSWT-PMSGs to utilize this reserve power to suppress the 

frequency fluctuations of the onshore grid due to the installations of large-scale FSWT-SCIGs 

based WF and PV power station. The combination of variable deloaded operation and centralized 

droop controller can give better frequency regulation and decrease energy loss. To verify the 

effectiveness of the proposed control system, simulation analyses are performed on a multi-

machine hybrid power system model. The simulation results reveal that the variable deloaded 

operation can decrease the energy loss compared to the fixed deloaded operation as well as 

suppress the frequency fluctuations in the same level as the fixed deloaded operation.        

   Simulations are carried out by PSCAD/EMTDC software. Real wind speed data and solar 

irradiance data measured in Hokkaido Island, Japan, are used in the simulation analyses to obtain 

the realistic responses. The standard IEEE nine-bus model is used to evaluate the performance of 

the proposed control strategies.  

Considering all the features, it is concluded that the frequency oscillation can be minimized 

effectively by the proposed control strategies of PMSG.  
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Chapter 1 

Introduction 

1.1 Renewable Energy 

      Conventional fossil fuel based energy sources like coal, oil and natural gas has been proven to 

be highly effective drivers of economic growth. Due to the rapid depletion of conventional energy 

sources and increasing energy demand, primary energy consumption has grown by 1.8% 

worldwide [1, 2]. In spite of that, the conventional power plants generate air pollutants (e.g.  

Sulphur dioxide, nitrogen oxide and carbon dioxide), which are initiating serious environmental 

problems [3]. Consequently, global warming and acid rain are observed as main reasons of the 

environmental pollution [4-6]. Thus, conservation of the environment has become the main 

inspiration to integrate more renewable energy sources (RESs) in power systems.    

       RESs are energy sources that are repeatedly refilled by nature and generated directly from the 

sun (i.e. thermal, photo-chemical, and photo-electric), indirectly from the sun (i.e. wind, 

hydropower, and photosynthetic energy stored in biomass), or from other natural movements and 

mechanisms of the environment (i.e. geothermal and tidal energy) [7-10]. RES does not include 

energy resources resulting from fossil fuels, and does not waste products from fossil sources. Fig. 

1.1 shows an overview of renewable energy sources [11, 12]. 

 

 

Fig. 1.1. Classification of RESs.  

 

Renewable power generating capacity saw its largest annual increase ever in 2017, raising 

total capacity by almost 9% over 2016 [13]. Overall, renewables accounted for an estimated 70% 
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of net additions to global power capacity in 2017, due in large part to continued improvements in 

the cost-competitiveness of solar photovoltaic (PV) and wind power [13]. Solar PV led the way, 

accounting for nearly 55% of newly installed renewable power capacity in 2017 [13]. Wind (29%) 

and hydropower (11%) accounted for most of the remaining capacity additions [13]. Several 

countries are successfully integrating increasingly larger shares of variable renewable power into 

electricity systems. Renewable-based stand-alone and off-grid single home or mini-grid systems 

represented about 6% of new electricity connections worldwide between 2012 and 2016 [13]. 

Table 1.1 illustrates the total installed capacity of RESs in worldwide [13].  

 

Table 1.1. Total installed capacity of RESs in 2016-2017.  

 2016 2017 

Renewable power capacity (including hydro) 2,017 GW 2,195 GW 

Renewable power capacity (not including hydro) 922 GW 1,081 GW 

Hydropower capacity 1,095 GW 1,114 GW 

Bio-power capacity 114 GW 122 GW 

Bio-power generation (annual) 501 TWh 555 TWh 

Geothermal power capacity 12.1 GW 12.8 GW 

Solar PV capacity 303 GW 402 GW 

Concentrating solar thermal power (CSP) capacity 4.8 GW 4.9 GW 

Wind power capacity 487 GW 539 GW 

Ocean energy capacity 0.5 GW 0.5 GW 

 

1.2  Context of Wind Power Penetration Worldwide 

       Since 2001 wind energy has become ongoing trend of renewable energy resource in market 

and industry highlights. Figs. 1.2 and 1.3 show the total annual and global installed capacity of 

wind power in 2001-2017 reported by global wind energy council (GWEC) [14].   

More than 52,000 MW of clean, emissions-free wind power was added in 2017 [14], 

bringing total installations to 539,123 MW globally which will reach over 840,000 MW by the end 

of 2022 [14].  

According to GWEC, the ten leading countries represent together a total share of 85% of the 

cumulative global wind capacity as shown in Fig. 1.4. The PR China represents by far the largest 

wind markets. By the end of 2017, China has had an overall installed capacity of around 188,232 
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MW. In second place, the US had total installed capacity of around 89,077 MW at the end of 2017. 

Also, Germany is in the third position with 56,132 MW cumulative installed capacity at the end 

of 2017.   

 

Fig. 1.2. Global annual installed capacity of wind power in 2001-2017.   

 

Fig. 1.3. Global cumulative installed capacity of wind power in 2001-2017.   
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Country MW % Share 

PR China* 19,500 37 

USA 7,017 13 

Germany 6,581 13 

UK 4,270 8 

India 4,148 8 

Brazil* 2,022 4 

France 1,694 3 

Turkey 766 1 

Mexico 478 1 

Belgium 467 1 

Rest of the World 5,630 11 

Total Top 10 

World Total 

46,943 

52,573 

89 

100 

 

Fig. 1.4. New and cumulative installed capacity of wind power of top 10 countries in 2017 [14].  

 

1.3  Scenarios of Offshore Wind Farm Worldwide 

 

       Offshore wind power (OWP) or offshore wind energy is the use of wind farms (WFs) 

constructed in bodies of water, usually in the ocean on the continental shelf, to harvest wind energy 

to generate electricity. Higher wind speeds are available at offshore compared to on land, so OWP 

can achieve higher electricity generation per amount of capacity installed than onshore wind power 

[15].  

      

Top 10 New Installed Capacity Jan-Dec 2017
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Mexico Belgium Rest of the World

Top 10 Cumulative Capacity Dec 2017

PR China* USA Germany India

Spain UK France Brazil*

Canada Italy Rest of the World

Country MW % Share 

PR China* 188,232 35 

USA 89,077 17 

Germany 56,132 10 

India 32,848 6 

Spain 23,170 4 

UK 18,872 3 

France 13,759 3 

Brazil* 12,763 2 

Canada 12,239 2 

Italy 9,479 2 

Rest of the World 83,008 15 
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At the end of 2017, the total worldwide OWP capacity was 18.8 GW [16]. Fig. 1.5 shows the 

cumulative offshore wind capacity in 2011-2017 reported by GWEC [16].  Fig 1.6 illustrates the 

global cumulative offshore wind capacity for 2017 reported by GWEC [16]. According to GWEC, 

the offshore segment had a record year with 4,334 MW of installations, an 87% increase on the 

2016 market, bringing total global installations to 18,814 MW, and representing a 30% increase in 

cumulative capacity. Offshore is still only about 8% of the global annual market, and represents 

about 3.5% of cumulative installed capacity, but it is growing quickly [16]. 

     Projections for 2020 estimate an offshore WF (OWF) capacity of 40 GW in European waters, 

which would provide 4% of the European Union's demand of electricity [17]. The European Wind 

Energy Association has set a target of 40 GW installed by 2020 and 150 GW by 2030 [18]. OWP 

capacity is expected to reach a total of 75 GW worldwide by 2020, with significant contributions 

from China and the United States [19]. The organization for Economic co-operation and 

development (OECD) predicted in 2016 that OWP will grow to 8% of ocean economy by 2030 

[20]. Fig. 1.7 illustrate the global forecast projects for offshore wind development [16]. 

 

 

Fig. 1.5. Global cumulative installed capacity of OWP in 2011-2017. 
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Fig. 1.6. Global cumulative installed capacity of OWP for 2017. 

 

Fig. 1.7. Offshore wind development globally out to 2030 [16]. 

 

1.4  Background of the Thesis 

       Due to the drawback of the conventional power plants based on fossil fuels and their negative 

impacts on the environment, recently the attention on RESs has been increasing all over the world. 

Solar PV is a popular type of RES which will occupy an important place and supply nearly 28% of 

all the overall energy demand [21-25], until 2040. Also, penetration of gird-connected OWF has 

5,156

4,108

1,627

1,271
1,118

712

202 99 32 60 35 30 25 0 5 2 0
0

1000

2000

3000

4000

5000

6000 MW



 

7 

 

been increasing since the last decade because of the stronger and steadier wind resources in offshore 

areas compared to onshore sites [16, 26-28].  

          However, grid integration issues of OWFs could seriously impact the operation and stability 

of their interconnected onshore power system. OWFs are located, in general, several 10s km or 

more far from the onshore grid connection point. It is a great challenge for both WF developer and 

transmission system operator (TSO) to transmit hundreds of MW OWP over such a long distance. 

Most commonly, high voltage AC (HVAC) transmission systems are used for the integration of 

OWFs to the onshore power grid. However, there can be a case in which HVAC is not suitable from 

an economical and technical points of view. 

To integrate large-scale OWF into the onshore grid, voltage source converter based high 

voltage DC (VSC-HVDC) transmission system is attractive and more preferable than HVAC 

transmission system from an economic and technical point of view [29], especially in the case of 

very long transmission system. VSC-HVDC system has some advantages, i.e. lower cable losses, 

independent and fast control of active and reactive power, and stabilization potential of connected 

AC networks [30-35].   

The use of VSC-HVDC for connecting OWF to onshore grid has been reported already in 

some literature [36-39]. In [36, 37], the WF considered is composed of fixed speed induction 

generators. In [38], synchronous generators (SGs) are used in the OWF. Doubly fed induction 

generator (DFIG) is chosen as wind generator for OWF in [39]. 

       However, permanent magnets synchronous generator (PMSG) is becoming very popular 

nowadays as variable speed wind generator. In PMSG, the excitation is provided by permanent 

magnets instead of field winding. Permanent magnet machines are characterized as having large air 

gaps, which reduce flux linkage even in machines with multi magnetic poles [40]. As a result, low 

rotational speed generators can be manufactured with relatively small sizes with respect to its power 

rating. Moreover, gearbox can be omitted due to low rotational speed in PMSG wind generation 

system, resulting in low cost. Also the amplitude and frequency of the generator voltage can be 

fully controlled by the converter [41-52]. Therefore, variable speed wind turbine (VSWT) with 

PMSG (VSWT-PMSG) is preferable for OWF compared to DFIG. 

    Simulation analysis in PSCAD/EMTDC software of detailed model of VSC-HVDC connecting 

OWF to the onshore multi-machine power system requires large computational time due to the 
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switching phenomena of the power converters. Therefore, detailed model of the VSC-HVDC 

should be simplified in the analysis to diminish complexity and long simulation time. 

         As mentioned earlier, large number of wind turbine generators (WTGs) have been already 

connected to the existing power grid and in the near future the penetration ratio will increase more 

[53-57]. This large penetration of RESs into the existing grid has introduced some vulnerabilities 

to the power grid [58-61].  Due to increasing penetration of OWF and PV stations into the grid 

system certainly leads to the retirements of conventional synchronous generators (SGs) [62]. Thus, 

the frequency fluctuations due to varying output of WFs and PV stations have become a major 

concern [62]. 

Normally, the frequency fluctuation is damped by the conventional units, which are equipped 

with automatic generation control (AGC) or load frequency control (LFC) system [63]. Therefore, 

to maintain the frequency stability of the power system with large penetration ratio of RESs, RESs 

are required to operate like conventional units. They need to not only supply power to the grid, but 

also need to damp frequency fluctuations [62, 64]. One possible solution is a frequency control by 

OWF.  

For the frequency regulation of the onshore grid system, the VSWT-PMSG-based OWF 

connected to the onshore grid through VSC-HVDC transmission system should have sufficient 

power reserve. In this case, power reserve is possible by operating the VSWT-PMSGs at a reduced 

power level instead of MPPT mode which is called deloaded operation [65]. Many researchers have 

focused on the primary reserve implementation by the fixed level of deloaded operation of VSWT 

with some auxiliary control loop [66-101]. For example, the deloaded operation is performed by 

the modified pitch angle control of VSWT-PMSG in [66-67,79, 85, 94]; the rotor speed controller 

is used for the deloaded operation in [68, 78, 87, 89]; and the over-speeding and pitching techniques 

are used for the deloaded operation of wind turbines in [69-75, 101]. However, in the above 

mentioned schemes for the deloaded operation, output power injected to the grid system from OWF 

is reduced by a fixed ratio at all times, and hence, the energy loss becomes large. Therefore, a 

variable deloaded operation is needed in order to decrease the energy loss as well damping the 

frequency fluctuations, in which deloading level is variable. 
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1.5   Scope and Contributions 

        The main purpose of this thesis is the design of centralized frequency control scheme with a 

novel variable deloaded operation for VSWT-PMSGs based OWF connected to the onshore grid 

through VSC-HVDC transmission system to damp frequency fluctuations of the onshore grid, in 

which a large-scale WF composed of fixed speed wind turbines with squirrel cage induction 

generators (FSWT-SCIGs) and solar PV station are installed. In order to improve the frequency 

stability of hybrid power system, the control system modeling of variable speed wind generators 

and system design are important issues in this thesis. The results of this study are expected to 

provide valuable contributions in the following aspects: 

(1) This thesis presents a simplified model of VSC-HVDC transmission system for dynamic 

simulation study. Normally, simulation analysis in PSCAD/EMTDC software of detailed 

model of VSC-HVDC connecting OWF to the onshore multi-machine power system 

requires large computational time due to the switching phenomena of the power 

converters. Therefore, detailed model of the VSC-HVDC should be simplified in the 

analysis to diminish complexity and long simulation time. In this thesis, a simplified 

model of VSC-HVDC transmission system is developed for fast dynamic simulation 

analysis. The simulation results show that the proposed simplified model of VSC-HVDC 

system has sufficient accuracy because there is almost no difference among the 

simulation results for the both simplified and detailed models. 

(2) The behaviour of the VSWT-PMSG based OWF differs from the conventional SGs. 

Conventional SGs can control the frequency fluctuations by governor-free (GF) 

operation and LFC. In order to participate the primary frequency regulation, the VSWT-

PMSG based OWF needs additional power controller and primary reserve. Therefore, 

this thesis presents a new centralized droop control technique for VSWT-PMSGs based 

OWF connected through VSC-HVDC transmission system to damp frequency 

oscillation of the main power grid in which a large scale of WF composed of FSWT-

SCIGs is installed. The centralized droop control technique is implemented with the dead 

band to limit the frequency variation within the permissible limit. The fixed deloaded 

control strategy is firstly adopted with the centralized droop controller to provide primary 

reserve. Thus, better frequency regulation performance can be achieved. The validity of 

the proposed coordinated control scheme is verified by simulation analysis using 
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PSCAD/EMTDC software on a model system composed of SGs, FSWT-SCIGs based 

WF, and VSWT-PMSGs based OWF. 

(3) However, in the above mentioned schemes for the fixed deloaded operation, output 

power injected to the grid system from OWF is reduced by a fixed ratio at all times, and 

hence, the energy loss becomes large. Therefore, this thesis proposes a centralized 

frequency control scheme with a novel variable deloaded operation for VSWT-PMSGs 

based OWF connected to the onshore grid through VSC-HVDC transmission system to 

damp frequency fluctuations of the onshore grid, in which a large-scale WF composed 

of FSWT-SCIGs and solar PV station are installed. In the frequency control method, the 

variable deloaded operation is proposed in order to decrease the energy loss, in which 

deloaded level is variable (from 0% to 10%). The variable deloaded level is achieved by 

designing a variable gain based on the standard deviation of the frequency fluctuations 

of the onshore grid. A centralized droop controller with dead band is designed for 

VSWT-PMSGs to utilize this reserve power to suppress the frequency fluctuations of the 

onshore grid. The effectiveness of the proposed centralized frequency controller 

equipped with the variable deloaded function is verified through simulation analysis 

using PSCAD/EMTDC software on a modified IEEE nine-bus system composed of 

VSWT-PMSGs-based OWF connected to the onshore system through VSC-HVDC 

transmission line, FSWT-SCIGs based onshore WF, PV power station, and conventional 

SGs. 

1.6 Outline of the Thesis 

Chapter 2 provides the detail of the wind turbine generator system. The general overview 

and energy extraction from a wind turbine is also described. Then the pitch angle controller models 

are discussed extensively. Finally, different types of WTGs topologies are presented.  

Chapter 3 presents the simplified model of VSC-HVDC transmission system for dynamic 

simulation study. Detailed design procedure of the proposed simplified model is discussed in this 

chapter. To evaluate performance of the derived simplified model of VSC-HVDC, simulation 

analysis is performed on a multi-machine power system model composed of VSWT- PMSGs, 

VSC-HVDC, and SGs. Comparative analysis between the proposed simplified model and the 

detailed model of VSC-HVDC is also performed and presented in this chapter.  
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Chapter 4 introduces a coordinated frequency control method for VSWT-PMSGs based 

OWF, which is connected to the main onshore grid through VSC-HVDC transmission system. A 

novel centralized droop controller with constant deloaded operation is designed for VSWT-

PMSGs to minimize the frequency fluctuations of the main power system.  

 The overall design procedure of the proposed centralized frequency control technique, 

PMSG model along with control system, and power system model are discussed and presented in 

this chapter. The effectiveness of the proposed centralized frequency controller with constant 

deloaded operation is verified through simulation analysis on a modified IEEE nine-bus system.  

Chapter 5 describes a novel variable deloaded operation of VSWT-PMSGs based OWF to 

maintain primary reserve, which is connected to onshore grid through VSC-HVDC transmission 

system. A centralized droop controller with variable deloaded operation is designed for VSWT-

PMSGs to utilize this reserve power to suppress the frequency fluctuations of the onshore grid due 

to the installations of large-scale FSWT-SCIGs based wind farm and PV power station. The 

effectiveness of the proposed variable deloaded operation and centralized droop controller is 

verified through simulation analyses on a modified IEEE nine-bus test system.  

Finally, Chapter 6 summarizes the findings and concludes the thesis.  
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Chapter 2 

Wind Turbine Model 

 This chapter describes the detailed modeling of wind turbine. First, a brief overview of 

wind turbine generation system and power extraction from a practical wind turbine are presented. 

Then, the pitch angle controllers for both fixed speed and variable speed wind turbine system are 

discussed.  Finally, the different types of wind turbine technologies are discussed.  

 

2.1   Wind Turbine Generator System 

         A wind turbine generator system is a rotating device that extracts the energy in the wind into 

the electrical energy. The modern wind turbine generator systems are primarily constructed as 

system with a wind turbine of horizontal axis rotation, generator along with gear box and rotor 

break located in nacelle, and tower as depicted in Fig 2.1 [102]. The turbine captures power from 

wind and drives a generator. The tower supports the nacelle and usually contains the electrical 

conduits and yaw motor.  

 

Fig. 2.1. Wind turbine generator system.  
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Different parts of the wind turbine generator system are shown in Fig 2.2. The modern 

wind turbine (sometimes called the rotor), mostly has three blades. Wind blowing over the blades 

causes the blades rotate. Wind speed is measured by using anemometer, and its data is transmitted 

to the controller. A disc brake can be applied mechanically, electrically, or hydraulically to stop 

the rotor in emergencies. Wind vane measures wind direction and communicates with the yaw 

drive to orient the turbine properly with respect to the wind. The yaw drive is used to keep the 

rotor facing into the wind as the wind direction changes. 

 

 

Fig. 2.2.  Different parts of wind turbine generator system [103]. 

 

The modern wind turbine generator system can operate as fixed speed or variable speed. The 

fixed speed wind turbines (FSWT) are equipped with a squirrel cage rotor or wound rotor induction 

generators (referred as FSWT-SCIG). This type of wind turbine is designed to achieve maximum 

efficiency at one specific wind speed. FSWT-SCIG has often two stator windings which are used 

at low and high wind speed respectively in order to increase power production. In variable speed 

wind turbines (VSWT), it is possible to control continuously the rotational speed of the wind 

turbine according to the wind speed. By this way, the maximum aerodynamic efficiency can be 

achieved over a wide range of wind speed [104]. The VSWT is typically equipped with a 

permanent magnet synchronous generator (PMSG) (referred as VSWT-PMSG). 
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2.2 Wind Power Output  

        The extracted mechanical power in a wind turbine can be expressed as [40]: 

                       ),(5.0
32  pww CVRP                                                                         

(2.1) 

          where, Pw is the captured wind power, ρ is the air density (kg/m3), R is the radius of the 

rotor blade (m), Vw is the wind speed (m/s), and Cp is the power coefficient. 

           The value of Cp can be calculated as follows [105]: 
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           where, Tw is the wind turbine torque, β is the pitch angle, and λ is the tip speed ratio. 

Moreover, c1 through c6 are the characteristic coefficients of the wind turbine (c1 = 0.5176, c2 = 

116, c3 = 0.4, c4 = 5, c5 = 21, and c6 = 0.0068) [106], and ωr is the rotational speed of the wind 

turbine (rad/s). 

The Cp vs λ characteristics shown in Fig. 2.3 are obtained using Equation (2.2) with different values 

of the β. When β is equal to zero degrees, the optimum power coefficient (Cpopt) is 0.48, and the 

optimum tip speed ratio (λopt) is 8.1. 

 In VSWTs, the ωr is controlled to follow the maximum power point tracking (MPPT). 

Since the precise measurement of wind speed is difficult, it is better to calculate the maximum 

power without measuring the wind speed. The MPPT power (PMPPT) for VSWT-PMSG can be 

expressed as follows [40]: 
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Fig. 2.3.  Cp vs λ characteristics of the wind turbine for various pitch angles. 

  

 

Fig. 2.4.  Wind turbine characteristics for PMSG with MPPT line. 

 

 Based on this equation, the wind turbine characteristics for PMSG with MPPT is illustrated 

in Fig. 2.4.  
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 2.3   Pitch Angle Controller Model      

Wind power extraction by wind turbines depends on wind speed, and thus, output power of 

a wind generator always fluctuates due to variations in wind speed. For maintaining the output 

power of the generator below the rated level, two pitch angle controllers are considered in this 

thesis for FSWT with squirrel cage induction generator (FSWT-SCIG) and VSWT-PMSG as 

shown in Figs. 2.5 and 2.6.  

 

Fig. 2.5.  Pitch controller for FSWT-SCIG. 

 

 

Fig. 2.6.  Pitch controller for VSWT-PMSG. 

 

The pitch angle control system for FSWT is used so that the SCIG output does not exceed 

the rated power, whereas for VSWT, it is used for controlling the rotor speed of PMSG not to 

exceed the maximum speed (rated ωr of PMSG). In all of the pitch control systems, a PI controller 

is used to track the error signal. 

 

β
Kp = 400

Ti = 0.08
PSCIG

1.0 pu

β*min

β*max

Rate Limiter

PI Controller

 

    

Actuator

β
Kp = 300

Ti = 10
ωr

1.0 pu

β*min

β*max

Rate Limiter

PI Controller

 

    

Actuator



 

18 

 

  2.4 Different Types of Wind Turbine Technology      

  2.4.1 FSWT-SCIG Technology 

 The schematic diagram of FSWT-SCIG is depicted in Fig. 2.7. The overall model consists 

of wind turbine, gearbox, grid-connected SCIG, capacitor bank and soft-starter. The wind turbine 

captures the wind power at its blades and converts it to the mechanical energy. Finally, this 

mechanical power is converted to the electrical power of the grid voltage and frequency by SCIG. 

The rotor speed of a SCIG varies according to the amount of power generated.  

 

Fig. 2.7.  Configuration of FSWT-SCIG. 

 

The rotor speed variations of SCIG are, however, very small, approximately 1 to 2 % of the 

rated speed. Normally, the rotational speed of the generator is relatively high compared with that 
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will be activated when the active power output of SCIG is greater than the rated condition.  

The FSWT-SCIG technology is the simplest wind turbine technology which has many 
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However, low aerodynamic efficiency, high mechanical stress during gusty wind speeds, and 

difficulties in adapting to new grid compliances, such as low voltage ride-through (LVRT) and 

reactive power support, are the shortcomings of this concept. 

 

Fig. 2.8.  Configuration of VSWT-PMSG. 

 

 

2.4.2 VSWT-PMSG Technology 

The schematic diagram of VSWT-PMSG is shown in Fig. 2.8. A direct-drive PMSG wind 

turbine uses a synchronous generator whose rotor is excited by permanent magnets. The stator 

terminal is connected to the grid through a full rating AC/DC/AC converter based on the two levels 

of insulated gate bipolar transistors (IGBTs). The large number of poles mounted on the rotor 

allows the generator to operate at low speeds, which means that the gearbox can be omitted, and 

the generator is directly coupled with the wind turbine. The AC/DC/AC converter is composed of 

machine side converter (MSC) and grid side converter (GSC). The three phase AC output is 

converted to the DC voltage by using MSC and finally the DC voltage is converted to the AC 

voltage of the grid voltage and frequency by using GSC. The full-scale AC/DC/AC converter 

controls the generated power and the power flow to the grid. In addition, it decouples the electrical 

grid frequency and the mechanical rotor frequency, and thus the variable speed generation can be 

possible. 
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2.5 Chapter Conclusion 

In this chapter, an overview of the wind turbine system followed by power extraction is 

explained. Then the pitch angle controller models for FSWT-SC and VSWT-PMSG are described. 

Finally, the different types of wind turbine technologies are briefly stated.  
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Chapter 3 

Simplified Model of HVDC Transmission System Connecting 

Offshore Wind Farm to Onshore Power Grid  

 

        This chapter presents a simplified model of voltage source converter based high voltage DC 

(VSC-HVDC) transmission system for dynamic simulation study. The aim of the simplified model 

is to diminish the complexity and simulation time of the analysis of grid integrated offshore wind 

farm (OWF) connected through VSC-HVDC transmission line. This is because simulation analysis 

of OWF based on the detailed VSC-HVDC model needs very large computation time. To evaluate 

performance of the derived simplified model of VSC-HVDC, simulation analysis is performed on 

a multi-machine power system model composed of variable speed wind turbines with permanent 

magnet synchronous generators (VSWT-PMSGs), VSC-HVDC, and synchronous generators 

(SGs). Comparative analysis between the proposed simplified model and the detailed model of 

VSC-HVDC is also performed and presented. The simulation results show that the proposed 

simplified model of VSC-HVDC has sufficient accuracy for analyzing dynamic characteristics. 

 

3.1   Introduction 

    Penetration of OWFs into the power system has been increasing significantly since the last 

decade. OWFs tend toward large capacity to make good use of the stronger winds [26-28]. But 

grid integration issues of OWFs could seriously impact the operation and stability of their 

interconnected onshore power system. OWFs are located, in general, several 10s km or more far 

from the onshore grid connection point. It is a great challenge for both WF developer and 

transmission system operator (TSO) to transmit hundreds of MW offshore wind power over such 

a long distance. Most commonly, high voltage AC (HVAC) transmission systems are used for the 

integration of OWFs to the onshore power grid. However, there can be a case in which HVAC is 

not suitable from an economical and technical points of view. 

  On the other hand, VSC-HVDC transmission becomes more attractive and practical to 

integrate large-scale OWFs into the onshore power grid, due to its high capacity, advanced 

controllability, lower cable losses, independent and fast control of active and reactive power, and 

stabilization potential for AC networks [30-35].   
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   The use of VSC-HVDC for connecting OWF to onshore grid has been reported already in 

some literature [36-39]. In [36, 37], the WF considered is composed of fixed speed induction 

generators. In [38], SGs are used in the OWF. Doubly fed induction generator (DFIG) is chosen 

as wind generator for OWF in [39].  

    However, PMSG is becoming very popular nowadays as variable speed wind generator. In 

PMSG, the excitation is provided by permanent magnets instead of field winding. Permanent 

magnet machines are characterized as having large air gaps, which reduce flux linkage even in 

machines with multi magnetic poles [40]. As a result, low rotational speed generators can be 

manufactured with relatively small sizes with respect to its power rating. Moreover, gearbox can 

be omitted due to low rotational speed in PMSG wind generation system, resulting in low cost. 

Also the amplitude and frequency of the generator voltage can be fully controlled by the converter 

[41-52]. Therefore, WF composed of VSWT-PMSG is considered in this study.   

    Simulation analysis in PSCAD/EMTDC software of detailed model of VSC-HVDC 

connecting OWF to the onshore multi-machine power system requires large computation time due 

to the switching phenomena of the power converters. Therefore, detailed model of the VSC-HVDC 

should be simplified in the analysis to diminish complexity and long simulation time. 

         In this chapter, a simplified model of VSC-HVDC transmission system is developed for fast 

dynamic simulation analysis. Real wind speed data measured in Hokkaido Island, Japan, is used 

in the simulation analyses to obtain the realistic responses. Also, comparative analysis of dynamic 

characteristic between the proposed simplified and the detailed models is performed by using 

PSCAD/EMTDC software.   

 

3.2 Power System Model 

          Fig. 3.1 depicts the power system model considered in the analysis, which is composed of 

nine-bus main system and two WFs. The nine-bus system consists of two thermal power plants 

(SG1 rated at 300MVA and SG2 rated at 200MVA) and a hydro power plant (SG3 rated at 

100MVA). SG1 is operated under load frequency control (LFC). SG2 and SG3 are operated under 

governor free (GF) control. LFC is used to control frequency fluctuation with a long period more 

than a few minutes, and GF is used to control fluctuation with a short period less than a minute.  

         The IEEE type AC4A excitation system model shown in Fig. 3.2 [109] is used for all SGs. 

The parameters of IEEE type AC4A excitation system model are taken from [109]. Fig. 3.3 shows 
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the thermal governor model used in SG1 and SG2 [110]. The hydro governor model used for SG3 

is shown in Fig 3.4 [110]. The values of 65M and 77M are presented in Table 3.1. 

 

 

Fig. 3.1.  Power system model. 

 

 
Fig. 3.2.  IEEE type AC4A excitation system model. 
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Fig. 3.3.  Thermal governor model.  

 

 

Fig. 3.4.  Hydro governor model. 

 

 

 

Fig. 3.5.  LFC model. 
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[%], Pm: the turbine output [pu]. Fig. 3.5 shows the LFC model used in this study. The LFC sends 

the output value signal to the power plant (SG1) after detecting frequency deviations. Then, 

governor output value (65M) of the power plant is changed by LFC signal, and the power plant 

output is changed. 

Table 3.1. Values of 65m and 77M. 

SG1 

(Thermal) 

Frequency 

control 

65M 77M 

LFC LFC signal 1 

SG2 

(Thermal) 

Frequency 

control 

65M 77M 

GF 0.80 0.84 

SG3 

(Hydro) 

Frequency 

control 

65M 77M 

GF 0.80 0.84 

 

Table 3.2. Parameters of conventional SGs and wind generators. 

 

SGs PMSG SCIG 

Parameters  SG1 SG2 SG3 MVA 20 (each) MVA 20 

(each) 

Rated 

Power 

300 

MVA 

200 

MVA 

100 

MVA 

Rst 0.02 pu R1 0.01 pu 

Voltage 16.5 kV 18 kV 13.8 kV Ldst 0.96 pu X1 0.1 pu 

Ra 0.003 pu 0.003 pu 0.003 pu Lqst 0.76 pu Xm 3.5 pu 

Xl 0.1 pu 0.1 pu 0.1 pu Ѱm 1.4 pu R21 0.035 

pu 

Xd 2.11 pu 2.11 pu 1.20 pu H 3.0 s R22 0.014 

pu 

Xq 2.05 pu 2.05 pu 0.700 pu   X21 0.03 pu 

X`d 0.25 pu 0.25 pu 0.24 pu   X22 0.089 

pu 

X``d 0.21 pu 0.21 pu 0.20 pu   H 1.5 s 

X``q 0.21 pu 0.21 pu 0.20 pu       

T`do 6.8 s 7.4 s 7.2 s         

T``do 0.033 s 0.033 s 0.031 s         

T``qo 0.030 s 0.030 s 0.030 s         

H 4.0 s 4.5 s 4.3 s         
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Fig. 3.6.  Layout of OWF connected to the main power system through 400 kV VSC-HVDC transmission 

system. 

 

 
 

Fig. 3.7.  Layout of FSWT-SCIGs based WF. 
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         An OWF is connected to bus 6 through 400kV VSC-HVDC transmission system as depicted 

in Fig. 3.6. The length of the HVDC transmission line is 300km. The OWF is composed of five 

VSWT-PMSGs (rated at 20MW each). The simplified model of VSWT-PMSG and its control 

system presented in [105] are used in this study. Another WF is connected to bus 5 of the main 

system as depicted in Fig. 3.7. This WF is composed of five fixed speed wind turbine with squirrel 

cage induction generators (FSWT-SCIGs). The capacity of each FSWT-SCIG is 20MW. It is 

connected to the grid system through transformers and double circuit transmission line. Each 

VSWT-PMSG and FSWT-SCIG represents aggregated model. The aerodynamic model of wind 

turbine is described in Chapter 2. The parameters of conventional SGs, PMSG and SCIG are 

presented in Table 3.2 [105, 111]. 

 

3.3  Modeling and Control Strategy of PMSG 

       The overall block diagram of VSWT-PMSG model is shown in Fig. 3.8. In this study, the 

simplified model is used to decrease the simulation time [105].  

 

Fig. 3.8.  Simplified model of VSWT-PMSG. 

 

PMSG Model

SSC

DC-link

Model

GSC

LCL Filter

model

 IdstVdst

Vw Vdc

Pst

Iabc

r

Idg

Pg

DC-link

Protection

Controller

PRC

Wind Turbine

and

Drive Train

Models

Pitch

Controller

Vdq  Vabc

Idq  Iabc

Power meter

Vabc

Vdg

Vdic

Vdc

Idg

Terminal 

Grid

Current 

Source

To

Grid

System

Vqst Iqst Vqic Iqg

Vdg Vqg

Qg

Pst

Vqg

Iqg

Qst

Pg

Qg

Vdc



 

28 

 

       The model consists of mechanical part, electrical part, and control system part. The 

mechanical part includes wind turbine and drive train models; the electrical part includes PMSG, 

DC-Link circuit, and LCL filter models; and the controller system part includes pitch controller, 

DC-Link circuit protection controller, stator side controller (SSC), grid side controller (GSC), and 

the interface with grid system. The interface inputs the terminal grid voltage to the simplified 

model and injects the output current from the simplified model to the grid system through a three 

phase current source [105]. 

 

3.3.1 Stator Side Controller (SSC) 

         The block diagram of SSC is depicted in Fig. 3.9, which controls the active and reactive 

power of PMSG by controlling the q-axis stator current (Iqst) and the d-axis stator current (Idst), 

respectively. SSC consists of four conventional PI controllers to compensate different error signals. 

Power reference (Pref) is obtained from MPPT controller with the power losses reduced. The 

reactive power reference (Qst*) is set to zero for unity power factor operation.  

 

3.3.2 Grid Side Controller (GSC) 

          The block diagram of GSC is shown in Fig. 3.10, which controls the DC-Link voltage (Vdc) 

and the reactive power delivered to the grid system (Qg) by controlling the q-axis current (Iqg) and 

the d-axis current (Idg) of LCL filter output current, respectively. The four PI controllers are used 

to track the different error signals.   

 

Fig. 3.9.  Block diagram of SSC. 
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Fig. 3.10.  Block diagram of GSC. 

 

3.4 VSC-HVDC Transmission System Model 

3.4.1 Detailed Model of VSC-HVDC System 

          Block diagram of the detailed model of VSC-HVDC system along with its control system is 

shown in Fig. 3.11. It consists of rectifier and inverter based on the two levels of Insulated Gate 

Bipolar Transistor (IGBT) which are controlled by Rectifier Controller (RC) and Inverter 

Controller (IC). The Pulse Width Modulation (PWM) technique is used in the detailed model of 

VSC-HVDC system for both inverter and rectifier. The carrier frequency is 3.0 KHz. 

   

Fig. 3.11. Detailed model of VSC-HVDC system. 
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Three phase AC voltage generated by the OWF is rectified to DC voltage through the 

rectifier. Three phase current (Ir), voltage (Vr), active power (Pr), and reactive power (Qr) are 

detected on the offshore side AC system. The rectified DC voltage is transmitted to the onshore 

side. The transmitted DC voltage is converted again into AC voltage through the onshore side 

inverter. The grid current (Ig), grid voltage (Vg), and reactive power (Qg) are detected on the 

onshore side AC system. 

 

 3.4.1.1 Rectifier Controller System   

             Block diagram of the RC is illustrated in Fig. 3.12. The aim of the RC is to ensure the 

normal operation of VSC-HVDC connection based OWF. The rectifier station must establish an 

AC voltage of stable amplitude and frequency for the local grid of OWF. The voltage magnitude 

and phase of OWF are controlled by d-axis current (Ird) and q-axis current (Irq) of VSC-HVDC 

rectifier system. The voltage magnitude reference is chosen as 1.0 pu and voltage phase reference 

is set to 0.0 degree for stable operation of OWF. 

 

 

Fig. 3.12. Rectifier controller system. 
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           Fig. 3.13 shows the IC. The controller is used to control the reactive power (Qg) delivered 

to the onshore grid and keep the dc-link voltage (Vdc) constant by using d-axis (Igd) and q-axis 

Ird
Ir

Iabc

Idq Vabc

Vdq

Irq
r

PI 4

PI 2

PI 3

PI 1

θ

Vrd*

Vrq*

Vr*Vr

θr

Phasor

Vr PLL rθ

Magnitude

Phase

Phase* = 0.0

Magnitude* = 1.0 pu



 

31 

 

(Igq) currents of VSC-HVDC inverter system respectively. The reactive power reference is set to 

0.0 pu for unity power factor operation. 

 

 

Fig. 3.13.  Inverter controller system. 
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of the detailed model and computation time for simulation analysis. The accuracy level of dynamic 

characteristics in this context refers to the ability of the simplified model to characterize active and 

reactive power output in the both offshore side and onshore side, and dc-link voltage performances 

under wind speed variations. 

         A configuration of simplified model of VSC-HVDC system with its control system is 

depicted in Fig. 3.14. The controlled voltage sources are used both in offshore side and onshore 

side instead of rectifier and inverter to remove the complexity of the switching devices. As a result 

of that, the simulation time will be reduced significantly. 

3.4.2.1 Rectifier Controller System   

     The rectifier side voltage source is controlled by RC as illustrated in Figs. 3.12 

3.4.2.2 Inverter Controller System   

          The inverter side voltage source is controlled by IC as illustrated in Figs. 3.13.  
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Fig. 3.14.  Simplified model of VSC-HVDC system. 

 

3.4.2.3 DC-Link Model 

     The portion of the HVDC circuit is expressed based on the power balance [112], which 

means that the power supplied from the OWF must be equal to the sum of the power received by 

the grid and transmission line loss. In Fig. 3.14, Vdc is the DC-Link circuit voltage, Cdc is the DC-

Link capacitor, Pr is the supplied power from the OWF, Pg is the grid side power, and Ploss is the 

power loss. 

3.5  Simulation Results 

       Simulation analysis is performed on the model system depicted in Fig. 3.1 by using 

PSCAD/EMTDC software. The simulation time period is taken 600 s. The rated frequency is 50 

Hz. The personal computer configuration for the simulation study is Intel (R) Core (TM) i7-4770M 

CPU@3.40GHz Ram 8GB. Since the simplified model does not represent the harmonics, much 

larger time step (100 microseconds) can be used in the simulation analyses.  

The real wind speed data used in this study are depicted in Figs. 3.15 and 3.16, which were 

measured in Hokkaido Island, Japan. Comparative analysis between the detailed and simplified 

models of VSC-HVDC system has been performed and results are shown in Figs. 3.17 to 3.24. 
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The active power output of each VSWT-PMSG and FSWT-SCIG are illustrated in Figs. 3.17 and 

3.18.  

The total active and reactive powers of offshore side and onshore side of VSC-HVDC are 

depicted in Figs. 3.19 and 3.20. Fig. 3.21 shows the voltage (Vdc) in the VSC-HVDC transmission 

system. It is seen that the DC transmission voltage of VSC-HVDC system is almost constant at 

rated DC voltage (400kV). Fig. 3.22 shows the total active and reactive power output of SCIGs 

based WF. 

 

Fig. 3.15.  Wind speeds used in VSWT-PMSGs. 

 

Fig. 3.16.  Wind speeds used in FSWT-SCIGs. 
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Fig. 3.17.  Active power output VSWT-PMSGs. 

    

 

Fig. 3.18.  Active power output FSWT-SCIGs. 
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Fig. 3.19.  Power input to offshore side of VSC-HVDC. 

 

Fig. 3.20.  Power output from onshore side of VSC-HVDC.  

 

Fig. 3.21.  Vdc in VSC-HVDC transmission line. 
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Fig. 3.22.  Total active and reactive power output of FSWT-SCIGs based WF. 

 

Fig. 3.23.  Active power output of conventional SGs. 

 

Fig. 3.24.  Frequency response of the onshore power system. 
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 Finally, the active power output of conventional SGs and frequency response of the onshore 

power system are illustrated in Figs. 3.23 and 3.24. It is seen that the conventional SGs adjust their 

active power output according to the fluctuating power injected from the VSC-HVDC based OWF.  

 From the simulation analyses, it can be concluded that the simplified model has sufficient 

accuracy. Moreover, the simulation time of the simplified model is much shorter than that of the 

detailed model of VSC-HVDC system as presented in Table 3.3. 

Table 3.3. Computation Time of Each Model. 

 

 

 

 

 

3.6 Chapter Conclusion 

 In this chapter, a new simplified model of HVDC transmission system connecting OWF to 

onshore grid is proposed. Comparative analyses of dynamic characteristics between the simplified 

and detailed models have been performed in order to confirm the validity of the proposed 

simplified model of VSC-HVDC system. The simplified model of VSC-HVDC system has 

sufficient accuracy because there is almost no difference among the simulation results for the both 

simplified and detailed models. Moreover, the simulation time can be reduced significantly by 

using the proposed simplified model of VSC-HVDC system. Therefore, the proposed simplified 

model can be used effectively to analyze the power system with VSC-HVDC based OWF. 
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Chapter 4 

Frequency Regulation of Power System by Constant Deloaded 

PMSG-based Offshore Wind Farm using Centralized Droop 

Controller 

 

        In this chapter, a new coordinated frequency control method is proposed for variable speed 

wind turbines with permanent magnet synchronous generators (VSWT-PMSGs) based offshore 

wind farm (OWF), which is connected to the main onshore grid through voltage source converter 

(VSC) based high voltage DC (HVDC) transmission system. The purpose of the proposed system 

is to damp the frequency oscillations of onshore grid due to the installation of large-scale fixed 

speed wind turbines with squirrel cage induction generators (FSWT-SCIGs) based wind farm 

(WF) and photovoltaic (PV) power station. A novel centralized droop controller with dead band is 

designed for VSWT-PMSGs to decrease the frequency fluctuations of the onshore main power 

system. In the proposed system, primary frequency reserve is implemented by deloaded operation 

of VSWT-PMSGs in the OWF. The effectiveness of the proposed centralized frequency controller 

is verified through simulation analysis on a modified IEEE nine-bus model system in 

PSCAD/EMTDC software.  

 

4.1  Introduction 

       Penetration of large-scale renewable power sources like PV station and WF to the power grid 

has increased significantly. Accordingly, the operation of power system is becoming critical, 

because some of the conventional synchronous generators (SGs) need to be retired due to the 

penetration. The frequency oscillations of the power system due to large installations of renewable 

power sources is a key anxiety [62]. Large WFs like OWFs are, however, expected to contribute 

to the system frequency stabilization and new grid codes demand that the OWFs should work like 

conventional plants [41]. 

Usually, the characteristics of VSWT-PMSG based OWFs are different from that of the 

conventional power plants. Conventional SGs are able to control the frequency oscillations by load 

frequency control (LFC) and governor free (GF) operation. To contribute to the primary frequency 
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regulation in a similar way to conventional SGs, the VSWT-PMSG based OWFs require additional 

active power control loop and primary reserve.  

         On the other hand, OWF is, in general, far from the onshore grid connection point by several 

tens of km or more, and usually high voltage AC (HVAC) transmission system is used for 

connecting the OWF to the onshore power grid. However, HVAC system is not appropriate to very 

long transmission line from technical and economical points of view. Instead, VSC-HVDC 

transmission system is more attractive and practical for connecting large-scale OWF with the 

onshore power grid due to its advanced controllability, stabilization potential for AC networks, 

and high capacity [31]. 

     Therefore, in this chapter, a coordinated frequency control method is proposed for VSWT-

PMSG based OWF connected to the onshore grid through HVDC transmission line to reduce 

frequency variations of the onshore main power system. The centralized droop control technique 

is implemented with the dead band to limit the frequency variation within the permissible limit. In 

addition, the deloaded control strategy is adopted with the centralized droop controller to provide 

primary reserve. Deloaded operation is performed by controlling the speed of VSWT-PMSG and 

by modifying the maximum power point tracking (MPPT) power. Thus, better frequency 

regulation performance can be achieved. Real wind speed data measured in Hokkaido, Japan, is 

used in the simulation analyses to obtain the realistic responses. 

      The effectiveness of the proposed centralized frequency controller is verified through 

simulation analysis on a modified IEEE nine-bus model system composed of VSWT-PMSGs-

based OWF connected to the main system through VSC-HVDC transmission line, FSWT-SCIGs-

based onshore WF, PV power station, and conventional SGs.  

 

4.2 Frequency Regulation of Power System by Rotor Speed Control-based Deloaded 

Operation of VSWT-PMSG 

4.2.1  Power System Model 

    The power system model used in the analysis is shown in Fig. 4.1, which is composed of 

nine-bus main system and two WFs. The nine-bus system consists of two thermal power plants 

(SG1 rated at 300 MVA and SG2 rated at 200 MVA) and a hydro power plant (SG3 rated at 100 

MVA). SG1 is operated under LFC. SG2 and SG3 are operated under GF control. An OWF is 

connected to bus 6 through 400kV VSC-HVDC transmission system as depicted in Fig. 4.2. The 
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length of the HVDC transmission line is 300 km. The OWF is composed of five VSWT-PMSGs 

(rated at 20 MW each). The second WF is connected to bus 5 of the main system as depicted in 

Fig. 4.3. This WF is composed of five FSWT-SCIGs. The capacity of each FSWT-SCIG is 20 

MW. It is connected to the grid system through transformers and double circuit transmission line. 

Each VSWT-PMSG and FSWT-SCIG represents aggregated model. The aerodynamic model of 

wind turbine are already discussed in Chapter 2. Also, the parameters of SGs, PMSGs and SCIGs 

are discussed in Chapter 3. 

   The IEEE type AC4A excitation system model shown in Fig. 4.4 [109] is used for all SGs. 

The parameters of IEEE type AC4A excitation system model is taken from Ref. [109]. Fig. 4.5 

shows the thermal governor model used in SG1 and SG2 [110]. The hydro governor model used 

for SG3 is shown in Fig 4.6 [110]. The values of 65M and 77M are presented in Table I.  

 

Fig. 4.1.  Power system model. 
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Fig. 4.2.  Configuration of VSWT-PMSG based OWF connected through VSC-HVDC transmission system. 

 

Fig. 4.3.  Configuration of FSWT-SCIGs based onshore wind farm. 
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Fig. 4.4. IEEE type AC4A excitation system model. 

 

 
Fig. 4.5. Thermal turbine governor model. 

 

Fig. 4.6. Hydro turbine governor model. 
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Fig. 4.7. LFC model. 

 

Table 4.1. Values of 65M and 77M 

SG1 

(Thermal) 

Frequency control 65M 77M 
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Frequency control 65M 77M 

GF 0.80 0.84 

           In Figs. 4.5 and 4.6, △ωsg: the revolution speed deviation [pu], 65M: the initial output [pu], 

77M: the load limits (65M + rated MW output × PLM [%]), PLM: the spare governor operation 

[%], Pm: the turbine output [pu].  

Fig. 4.7 shows the LFC model used in this study. The LFC sends the output value signal to the 

power plant (SG1) according to frequency deviations. Then, governor output value (65M) of power 

plant is changed by LFC signal, and the power plant output is changed. 

4.2.2   Modeling and Control Strategy of PMSG 

          The overall block diagram of VSWT-PMSG model is shown in Fig. 4.8. In this study, the 

simplified model is used to decrease the simulation time [105]. The model consists of mechanical 

part, electrical part, and control system part. The mechanical part includes wind turbine and drive 
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inputs the terminal grid voltage to the simplified model and injects the output current from the 

simplified model to the grid system through a three phase current source [105].  

 

Fig. 4.8.  Simplified model of VSWT-PMSG. 
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Fig. 4.9.  Conventional stator side controller. 

 

  4.2.2.2  Grid Side Controller (GSC)   

The block diagram of  GSC is shown in Fig. 4.10, which controls the DC-Link voltage (Vdc) 

and the reactive power delivered to the grid system (Qg) by controlling the q-axis current (Iqg) and 

the d-axis current (Idg) of LCL filter output current, respectively. The four PI controllers are used 

to track the different error signals. 

 

Fig. 4.10.  Conventional grid side controller. 
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performed by LFC. Frequency regulation is a key factor for integrating large-scale WF into the 

power system and WF should also take responsibility to damp power system frequency variation.  

 

  4.2.3.1  Deloaded Operation 

          Due to the uncontrollability of the wind speed, it is inherently non-capable for VSWT-

PMSG to provide primary reservation. As, with the help of modified control strategies, the VSWT-

PMSG can generate less active power than its available MPPT output, however, the difference 

between the actual active power and available MPPT active power can be used as a primary reserve. 

To obtain the reserve active power, the VSWT-PMSG should operate in a deloaded mode instead 

of in MPPT mode.   

          From the aerodynamic power equation of wind turbine generator (WTG) of Eq. (4.1), the 

power vs. rotor speed characteristics of wind turbines are nonlinear [105]. 
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Where, Pw is the captured wind power, ρ is the air density (kg/m3), R is the radius of the rotor 

blade (m), Vw is the wind speed (m/s), and Cp is the power coefficient. β is the pitch angle, and λ is 

the tip speed ratio. c1 through c6 are the characteristic coefficients of the wind turbine. 

Fig. 4.11 shows the power vs. speed curve based on Eq. 4.1. Due to the non-linear 

characteristics of wind turbine, the wind turbine exhibits maximum power at a specific rotor speed. 

As previously mentioned, for frequency control of the power system it is necessary that the WTGs 

have sufficient power reserve.  
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Fig. 4.11.  MPPT and deloaded power curve of VSWT. 

 

 

Fig. 4.12.  Power margin for 10% deloading. 
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In this work, a 10% wind power margin is preserved through rotor speed control of PMSG. 

The deloading operation can be performed by shifting the operating point either in the left-hand 

side (under speeding) or right-hand side (over speeding) of MPPT point as shown in Fig. 4.11. 

Over speeding technique by shifting the operating point to the right-hand side is used in this study 

to get a 10% power reserve.  Because deloading operation of over speeding can improve the small 

signal stability [113].   

For a 10% deloaded VSWT-PMSG, the deloaded power output, Pdel = 0.9Pmppt, where, Pmppt 

is the maximum power at MPPT point. As an example, at a wind speed of 12 m/s, under MPPT 

condition the VSWT-PMSG used in this work delivers Pmppt = 1.0 pu. The rotor speed 

corresponding to this power output is ωr,mppt
 = 1 pu. If the WTG is 10% deloaded at that wind 

speed, power output would fall to Pdel = 0.90 pu, with rotor speed rising to ωr,del = 1.18 pu.  

  The deloaded power reference (Pref,del) of the VSWT-PMSG for any rotor speed is 

calculated by using Fig. 4.12 as [94]:  

 
mpptrdelr

measrdelr

delmpptdeldelref PPPP
,,

,,

,







                                                                  (4.5) 

 

Where, ωr,meas is the actual rotor speed of VSWT-PMSG. 

 

  4.2.3.2  Centralized Droop Control 

   Configuration of centralized droop control system is illustrated in Fig. 4.13. In this droop 

control technique, a dead band is embedded. The frequency controller of VSWT-PMSG is only 

activated when the frequency variation is outside the predefined limit (|a| = 0.075). The droop gain 

(Kdroop) is chosen on trial and error basis to obtain the optimum performance from the centralized 

droop controller. For better frequency control, sufficient power reserve should be maintained by 

using deloaded technique as discussed earlier.  

The droop control includes providing an output power term proportional to the deviations of 

frequency. 

fKP droopdroop                                                                                                                        (4.6) 

The reference active power (Pref) for each PMSG is expressed as:  
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Fig. 4.13.  Centralized frequency controller. 

 

4.2.4   Modeling of HVDC System 

        In this work, a simplified model of VSC-HVDC system is used instead of detailed model to 

diminish the complexity and reduce the large computing time [112]. Fig. 4.14 illustrates the system 

configuration of the simplified model of VSC-HVDC system with its control system. The system 

is consisting of the two main part, one is a converter on the offshore side and the other is an inverter 

on the onshore side, which are modelled using voltage sources instead of detailed switching circuit 

with insulated gate bipolar transistors (IGBTs) [105]. Three phase AC voltage generated by OWF 

is rectified to DC voltage through the converter. Three phase current (Ir), voltage (Vr), active power 

(Pr), and reactive power (Qr) are detected on the offshore side AC system. The rectified DC voltage 

is transmitted to the onshore side. The transmitted DC voltage is converted again into AC voltage 

through the onshore side inverter. The converter is controlled by the converter controller (CC) and 
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the inverter is controlled by the inverter controller (IC). Comparative analyses between the VSC-

HVDC simplified model and the detailed model using IGBT based switching circuits are presented 

in Chapter 3 [112] and it is concluded the simple model is very accurate. 

 

Fig. 4.14.  Schematic diagram of VSC-HVDC system. 

. 4.2.4.1  Converter Controller (CC)   

           The block diagram of CC is depicted in Fig. 4.15. The main objective of the CC is to ensure 

the normal operation of VSC-HVDC connection based OWF. The converter station must establish 

an AC voltage of stable amplitude and frequency for the local grid of OWF. The voltage magnitude 

and phase of OWF are controlled by q-axis current (Irq) and d-axis current (Ird) of VSC-HVDC 

rectifier system. The voltage magnitude reference (Magnitude*) is chosen as 1.0 pu and voltage 

phase reference (Phase*) is set to 0.0 degree. 

 

4.2.4.2  Inverter Controller (IC)            

          The block diagram of IC is illustrated in Fig. 4.16. The aim of the IC is to control the reactive 

power (Qg) delivered to the onshore grid and keep the DC-Link voltage (Vdc) constant by using d-

axis (Igd) and q-axis (Igq) currents of VSC-HVDC inverter system, respectively. The reactive 

power reference (Qg*) is set to 0.0 pu for unity power factor operation and DC-Link voltage 
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reference (Vdc*) is set to 1.0 pu. 

 

 

Fig. 4.15.  Block diagram of CC. 

 

Fig. 4.16.  Block diagram of IC. 

 

4.2.4.3  DC-Link Model             

 The portion of the HVDC circuit can be expressed based on the power balance [112] as shown 

in the red dotted line block of Fig.14, which means that the power supplied from the OWF must 

be equal to the sum of the power received by the grid and transmission line loss. In Fig. 4.14, Vdc 
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is the DC-Link circuit voltage, Cdc is the DC-Link capacitor, Pr is the supplied power from the 

OWF, Pg is the grid side power, and Ploss is the power loss.  

 

4.2.5 Simulation Results 

The power system model shown in Fig. 4.1 is used for simulation study. The simulation analysis 

is performed by using PSCAD/EMTDC software. The rated frequency is 50 Hz. The simulation 

period is taken 800 s. Two cases are considered in this study. In Case 1, the simulation analysis is 

performed without any frequency controller in the OWF, whereas simulation analysis is performed 

with the proposed centralized frequency controller in Case 2. The real wind speed data measured 

in Hokkaido Island, Japan, are used for both SCIG and PMSG based WF as illustrated in Figs. 

4.17 and 4.18. The total active and reactive powers of offshore side and onshore side of VSC-

HVDC are depicted in Figs. 4.19 and 4.20. It is seen that the active power output in Case 2 is 10% 

less than that in Case 1. This is because, in Case 2 deloaded operation is performed. 

Fig. 4.21 shows the total active and reactive power output of FSWT-SCIGs based WF. As the 

SCIGs are directly connected to the grid, there is almost no difference in active and reactive powers 

between two cases. Fig. 4.22 depicts the active power output of conventional SGs. The SGs are 

providing higher active power in Case 2 than in Case 1 since the deloaded operation is performed 

in the OWF in Case 2.   

 

Fig. 4.17.  Wind speeds applied to VSWT-PMSGs. 
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Fig. 4.18.  Wind speeds applied to FSWT-SCIGs. 

 

Fig. 4.19.  Power input to offshore side of VSC-HVDC.  

 

Fig. 4.20.  Power output from onshore side of VSC-HVDC. 
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Fig. 4.21.  Total active and reactive power output of FSWT-SCIGs based WF. 

 

 

Fig. 4.22.  Active power output of conventional SGs. 

 

Fig. 4.23.  Frequency response of the main power system. 
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     The frequency response of the power system is depicted in Fig. 4.23. Due to the centralized 

droop control and deloaded operation, the frequency response of the power system is more stable 

in Case 2 than in Case 1.  

     From Table 4.2, it can be seen that the frequency deviation and the standard deviation of 

system frequency are smaller in Case 2 than in Case 1. Therefore, frequency fluctuations can be 

damped effectively by using the proposed centralized frequency control strategy. 

Table 4.2. Comparison of frequency deviation and standard deviation of system frequency in both cases 

 
  

 

 

 

 

 

4.3  Frequency Regulation of Hybrid Power System by Deloaded Operation of VSWT-PMSG 

4.3.1 Hybrid Power System Model 

 

Fig. 4.24.  Hybrid power system model. 
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The study in this section is using the same power system model as shown in Fig. 4.1. But a 

PV station is also connected at bus 8 which is illustrated in Fig. 4.24. The capacity of PV station 

is 90 MW and its model is taken from [114]. 

 

4.3.2 Modeling and Control Strategy of PMSG 

          The study in this section is using the same simplified model of PMSG as that discussed in 

Section 4.2.2. In this case the Pref is taken from Fig. 4.25. 

 

4.3.3 Proposed Centralized Frequency Controller 

 
4.3.3.1 Deloaded operation 

     As the wind speed applied to PMSG is continuously varied, it cannot provide primary 

reserve.  However, with some additional control loop, the VSWT-PMSG can provide reserve 

power by decreasing its output less than its available MPPT power. Thus, the primary reserve can 

be defined as the difference between available MPPT output and generated actual active power.  

 

 
 

Fig. 4.25: Centralized frequency controller 
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    Fig. 4.25 depicts the schematic diagram of centralized frequency control system. To achieve 

the active power reserve margin, the VSWT-PMSG must operate in a deloaded mode instead of in 

MPPT mode. In this work, 10% power is reserved. So, reference deloaded active power can be 

written as:                 

               Pref,del=0.9*Pmppt                                                                                                         (4.9) 

 
4.3.3.2  Centralized Droop Control 

 

      The study in this section is using the same centralized droop control technique as that 

discussed in Section 4.2.3.2. The limiter is used in the last stage so that the output reference of 

each VSWT-PMSG will not be greater than the MPPT output. 

4.3.4 Modeling of HVDC System 

       The study in this section is using the same simplified model of VSC-HVDC system as that 

discussed in Section 4.2.4. 

4.3.5   Simulation results 

   Simulation study is conducted on a power system model depicted in Fig. 4.24. The rated 

frequency is 50 Hz.    

Two cases are considered in this work. They are: 

      Case 1: Without any deloaded operation and droop controller in the VSWT-PMSGs.  

      Case 2: With proposed centralized frequency controller in the VSWT-PMSGs. 

The actual wind speed data measured in Hokkaido Island, Japan, are used for both PMSG and 

SCIG based WF as depicted in Figs. 4.26 and 4.27. Figs. 4.28 and 4.29 show the total active power 

profile of OWF (VSWT-PMSGs) and onshore side of VSC-HVDC transmission system. It is seen 

that the active power output at some point is smaller in Case 2 than Case 1. This is because the 

deloading operation is activated in Case 2.  In addition, at some point the active power output in 

Case 2 is equal or close to Case 1. This is because the deloaded power (10 %) is used by the droop 

controller (Pdroop) to remove the frequency fluctuations.   

     The total active power profile of FSWT-SCIGs and PV power station are depicted in Figs. 

4.30 and 4.31. As the SCIGs and PV plant are directly connected to the grid, there is almost no 

difference in active power between two cases.  
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Fig. 4.26: Wind speeds data (VSWT-PMSG). 

 
Fig. 4.27: Wind speeds data  (FSWT-SCIGs). 

 
Fig. 4.28: Active power profile of VSWT-PMSGs. 
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Fig. 4.29: Active Power profile from onshore side of VSC-HVDC transmission system. 

 
Fig. 4.30: Active Power profile of FSWT-SCIGs. 

 
Fig. 4.31: Active Power profile of PV power station. 
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Fig. 4.32: Active power profile of conventional SGs. 

 

 
Fig.4.33: Frequency response of the hybrid power system. 

Table 4.3: Comparison between two cases based on frequency response curve. 
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Maximum Frequency 

Deviation (+Δf) [Hz] 

0.2496 0.1934 

Minimum Frequency 

Deviation (-Δf) [Hz] 

-0.3097 -0.2031 

Standard Deviation (σ) [Hz] 0.0795 0.0652 

 

       Fig. 4.32 illustrates the active power profile of conventional SGs.  The SGs are injecting 

slightly higher amount of active power in Case 2 than Case 1, because they are adjusting their 

output based on the VSWT-PMSG output.  

      Finally, the hybrid power system frequency response is shown in Fig. 4.33. The frequency 
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fluctuations are smaller in Case 2 than Case 1. This is because in Case 2 the PMSG-based OWF is 

reserving some amount of active power and using it in the droop controller.  

    From Table 4.3, the +Δf, -Δf and σ based on the frequency response curve are smaller in Case 

2 than in Case 1.  

  Therefore, the proposed centralized frequency controller can effectively decrease the 

frequency fluctuations. 

 

4.4 Chapter Conclusion 

      In this chapter, two fixed deloaded method with centralized droop controller are proposed 

for VSWT-PMSGs based OWF to reduce the frequency oscillations of the connected onshore grid 

system. 

In Section 4.2, a centralized frequency controller is proposed for VSWT-PMSGs based OWF, 

which incorporates both droop controller with dead band and rotor speed control based fixed 

deloaded operation to contribute to the power system frequency regulation. Through simulation 

analysis, it is shown that the proposed centralized frequency controller can suppress the frequency 

fluctuations of the power system effectively.  

In Section 4.3, another novel centralized frequency control technique which is suitable for 

VSWT-PMSGs is proposed to reduce the frequency oscillations of hybrid power system. The 

centralized frequency control system integrates both fixed deloaded operation based on the 

modified MPPT equation and droop controller with dead band. The deloaded power is used by the 

droop controller for better frequency regulation. The simulations results confirmed that the 

frequency oscillations can be reduced effectively by the proposed frequency controller.  

        Therefore, the proposed control strategies have promising potential value to reduce the 

frequency fluctuations.  
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Chapter 5 

Frequency Regulation of Hybrid Power System by Variable Deloaded 

Operation of PMSG-based Offshore Wind Farm using Centralized 

Droop Controller 

 

        In this chapter, a novel variable deloaded operation is proposed for variable speed wind 

turbines with permanent magnet synchronous generators (VSWT-PMSGs) based offshore wind 

farm (OWF) to maintain primary reserve, which is connected to onshore grid through voltage 

source converter based high voltage DC (VSC-HVDC) transmission system. A centralized droop 

controller with dead band is designed for VSWT-PMSGs to utilize this reserve power to suppress 

the frequency fluctuations of the onshore grid due to the installations of large-scale fixed speed 

wind turbines with squirrel cage induction generators (FSWT-SCIGs) based wind farm (WF) and 

photovoltaic (PV) power station. The combination of variable deloaded operation and centralized 

droop controller can give better frequency regulation and decrease energy loss due to the deloaded 

operation. The effectiveness of the proposed variable deloaded operation and centralized droop 

controller is verified through simulation analyses on a modified IEEE nine-bus test system. The 

simulation results reveal that the variable deloaded operation can decrease the energy loss 

compared to the fixed deloaded operation as well as suppress the frequency fluctuations in the 

same level as the fixed deloaded operation.  

 

5.1  Introduction 

        Due to the drawback of the conventional power plants based on fossil fuels and their negative 

impacts on the environment, recently the attention on renewable energy sources (RESs) has been 

increasing all over the world. Solar PV is a popular type of RES which will occupy an important 

place and supply nearly 28% of all the overall energy demand [21] until 2040. Also, penetration 

of grid connected OWF has been increasing since the last decade because of the stronger and 

steadier wind resources in offshore areas compared to onshore sites. Around 4,334 MW of new 

offshore wind power (OWP) was installed across the world in 2017 [16]. This is equivalent to 

195% of that in 2016. According to the global wind energy council (GWEC), currently, 18,814 

MW of OWP is installed globally [16]. This increasing penetration of OWF and PV stations into 
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the grid system certainly leads to the retirements of conventional synchronous generators (SGs) 

[62]. Thus, the frequency fluctuations due to varying output of WFs and PV stations have become 

a major concern [62].  

          Normally, the frequency fluctuation is damped by the conventional units, which are 

equipped with automatic generation control (AGC) or load frequency control (LFC) system [63]. 

Therefore, to maintain the frequency stability of the power system with large penetration ratio of 

RESs, RESs are required to operate like conventional units. They need to not only supply power 

to the grid, but also need to damp frequency fluctuations [62, 64]. One possible solution is a 

frequency control by OWF.  

          Generally, VSWT-PMSG is preferable for OWF due to its gear-less feature, brushless 

operation, and 35% lower losses compared to doubly fed induction generator (DFIG) [41]. To 

integrate large-scale OWF into the onshore grid, VSC-HVDC transmission system is attractive 

and more preferable than high voltage AC (HVAC) transmission system from an economic and 

technical point of view [29], especially in the case of very long transmission system. VSC-HVDC 

system has some advantages, i.e. lower cable losses, independent and fast control of active and 

reactive power, and stabilization potential of connected AC networks [29, 31, 41].   

           For the frequency regulation of the onshore grid system, the VSWT-PMSG-based OWF 

connected to the onshore grid through VSC-HVDC transmission system should have sufficient 

power reserve. In this case, power reserve is possible by operating the VSWT-PMSGs at a reduced 

output power level instead of maximum power point tracking (MPPT) mode which is called 

deloaded operation [65].  

            Many researchers have focused on the primary reserve implementation by the fixed level 

of deloaded operation of VSWT with some auxiliary control loop [66-101]. For example, the 

deloaded operation is performed by the modified pitch angle control of VSWT-PMSG in [66-67,79, 

85, 94]; the rotor speed controller is used for the deloaded operation in [68, 78, 87, 89]; and the 

over-speeding and pitching techniques are used for the deloaded operation of wind turbines in [69-

75, 101]. However, in the above mentioned schemes for the deloaded operation, output power 

injected to the grid system from OWF is reduced by a fixed ratio at all times, and hence, the energy 

loss becomes large.  

            Therefore, this Chapter proposes a centralized frequency control scheme with a novel 

variable deloaded operation for VSWT-PMSGs based OWF connected to the onshore grid through 
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VSC-HVDC transmission system to damp frequency fluctuations of the onshore grid, in which a 

large-scale WF composed of FSWT-SCIGs and solar PV station are installed. In the frequency 

control method, the variable deloaded operation is proposed in order to decrease the energy loss, 

in which deloading level is variable (from 0% to 10%). The variable deloading level is achieved 

by designing a variable gain based on the standard deviation of the frequency fluctuations of the 

onshore grid. A centralized droop controller with dead band is designed for VSWT-PMSGs to 

utilize this reserve power to suppress the frequency fluctuations of the onshore grid.  

          The effectiveness of the proposed centralized frequency controller equipped with the 

variable deloaded function is verified through simulation analysis using PSCAD/EMTDC software 

on a modified IEEE nine-bus system composed of VSWT-PMSGs-based OWF connected to the 

onshore system through VSC-HVDC transmission line, FSWT-SCIGs based onshore WF, PV 

power station, and conventional SGs. Real wind speed data and solar irradiance data measured in 

Hokkaido Island, Japan, are used in the simulation analyses to obtain the realistic responses.  

 

5.2  Hybrid Power System Model 

    Fig. 5.1 illustrates the hybrid power system model used in this study, which is composed of 

IEEE nine-bus main system, two WFs, and one PV power station. The nine-bus main system is 

composed of three conventional SGs. SG1 and SG2 are thermal power plants whereas SG3 is a 

hydro power plant. The LFC system is equipped with in SG1. SG2 and SG3 are operated under 

governor free (GF) control. The ratings and parameters of SG1, SG2, and SG3 are listed in Table 

5.1. In this work, IEEE type AC4A exciter model is used for all conventional SGs which is already 

presented in Chapter 3.   

The VSWT-PMSG-based OWF is connected to bus 6 through VSC-HVDC transmission system 

as shown in Fig. 5.2. The OWF consists of five VSWT-PMSGs and the total capacity is 100 MW 

(20 MW each). The symmetric monopole type with 300 km long and ±150 kV DC transmission 

lines are used in this study and the specifications of HVDC line are taken from Ref. [115]. Also, a 

SCIG-based onshore WF is connected to bus 5 of the main system through double circuit 

transmission line and transformers as depicted in Fig. 5.3. The total capacity of onshore WF is 100 

MW which is composed of five FSWT-SCIGs (20 MW each). A PV station is also connected to 

bus 8. The capacity of solar PV station is 90 MW. The PV model is illustrated in Fig. 5.4 [114]. A 
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simple model using current sources is used in this work [114], in which PPV is the kilowatts data. 

The PV current (IPV) is calculated from PPV [kW] and VPV [kV]. The power flow conditions of 

onshore WF, OWF and PV station at t=0 s are: 0.55 pu, 0.38 pu, and 0.60 pu, respectively. The 

aerodynamic model of wind turbine are already discussed in Chapter 2. 

 

Fig. 5.1.  Hybrid power system model. 

The standard thermal and hydro governor models for SGs are depicted in Figs. 5.5 and 5.6 [110]. 

The values of 65M and 77M are presented in Table 5.2. In Figs. 5.5 and 5.6, △ωsg: the revolution 

speed deviation [pu], 65M: the initial output [pu], 77M: the load limits (65M + rated MW output 

× PLM [%]), PLM: the spare governor operation [%], and Pm: the turbine output [pu]. Fig. 5.7 

represents the LFC model used in this study. The LFC sends the output signal to the power plant 

(SG1) according to frequency deviations. Then, governor output value (65M) of power plant is 

changed by LFC signal, and finally the power plant output is changed. The parameters of PMSGs 

and SCIGs are presented in Table 5.3.  
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Fig. 5.2.  Configuration of VSWT-PMSG based OWF connected through VSC-HVDC transmission system. 

 

Fig. 5.3.  Configuration of FSWT-SCIGs based onshore wind farm. 
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Fig. 5.4.  Simple PV power system model. 

 

Fig. 5.5.  Thermal turbine governor model. 

 

Fig. 5.6.  Hydro turbine governor model. 
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Fig. 5.7.  LFC model. 

Table 5.1. Parameters of synchronous generators. 

Parameter SG1 SG2 SG3 

Rated Power 300 MVA 200 MVA 100 MVA 

Voltage 16.5 kV 18 kV 13.8 kV 

Ra 0.003 pu 0.003 pu 0.003 pu 

Xl 0.1 pu 0.1 pu 0.1 pu 

Xd 2.11 pu 2.11 pu 1.20 pu 

Xq 2.05 pu 2.05 pu 0.700 pu 

X`d 0.25 pu 0.25 pu 0.24 pu 

X``d 0.21 pu 0.21 pu 0.20 pu 

X``q 0.21 pu 0.21 pu 0.20 pu 

T`do 6.8 s 7.4 s 7.2 s 

T``do 0.033 s 0.033 s 0.031 s 

T``qo 0.030 s 0.030 s 0.030 s 

H 4.0 s 4.5 s 4.3 s 

 

Table 5.2.  65M and 77M for each synchronous generator. 
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Table 5.3.  Parameters of wind generators. 

 

 

 

 

 

 

 

 

 

5.3  VSC-HVDC Transmission System Model 

          In this study, a simplified model of VSC-HVDC system is used instead of detailed model to 

diminish the complexity and reduce the large computing time [112]. Fig. 5.8 illustrates the system 

configuration of the simplified model of VSC-HVDC system with its control system. The system 

is consisting of the two main part, one is a converter on the offshore side and the other is an inverter 

on the onshore side, which are modelled using voltage sources instead of detailed switching circuit 

with insulated gate bipolar transistors (IGBTs) [105].  

 

Fig. 5.8.  Schematic diagram of VSC-HVDC system. 
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Three phase AC voltage generated by OWF is rectified to DC voltage through the converter. 

Three phase current (Ir), voltage (Vr), active power (Pr), and reactive power (Qr) are detected on 

the offshore side AC system. The rectified DC voltage is transmitted to the onshore side. The 

transmitted DC voltage is converted again into AC voltage through the onshore side inverter. The 

converter is controlled by the converter controller (CC) and the inverter is controlled by the 

inverter controller (IC). Comparative analyses between the VSC-HVDC simplified model and the 

detailed model using IGBT based switching circuits are presented in [112] and it is concluded the 

simple model is very accurate. 

 

  5.3.1 Converter Controller (CC)   

The block diagram of CC is depicted in Fig. 5.9. The main objective of the CC is to ensure 

the normal operation of VSC-HVDC connection based OWF. The converter station must establish 

an AC voltage of stable amplitude and frequency for the local grid of OWF. The voltage magnitude 

and phase of OWF are controlled by q-axis current (Irq) and d-axis current (Ird) of VSC-HVDC 

rectifier system. The voltage magnitude reference (Magnitude*) is chosen as 1.0 pu and voltage 

phase reference (Phase*) is set to 0.0 degree.  

 

Fig. 5.9.  Block diagram of CC. 

 

  5.3.2 Inverter Controller (IC)   

The block diagram of IC is illustrated in Fig. 5.10. The aim of the IC is to control the reactive 

power (Qg) delivered to the onshore grid and keep the DC-Link voltage (Vdc) constant by using 
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d-axis (Igd) and q-axis (Igq) currents of VSC-HVDC inverter system, respectively. The reactive 

power reference (Qg
*) is set to 0.0 pu for unity power factor operation and DC-Link voltage 

reference (Vdc
*) is set to 1.0 pu. 

 

Fig. 5.10.  Conventional rotor side controller. 

  5.3.3 DC-Link Model     

The portion of the HVDC circuit is expressed based on the power balance [112], which 

means that the power supplied from the OWF must be equal to the sum of the power received by 

the grid and transmission line loss. In Fig. 5.8, Vdc is the DC-Link circuit voltage, Cdc is the DC-

Link capacitor, Pr is the supplied power from the OWF, Pg is the grid side power, and Ploss is the 

power loss. 

 

5.4   PMSG Model and Control Strategy 

          The overall block diagram of VSWT-PMSG model is shown in Fig. 5.11. In this study, the 

simplified model is used to decrease the simulation time [105]. The model consists of mechanical 

part, electrical part, and control system part. The mechanical part includes wind turbine and drive 

train models; the electrical part includes PMSG, DC-Link circuit, and LCL filter models; and the 

controller system part includes pitch controller, DC-Link circuit protection controller, stator side 

controller (SSC), grid side controller (GSC), and the interface with grid system. The interface 

inputs the terminal grid voltage to the simplified model and injects the output current from the 

simplified model to the grid system through a three phase current source [105]. 
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Fig. 5.11.  Simplified model of VSWT-PMSG. 
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The block diagram of SSC is depicted in Fig. 5.12, which controls the active and reactive 

power of PMSG by controlling the q-axis stator current (Iqst) and the d-axis stator current (Idst), 

respectively. SSC consists of four conventional PI controllers to compensate different error signals. 

The reactive power reference (Qst*) is set to zero for unity power factor operation. The calculation 

method of active power reference (Pref) will be discussed in the later section. 

  5.4.2  Grid Side Controller (GSC)   

   The block diagram of  GSC is shown in Fig. 5.13, which controls the DC-Link voltage (Vdc) 
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and the d-axis current (Idg) of LCL filter output current, respectively. The four PI controllers are 

used to track the different error signals.   

 

Fig. 5.12.  Conventional stator side controller. 

 

Fig. 5.13.  Conventional grid side controller. 
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MPPT power and generated actual active power as the primary frequency reserve. This operation 

with reduced output is called deloaded operation.  

Though the fixed reserve margin is considered for the deloaded operation of VSWTs [66-

110] conventionally, the power losses can increase in this case. Thus, in this study the variable 

reserve margin algorithm is designed to decrease the energy loss. The proposed method is depicted 

in Fig. 5.14. In this figure, the MPPT power (Pmppt) is multiplied by the gain (G=1-KDL) to obtain 

the variable reserve power. The MPPT operation shown in Equation (2.6) is already discussed in 

Chapter 2. The variable deloading gain KDL is decided based on the standard deviation (σ) of the 

onshore grid frequency over the past 60 s and it is computed at every 1 s in this study. The duration 

of 60 s has been determined by trial and error method. When σ is larger, the system needs more 

reserve power and vice versa. Depending upon the σ, the deloading coefficient (from 0% to 10%) 

is determined by the variable gain (KDL) as shown in Fig. 5.15.  

         The characteristic of the variable gain shown in Fig. 5.15 has been determined by trial and 

error basis to achieve low energy loss as well as high onshore grid frequency control capability 

based on the considerations below: 

1. If “a” becomes larger, the range of 0% deloaded operation (MPPT operation) also becomes 

large and thus the energy loss may become less. 

2. If “c” becomes less, the range of 10% deloaded operation becomes large and then output 

increase from OWF can be done more easily. As system frequency becomes below 50 Hz 

when active power in the main grid is not sufficient, output increase from OWF can 

contribute to eliminate the system frequency decrease. 

        According to Fig. 5.15, deloaded output from each wind generator, Pdel, in Fig. 5.14 is 

determined as follows: 

a) When σ is smaller than or equal to “a” (=0.035), KDL = 0. Thus, the deloading rate is 0%, 

which means that Pdel = Pmppt. 

b) When σ > a (=0.035), KDL increases on the linear relationship until σ = c (=0.08) as shown 

in Fig. 16, and the deloading rate also increases. Therefore Pdel = (1-KDL)*Pmppt. 

c) When σ > c (=0.08), KDL = 0.1. Thus, the deloading rate is 10%, which means that Pdel = 

0.9*Pmppt. 

       In Fig. 5.14, a delay of 2 s is considered after grid frequency signal because of the 

communication delay in the data transmission from the onshore grid to OWF. The frequency signal 
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is detected on the onshore power system and it is transmitted to the OWF by using, for example, 

optical fiber or microwave link, but there must be a delay in this process. This delay includes 

sensing of onshore grid frequency, transmitting using communication channel, receiving and 

processing of the data for entering it to the OWF control system. The delay of 2 s has been 

determined by reference to [116]. 

 

 

Fig. 5.14.  Proposed centralized droop controller with variable deloaded operation. 

 

 

Fig. 5.15.  Variable Gain (KDL). 
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5.5.2  Centralized Droop Control 

   Fig. 5.14 depicts also the schematic diagram of droop control system. In the droop control 

portion, a dead band is installed. The deviation of the onshore grid frequency (△f=fsys-fset) is taken 

as input to this controller, where fsys=measured onshore grid frequency and fset is the rated 

frequency (=50 Hz). The droop controller of VSWT-PMSGs is only activated when the frequency 

variation is outside the predefined threshold limit (|α| = 0.05). The threshold value and droop gain 

(Kdroop =15) have been chosen by trial and error method to obtain the optimum performance from 

the centralized droop controller.  

The reserved power obtained by the proposed variable deloaded operation is used by the 

centralized droop controller to control the onshore grid frequency fluctuations as shown Fig. 5.14, 

where the compensating power △Pdroop is expressed as follows: 

 

 Pdroop = Kdroopf                                                                                                         (5.1) 

 

   The active power reference (Pref) for each wind generator is determined according to 

Equation (5.2) as shown in the last stage of Fig. 5.14. 

 

 𝑟𝑒𝑓𝑛 𝑛  1,2,   ,5)   𝑟𝑒𝑓𝑇𝑜𝑡𝑎𝑙 ×
 𝑑𝑒𝑙𝑛 𝑛=1,2  ,5)

 𝑑𝑒𝑙 𝑇𝑜𝑡𝑎𝑙)
                                                        (5.2) 

 

   The limiter is used in the last stage so that the output reference of each VSWT-PMSG will 

not be greater than the MPPT output. 

 

5.6  Simulation Results and Discussions 

         In this work, simulation study has been performed on the hybrid power system model shown 

in Fig. 5.1 by using PSCAD/EMTDC software. The rated frequency is 50 Hz. The relatively large 

solution time step of 100 μs is used in this simulation work because the simplified models are used 

for both PMSG and HVDC transmission system. Three cases are considered in this study in order 

to validate the proposed variable deloaded operation with centralized droop controller. They are:  

Case 1: Without any frequency controller in the OWF. Each wind generator operates under 

the conventional MPPT mode. 
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Case 2: With the centralized frequency controller shown in Fig. 5.14 with fixed deloaded 

(10%, KDL is 0.1 constant) operation. 

Case 3: With the centralized frequency controller shown in Fig. 5.14 with variable 

deloading gain shown in Fig. 5.15. 

The actual wind speed data measured at every 3 s in Hokkaido Island, Japan, shown in Figs. 5.16 

and 5.17, are used for VSWT-PMSG based OWF and FSWT-SCIG based WF, respectively.  

         Fig. 5.18 shows the total active power profiles of OWF (VSWT-PMSGs). It is seen that the 

active power output in Cases 2 and 3 are often smaller than that in Case 1. This is because the 

deloaded operation is activated in Cases 2 and 3. In addition, the active power in Case 2 is often 

smaller than that in Case 3, because the fixed deloaded operation (10%) is used in Case 2 while 

the proposed variable delaoded operation shown in Fig. 5.15 is implemented in Case 3.   

          Fig. 5.19 illustrates the DC-Link voltage of HVDC transmission system. The DC-Link 

voltage is approximately constant for all cases. The total active power profiles of FSWT-SCIGs 

WF and PV power station are depicted in Figs. 5.20 and 5.21, respectively. As can be seen from 

Figs. 5.20 and 5.21, there is almost no difference in active power among three cases. 

         Fig. 5.22 depicts the active power profiles of conventional SGs. The SGs are generating 

slightly higher amount of active power in Cases 2 and 3 than in Case 1, because they are 

compensating the decrease in the output from OWF due to the deloaded operation.  

 

 

Fig. 5.16.  Wind speed profiles (VSWT-PMSGs). 
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Fig. 5.17.  Wind speed profiles (FSWT-SCIGs). 

 

Fig. 5.18.  Active power profiles of VSWT-PMSGs. 

 

Fig. 5.19.  DC-Link Voltage responses of VSC-HVDC transmission system. 
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Fig. 5.20.  Active Power profiles of FSWT-SCIGs. 

 

Fig. 5.21.  Active Power profiles of PV power station. 

 

Fig. 5.22.  Active power profiles of conventional SGs. 
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Fig. 5.23.  Frequency responses of the onshore power system. 

 

Fig. 5.24.  Delivered energy of OWF (VSWT-PMSGs). 

 

Fig. 5.25.  Variable gain (KDL). 
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         Finally, the onshore grid system frequency response is shown in Fig. 5.23, from which it is 

seen that the frequency fluctuations are smaller in Cases 2 and 3 than in Case 1, and thus the 

frequency fluctuations are effectively decreased in Cases 2 and 3. This is because the PMSG-based 

OWF is controlling the onshore grid system frequency through the droop controller using the 

reserved active power in Cases 2 and 3.  

            The energy (MWh) delivered from OWF in Cases 1, 2, and 3 are shown in Fig. 5.24. It can 

be seen that the decrease of MWh output in Case 3 is smaller than that in Case 2. This is because 

the reserve power is variable (from 0% to 10%) in Case 3 while the fixed amount of power (10%) 

is reserved in Case 2. In other words, the energy loss is smaller in Case 3 compared to Case 2.  

           Fig. 5.25 shows response of the variable gain (KDL). It is seen that the gain is varying 

between 0.0 and 0.1 as described in section 5.5.  

 

Table 5.4:  Characteristics of system frequency in three cases. 

 Case 1 Case 2 Case 3 

+Δf [Hz] 0.2496 0.1884 0.1943 

-Δf [Hz] -0.3116 -0.1381 -0.1408 

σf [Hz] 0.0792 0.0650 0.0656 

MWh Loss (%) 0 7.13 3.54 

 

            Finally, Table 5.4 shows characteristics of the onshore grid system frequency in the three 

cases, where +Δf denotes the maximum frequency deviation in the positive direction, -Δf denotes 

that in the negative direction, and σf denotes the standard deviation of the frequency fluctuations. 

It is seen from the table that all of +Δf, -Δf, and σf   are smaller in Cases 2 and 3 than in Case 1. In 

Cases 2 and 3, the maximum frequency deviations can be well controlled within ±0.2 Hz, the 

standard permissible range of power system frequency deviation in Japan, and the standard 

deviation can also be controlled by about 20% compared to that in Case 1. In addition, though the 

capability to control the system frequency fluctuations in Case 3 is almost in the same level as that 

in Case 2, the energy loss is smaller in Case 3 by almost 50% than that in Case 2.  

        Therefore, it is concluded that the proposed variable deloaded operation with centralized 

droop controller can effectively decrease the onshore grid frequency fluctuations with lower 

energy loss. 
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5.7 Chapter Conclusion 

      In this chapter, a novel variable deloaded operation method with centralized droop controller 

is proposed for VSWT-PMSGs based OWF to reduce the frequency oscillations of the connected 

onshore grid system. The variable deloaded operation is performed according to the standard 

deviation of the onshore system frequency fluctuations to maintain sufficient primary reserve and 

reduce the energy loss. A dead band is also used in the centralized frequency control scheme. The 

reserve power owing to the variable deloaded operation is used by the droop controller in the 

centralized frequency control system for better frequency regulation.  

     Comparative analysis has been performed among three cases, i.e., no control, the fixed 

deloaded operation, and the variable deloaded operation. The simulation results show that the 

frequency oscillations and energy loss can be reduced effectively by the proposed scheme. 

Therefore, the proposed control strategy has a promising potential value to reduce the frequency 

fluctuations with low amount of energy loss. It is needless to say that, the proposed variable 

deloaded operation method can be applied to onshore WFs composed of variable speed wind 

turbine generators in order to control the grid frequency fluctuations, though it is applied to an 

OWF in this chapter. 
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Chapter 6 
 
Conclusions 

Penetration of renewable energy sources (RESs) like offshore wind farm (OWF) and solar 

photovoltaic (PV) station into the power system has been increasing significantly since the last 

decade. This large integration of RESs has introduced some vulnerabilities to the power system. 

Frequency stability is one of the main concern that should be taken into account. Normally, the 

frequency fluctuation is damped by the conventional power plants. Therefore, to maintain the 

frequency stability of the power system with large penetration ratio of RESs, RESs are required to 

operate like conventional units. They need to not only supply power to the grid, but also need to 

damp frequency fluctuations. One possible solution is a frequency control by OWF. 

Normally, variable speed wind turbine with permanent magnet synchronous generator 

(VSWT-PMSG) is preferable for OWF. To integrate large-scale OWF into the onshore grid, 

voltage source converter based high voltage DC (VSC-HVDC) transmission system is attractive 

and more preferable than high voltage AC (HVAC) transmission system from an economic and 

technical point of view, especially in the case of very long transmission system.   

For the frequency regulation of the onshore grid system, the VSWT-PMSG-based OWF 

connected to the onshore grid through VSC-HVDC transmission system should have sufficient 

power reserve. In this case, power reserve is possible by operating the VSWT-PMSGs at a reduced 

power level instead of maximum power point tracking (MPPT) mode which is called deloaded 

operation. Normally, the primary reserve is implement by the fixed level of deloaded operation of 

VSWT with some auxiliary control loop. However, in the fixed deloaded operation, output power 

injected to the grid system from OWF is reduced by a fixed ratio at all times, and hence, the energy 

loss becomes large. 

This thesis proposes some centralized frequency control schemes with a deloaded operation 

of VSWT-PMSGs based OWF connected to the onshore grid through VSC-HVDC transmission 

system to damp frequency fluctuations of the onshore grid, in which a large-scale WF composed 

of fixed speed wind turbines with squirrel cage induction generators (FSWT-SCIGs) and solar PV 

station are installed. This chapter concludes and summarizes the results of previous chapters.   

In Chapter 2, a basic overview of the wind turbine system is presented. Then the mechanical 

power extraction of a practical wind turbine system is explained. After that the pitch angle 
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controller models are described. Finally, the different types of wind turbine technologies (e.g. 

FSWT-SCIG and VSWT-PMSG) are briefly discussed.   

Chapter 3 presents a new simplified model of HVDC transmission system connecting OWF 

to onshore grid. Comparative analyses of dynamic characteristics between the simplified and 

detailed models have been performed in order to confirm the validity of the proposed simplified 

model of VSC-HVDC system. The simplified model of VSC-HVDC system has sufficient 

accuracy because there is almost no difference among the simulation results for the both simplified 

and detailed models. Moreover, the simulation time can be reduced significantly by using the 

proposed simplified model of VSC-HVDC system. Therefore, the proposed simplified model can 

be used effectively to analyze the power system with VSC-HVDC based OWF. 

Chapter 4 proposes two fixed deloaded methods with centralized droop controller for 

VSWT-PMSGs based OWF to reduce the frequency oscillations of the connected onshore grid 

system. The first centralized frequency controller is proposed for VSWT-PMSGs based OWF, 

which incorporates both droop controller with dead band and rotor speed control based fixed 

deloaded operation to contribute to the power system frequency regulation. Through simulation 

analysis, it is shown that the proposed centralized frequency controller can suppress the frequency 

fluctuations of the power system effectively. Another novel centralized frequency control 

technique which is suitable for VSWT-PMSGs is proposed to reduce the frequency oscillations of 

hybrid power system. The centralized frequency control system integrates both fixed deloaded 

operation based on the modified MPPT equation and droop controller with dead band. The 

deloaded power is used by the droop controller for better frequency regulation. The simulations 

results confirmed that the frequency oscillations can be reduced effectively by the proposed 

frequency controller.  Therefore, the proposed control strategies have promising potential value to 

reduce the frequency fluctuations. 

In Chapter 5, a novel variable deloaded operation method with centralized droop controller 

is proposed for VSWT-PMSGs based OWF to reduce the frequency oscillations of the connected 

onshore grid system. The variable deloaded operation is performed according to the standard 

deviation of the onshore system frequency fluctuations to maintain sufficient primary reserve and 

reduce the energy loss. A dead band is also used in the centralized frequency control scheme. The 

reserve power resulting from the variable deloaded operation is used by the droop controller in the 

centralized frequency control system for better frequency regulation. Comparative analysis has 
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been performed among three cases, i.e., no control, the fixed deloaded operation, and the variable 

deloaded operation. The simulation results reveal that the variable deloaded operation can decrease 

the energy loss compared to the fixed deloaded operation as well as suppress the frequency 

fluctuations in the same level as the fixed deloaded operation.        

In this thesis, some deloaded operation methods are presented for VSWT-PMSGs based 

OWF which is connected to onshore grid through VSC-HVDC transmission system, to maintain 

primary reserve and to suppress the frequency fluctuations of the onshore grid due to the 

installations of large-scale FSWT-SCIGs based onshore WF and PV power station. Considering 

all the chapters, it can be concluded that the proposed control strategies of OWF has promising 

potential value to damp the frequency fluctuations of the connected onshore grid. 
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