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Abstract 

A two-degree-of-freedom controller architecture and its design strategy for Linear 

Parameter Varying (LPV) systems, where the dependent parameters are assumed to be 

measurable, are proposed in the Generalized Internal Model Control (GIMC) 

framework. First, coprime factorisation and Youla Parameterisation for LPV systems 

are introduced based on a parameter-dependent Lyapunov function. Then, the GIMC 

architecture for Linear Time Invariant (LTI) systems is extended to LPV systems with 

these descriptions. Based on this architecture, good tracking performance and good 
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robustness (disturbance rejection) are compatibly achieved by a nominal controller 

and a conditional controller, respectively. Furthermore, each controller design 

problem is formulated in terms of Linear Matrix Inequalities (LMIs) related to each 

L2-gain performance. Finally, a simple design example is illustrated. 

   

Keywords: Internal model control; Gain scheduled control; Two-degree-of-freedom; 

Linear parameter varying systems; Youla-Parameterisation. 
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Generalized Internal Model Architecture for Gain Scheduled Control 

1. Introduction  

Linear parameter-varying (LPV) systems are formalized from a certain type of 

nonlinear systems and/or linear time-varying (LTV) systems. Several theoretical 

frameworks have been presented for systematic control of LPV systems based on 

advanced gain scheduled methodology (Shamma and Athans 1990, 1991, Packard 

1994, Apkarian et al. 1995, Apkarian and Gahinet 1995, Apkarian and Adams 1998, 

Leith and Leithead 2000, Rugh and Shamma 2000, Scherer 2001, Xie and Eisaka 

2004). In particular, a systematic design method of output feedback LPV controllers 

that guarantees L2-gain performance is given in (Apkarian and Adams 1998). To the 

author’s knowledge, however, the general two-degree-of-freedom (TDOF) control 

scheme treating both feedback and tracking issues of LPV systems has not been 

explored rigorously. 

For linear time invariant (LTI) systems, TDOF control framework is considered 

in variety of control schemes (Lang and Ham 1953, Hara and Sugie 1988, Morari and 

Zafiriou 1989, Limebeer et al. 1993, Tay et al. 1998, Yali and Eisaka 2000, Zhou and 

Ren 2001, Eisaka and Xie 2004). In particular, the parallel-model-and-plant paradigm 

referred to as ‘Internal Model Control (IMC)’ is a natural and tractable approach to 
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the design and analysis of control systems (Morari and Zafiriou 1989). Furthermore, 

the internal structure of the IMC controller is described directly with Youla 

Parameterisation and called ‘Generalized Internal Model Control (GIMC)’ (Zhou and 

Ren 2001). The GIMC has the potential to overcome the conflict between 

performance and robustness practically. 

In the present paper, we propose a TDOF controller architecture and its design 

strategy for LPV systems based on the GIMC framework. Since transfer functions 

and eigenvalues of state matrices are not available for describing LPV systems, the 

above mentioned 2DOF methodology for LTI systems cannot be applied in a 

straightforward manner to LPV systems. Thus, coprime factorisation and Youla 

Parameterisation described in the state space formulas are newly introduced for LPV 

systems based on parameter-dependent Lyapunov function. Then, according to these 

descriptions, the GIMC for LTI systems is extended to LPV systems. Based on this 

architecture, the LPV controller is designed in a two-step procedure. In the first step, 

a nominal LPV controller is considered to obtain tracking performance with L2-gain 

approximation between the feedback control system and its reference model. In the 

second step, a conditional LPV controller, that is only active when there are model 

uncertainties or external disturbances, is designed to eliminate the influence of them 
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with another L2-gain performance. Each controller design problem is formulated in 

terms of linear matrix inequality (LMI) expression.  

This note is organized as follows. In Section 2, after some notations and a lemma 

for LPV systems are introduced, the Youla Parameterisation is extended to LPV 

systems. Then, the TDOF controller design procedure is considered based on the 

GIMC architecture in Section 3. A design example and its simulation result are 

presented in order to illustrate the proposed approach in Section 4. Finally, a 

concluding remark is given in Section 5.  

 

2. Youla Parameterisation for LPV systems 

In this Section, we introduce a way of obtaining all parameter-dependent 

quadratically stabilizing controllers construction for LPV systems.  

Suppose a stabilizable and detectable LPV plant ( ( ))G tθ  has the following 

realization:  

( ( )) ( ( ))
( ( ))

( ( )) 0g q

A t B t
G t

C t
θ θ

θ
θ ×

⎡ ⎤
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

 (2.1) 

Signals are also notated that ( ) nx t ∈ℜ  is the state vector, ( ) qu t ∈ℜ  is control input 

vector and ( ) gy t ∈ℜ  is measurable output vector. The state-space matrices 

( ( )) , ( ( )) , ( ( ))A t B t C tθ θ θ  have compatible dimensions with related signals. Furthermore, 

the matrices depend only on bounded and continuous time varying parameters 



6 

[ ]1 2( ) ( ) , ( ) , , ( ) T
rt t t tθ θ θ θ=  which are assumed to measurable on-line. (Hereafter, the 

time variable t will be dropped) 

Next, definitions about stability and control performance of LPV systems are 

noted. 

 

Definition 1: An LPV system (2.1) is said to be parameter-dependent quadratically 

stable if and only of there exists a scalar function ( , ) ( ) ( ) ( ) 0TV x x t P x tθ θ= >  and 

( , ) / 0dV x dtθ <  along all admissible parameter trajectories and all initial conditions. 

That is, a necessary and sufficient condition for parameter-dependent quadratic 

stability of an LPV system (2.1) is that there exists a parameter-dependent positive 

definite matrix ( )P θ  such that  

( )( ) ( ) ( ) ( ) 0T dPA P P A
dt
θθ θ θ θ+ + < . (2.2) 

 

Definition 2: The L2-gain of the LPV system having input w  and output z  is 

defined as 
2

2

,0 2

sup
w
z

ww ∞<≠
, where 2/1

02 ))()(( dttztzz T∫
∞

=  is the L2-norm of the signal 

z . The control system satisfying the condition: 
2

2

0, 2

sup
w w

z
w

γ
≠ <∞

<  is said to have 

L2-gain performance with the bound γ  related to w  and z . 

Next, we will introduce a lemma to consider parameter-dependent quadratic 
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stability of the LPV control systems. 

 

Lemma 1: Suppose matrices )(11 θA  and )(22 θA  are parameter-dependent 

quadratically stable. Then, every continuous and bounded block triangle matrix 

whose diagonal matrices consist of )(11 θA  and )(22 θA  is also parameter-dependent 

quadratically stable. 

Proof: Consider a lower triangle matrix:  

⎥
⎦

⎤
⎢
⎣

⎡
=

)()(
0)(

)(
2221

11

θθ
θ

θ
AA

A
A , 

and a bounded parameter-dependent matrix 

1

2

( ) 0
( ) 0

0 ( )
P

P
P

θ
θ

λ θ
⎡ ⎤

= >⎢ ⎥
⎣ ⎦

, with a positive real numberλ .  

According to the Definition 1, )(θA  is said to be parameter-dependent quadratically 

stable if there exists a positive real number λ  such that the following inequality 

holds.  

1
11 1 1 11 21 2

2
2 21 22 2 2 22

( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( )
0

( )( ) ( ) ( ) ( ) ( ) ( )

T

T T

T

dPA P P A
dt

dPA P P A A P
dt

dPP A A P P A
dt

θθ θ θ θ

θθ θ θ θ λ θ θ

θλ θ θ λ θ θ θ θ

+ +

⎡ ⎤+ +⎢ ⎥
⎢ ⎥= <

⎛ ⎞⎢ ⎥+ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (2.3) 

Using the Schur Complement , inequality (2.3) is equivalent to the following 

inequalities as  
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2
2 22 22 2

( )( ) ( ) ( ) ( ) 0T dPP A A P
dt
θλ θ θ θ θ⎛ ⎞+ + <⎜ ⎟

⎝ ⎠
 (2.4) 

1
11 1 1 11

1
2

21 2 22 2 2 22 2 21

( )( ) ( ) ( ) ( )

( )( ( ) ) ( ) ( ) ( ) ( ) ( ( ) ( )) 0

T

T T

dPA P P A
dt

dPA P A P P A P A
dt

θθ θ θ θ

θλ θ θ θ θ θ θ θ
−

Θ = + +

⎛ ⎞− + + <⎜ ⎟
⎝ ⎠

 (2.5) 

The inequality (2.4) holds for any 0>λ . For the rest of the proof, we find a positive 

real number 0λ > , which satisfies (2.5). According to the assumption, there exist 

bounded positive definite matrices 1( )P θ , 2 ( )P θ  and positive real numbers 1r , 2r , 

respectively, which satisfy 

1
11 1 1 11 1

( )( ) ( ) ( ) ( ) ,T dPA P P A r I
dt
θθ θ θ θ+ + ≤ −  (2.6) 

2
2 22 2 2 22

( )( ) ( ) ( ) ( ) 0.T dPr I A P P A
dt
θθ θ θ θ− ≤ + + <  (2.7) 

Also, since 2 21 2 21( ( ) ( )) ( ( ) ( ))TP A P Aθ θ θ θ  is a symmetric and bounded matrix, there 

exists a positive real number 3r , which satisfies 

                  2
2 21 2 21 3( ( ) ( )) ( ( ) ( ))TP A P A r Iθ θ θ θ ≤  (2.8) 

Substituting (2.6), (2.7) and (2.8) to (2.5) we obtain ( )1 2
1 2 3r r r Iλ −Θ ≤ − + . Finally, we 

see that inequality (2.5) holds for any 2
1 2 30 rr rλ −< < .  

The upper triangle matrices can be deduced in the same way.  Q.E.D. 

Now we introduce a way of obtaining all parameter-dependent quadratically 

stabilizing controllers for a given LPV plant. 

 



9 

Theorem 1: Let the LPV plant )(θG  be described in (2.1) and controllers )(θK  be 

connected by the general control architecture as shown in Figure 1. Then the set of all 

parameter-dependent quadratically stabilizing controllers can be parameterized as 

))(),(()( θθθ QJFK l=  where  

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) 0

( ) 0

A B F L C L B
J F I

C I

θ θ θ θ θ θ θ
θ θ

θ

⎡ ⎤− − −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

. (2.9) 

This )(θJ  is an observer based stabilizing controller of the plant, where 

( ) ( ) ( )A B Fθ θ θ−  and ( ) ( ) ( )A L Bθ θ θ−  should be parameter-dependent quadratically 

stable. The dynamics )(θQ  with any dimensions should be also 

parameter-dependent quadratically stable described as 

 
( ) ( )

( )
( ) ( )

Q Q

Q Q

A B
Q

C D
θ θ

θ
θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.10) 

 

( )K θ

( )G θu y

 

Figure 1. General LPV feedback control architecture. 

The notation ( )lF  denotes lower linear fractional transformation and the structure of 

all parameter-dependent quadratically stabilizing controllers )(θK  can be 

parameterized as shown in Figure 2. 
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( )Q θ

( )J θ

( )K θ

yu

 

Figure 2. Parameterization of all parameter-dependent quadratically stabilizing 

controllers. 

Proof: 

Sufficiency: Using (2.9) and (2.10), the controller )(θK  is derived as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

Q Q Q

Q Q Q

Q Q Q

A B F L C B D C B C B D L
B C A BK

F D C C D

θ θ θ θ θ θ θ θ θ θ θ θ θ
θ θ θ θθ

θ θ θ θ θ

⎡ ⎤+ + − −⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

(2.11) 

Connecting (2.11) to (2.1), the closed-loop system can be expressed as  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 ( ) ( ) ( ) 0
0 ( ) ( ) ( )

Q Q

Q Q Q Q

x A B F B F B D C B C x
e A L C e
x B C A x

θ θ θ θ θ θ θ θ θ θ
θ θ θ

θ θ θ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (2.12) 

where ˆe x x= − , x̂  is the state of the observer )(θJ  and Qx  is the state variable 

vector of the ( )Q θ . 

Using lemma 1 twice in succession, first viewing (2.12) as upper triangle matrix 

and then viewing the second diagonal block of it as lower triangle matrix, we can find 

a parameter-dependent positive matrix ( )clP θ  with 0fλ >  and 0qλ >  formed as  

( ) 0 0
( ) 0 ( ) 0

0 0 ( )

f f

cl l

q q

P
P P

P

λ θ
θ θ

λ θ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.13) 

where ( ) 0fP θ > , ( ) 0lP θ >  and ( ) 0qP θ >  with compatible dimensions, satisfies (2.2) 
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for system (2.12). 

Necessity: We will show that the arbitrary stabilizing controller )(θK  can be 

expressed with an appropriate parameter-dependent quadratically stable 0 ( )Q θ  as 

0( ) ( ( ), ( ))lK F J Qθ θ θ= .  

First, consider 0
ˆ( ) ( ( ), ( ))lQ F J Kθ θ θ= , where ˆ( )J θ  is realized as 

( ) ( ) ( )
ˆ( ) ( ) 0

( ) 0

A L B
J F I

C I

θ θ θ
θ θ

θ

⎡ ⎤−⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

. (2.14) 

Since the (2,2) input-output relation of ˆ( )J θ  is the same as the original plant (2.1), 

then ( )K θ  stabilized not only the plant but also the ˆ( )J θ . Accordingly, 

0
ˆ( ) ( ( ), ( ))lQ F J Kθ θ θ=  is parameter-dependent quadratically stable.  

The substitution of the 0 ( )Q θ  into 0( ( ), ( ))lF J Qθ θ  yields 

0
ˆ( ( ), ( )) ( ( ), ( ( ), ( )))

( ( ), ( )),
l l l

l tmp

F J Q F J F J K
F J K

θ θ θ θ θ
θ θ

=
=

 

where tmpJ  is obtained using the star product formula as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) 0
( ) ( ) 0

u

tmp

A L C B F B F L B
L C A L B

J
F F I
C C I

θ θ θ θ θ θ θ θ
θ θ θ θ θ

θ θ
θ θ

⎡ ⎤+ + − −⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

. (2.15) 

A similar transform with  

⎥
⎦

⎤
⎢
⎣

⎡
=

I
II

T
0

, 

and eliminating the stable uncontrollable and unobservable mode gives 
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0
0tmp

I
J

I
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

  

Consequently, the relation that we want to show is deduced 

0( ( ), ( )) ( , ( )) ( )l l tmpF J Q F J K Kθ θ θ θ= = . Q.E.D. 

The result itself is a natural extension of the corresponding result for LTI systems. 

However, since eigenvalues of state matrices are not available for describing LPV, 

lemma 1 is needed to assure the stability of the closed loop LPV system. 

 

3.  TDOF controller design based on GIMC architecture 

In this Section, we propose a TDOF architecture and its design strategy for LPV 

systems based on the Generalized Internal Model Control (GIMC) described directly 

with the Youla Parameterisation. First, we define doubly coprime factorisation 

description of LPV plants that resemble the case of LTI systems. Then, GIMC for LTI 

systems is extended to LPV systems. 

 

Definition 3: The representation (3.1) is called a doubly coprime factorisation of LPV 

plants )(θG  

1 1( ) ( ) ( ) ( ) ( )G N M M Nθ θ θ θ θ− −= = , (3.1) 

where 
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( ) ( ) ( ) ( ) ( )
( ) ( )

( ) 0
( ) ( )

( ) 0

A B F B L
M U

F I
N V

C I

θ θ θ θ θ
θ θ

θ
θ θ

θ

⎡ ⎤−⎢ ⎥⎡ ⎤− ⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎢ ⎥⎣ ⎦

, (3.2)   

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) 0
( ) ( )

( ) 0

A L C B L
V U

F I
N M

C I

θ θ θ θ θ
θ θ θ
θ θ θ

⎡ ⎤−⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢ ⎥−⎢ ⎥⎣ ⎦

, (3.3) 

where )(θF  and )(θL  are chosen such that )()()( θθθ FBA −  and )()()( θθθ CLA −  

are both parameter-dependent quadratically stable. The product of (3.2) and (3.3) 

reduces a unit matrix, and this relationship supports the statement that (3.1) is doubly 

coprime factorisation. 

According to doubly coprime factorisation and Youla Parameterisation for LPV 

plant, we can construct a GIMC architecture for LPV plants as shown in Figure 3, 

where u  are control inputs, d  are output disturbances, y  are controlled outputs 

and r  are reference inputs. 

d

+

+

y

( )M θ( )N θ

( )Q θ

( )U θ1( )V θ−

r

u

v

h

0 ( )K θ
+

+( )G θ

-
-

 
Figure 3. Generalized internal model LPV control architecture. 
 

Just as introduced in (Zhou and Ren 2001), the GIMC architecture shown above 

is given by the modification of the Youla Parameterisation. In contrast to the Youla 
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Parameterisation, however, the adjustable dynamics ( )Q θ  will be active only when 

there exist output disturbances d  or model uncertainties, thus this conditional 

controller can be used solely to deal with the external disturbances or model 

uncertainties. On the other hand, 0 ( )K θ  is a nominal controller satisfying the 

adequate reference tracking performance. 

The GIMC architecture leads to a two-step design procedure of TDOF-LPV 

controller. First, a feedback controller 0 ( )K θ  that achieves good tracking 

performance is designed by a model matching strategy with L2-gain performance. 

Second, a conditional controller ( )Q θ  that rejects disturbances or model 

uncertainties, but does not affect tracking performance, is also designed with L2 gain 

performance. Each controller design problem can be reduced to the design problem of 

the gain-scheduled controller ( )K θ  in Figure 1 introduced by Apkarian and Adams 

(1998), by considering appropriate augmented plant. Also, each controller design 

problem can be formulated in terms of LMI expression. 

3.1 Construction of the nominal controller )(0 θK  

The approximation of transfer functions cannot be applied to solve the command 

tracking problem for LPV systems. Instead, we treat L2-gain performance between 

signals z  and r  by a controller )(0 θK  as shown in Figure 4 with reference model 
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)(0 θT  and the weighting function ( )rW θ . The LTI reference model and weighting 

function are also available, although the latter can be omitted. 

0( )K θe u

0 ( )T θ

( )rW θ( )G θ zr
y

0( )G θ

 

Figure 4. LFT configuration for the tracking problem. 

According to Figure 4, the augmented plant 0 ( )G θ  has the following relationship 

0
0

( ) ( ) ( ) ( )
( )

( )
r rz r W T W G r

G
e u I G u

θ θ θ θ
θ

θ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. (3.4)              

The state space realization of 0 ( )G θ  can be derived as 

0 0

0 0

0

0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) 0
0 ( ) 0 ( ) 0

( ) 0 0 ( ) 0 ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

0 0 ( ) 0

wr wr t wr wr t

t t

wr wr t wr wr t

A B C B C B D
A B

G A B
C D C D C D D

C I

θ θ θ θ θ θ θ
θ θ

θ θ θ
θ θ θ θ θ θ θ

θ

⎡ ⎤− −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

, (3.5) 

where, ( )rW θ  and ( )T θ  have the realization [ ]( ) , ( ) , ( ) , ( )wr wr wr wrA B C Dθ θ θ θ  and 

[ ]0 0 0 0( ) , ( ) , ( ) , ( )t t t tA B C Dθ θ θ θ , respectively.  

Consequently, the design problem of the feedforward controller )(0 θK  obtaining L2 

gain performance related to r and z is formulated in terms of the linear matrix 

inequality mentioned later in Subsection 3.3. 
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3.2 Construction of the conditional controller )(θQ  

We also consider L2-gain performance between signals d  and y  by a conditional 

controller ( )Q θ . After the nominal controller 0 ( )K θ  is fixed, Figure 3 can be 

rewritten by another LFT configuration as shown in Figure 5.  

( )QG θ

( )Q θ

y

vh

d

 

 Figure 5. LFT configuration for the disturbance elimination.                   

The augmented plant ( )QG θ , consists of 0( ) , ( ) , ( )G K Mθ θ θ  and ( )N θ , has the 

following relationship 

1 1 1 1
0 0( ( ) ( )) ( ( ) ( )) ( ) ( ) ( )

( )
( ) 0Q

y d dI G K I G K M N V
G

v h hM
θ θ θ θ θ θ θθ

θ

− − − −⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
. (3.6) 

Consequently, the state space realization of ( )QG θ  can be expressed as 

0 0 0

0 0 0 0

( ) ( ) ( ) ( ) ( ) ( ) 0 ( ) ( ) ( )
( ) ( ) ( ) 0 ( ) ( )

( ) 0 0 ( ) ( ) ( ) ( ) 0
( ) 0 0 0

0 0 ( ) 0

k k k

k k k k

Q

A B D C B C B D B
B C A B L

G A L C L
C I

C I

θ θ θ θ θ θ θ θ θ
θ θ θ θ θ

θ θ θ θ θ
θ

θ

⎡ ⎤− −⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦

(3.7) 

where, [ ]0 0 0 0( ) , ( ) , ( ) , ( )k k k kA B C Dθ θ θ θ  is a realization of 0 ( )K θ . The details for 

designing of ( )Q θ  are given by the same manner as that of 0( )K θ  and will also be 

introduced in the next Subsection. 

Because ( )QG θ  becomes a high order system compared to the model plant, the 
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resulting ( )Q θ  also tends to be of high order. Below we consider an alternative 

formulation to obtain a reduced order controller based on modified architecture 

shown in Figure 6. 

( )vQ θ

( )N θ 1( )M θ−u

d−

( )N θ ( )M θ

d

w

0( )K θ

y

r

( )G θ

0( )G θ

 

Figure 6. Modified architecture of Figure 3. 

The disturbance d  is called base-equivalent disturbances that represent real 

disturbances and model uncertainties. Robust control system design by means of 

rejection of the d  has been proposed and refereed to as Robust Model Matching 

(RMM) in the References (Yali and Eisaka  2000, Eisaka and Xie 2004). We can 

apply the RMM to design of a conditional controller ( )vQ θ . The design principle is to 

make the 0( )G θ  as becoming close to the nominal ( )G θ  without using the feedback 

controller 0( )K θ . A conditional controller ( )vQ θ  should be obtained for this purpose. 

As for the configuration Figure 5, 0( )G θ  can be rewritten in the form of LFT 

configuration as shown in Figure 7.  
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( )vQ θ

u

d w( )QW θ
y

( )N θ

( )qG θ

 

Figure 7. Simplified LFT configuration of 0( )G θ . 

The augmented plant )(θqG  with the weighting function )(θQW  for this architecture 

can be derived as 

( ) ( ) ( ) ( ) 0
0 ( ) ( ) ( ) 0 ( )( ) ( ) ( )

( )
( ) ( ) ( ) ( ) 00

0 0 0

wq wq wq

Q Q
q

wq wq wq

A B C B
A L C BW W N

G
C D C DI

I

θ θ θ θ
θ θ θ θθ θ θθ

θ θ θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ −⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥−⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

, (3.8) 

where the realization of the ( )QW θ  is expressed as ( ) , ( ) , ( ) , ( )wq wq wq wqA B C Dθ θ θ θ⎡ ⎤⎣ ⎦ . 

The controller ( )vQ θ  is obtained without using information of nominal 

controller 0( )K θ . The alternative architecture has advantages not only that it leads to 

lower order controller but also it is applicable to any existing control systems 

including nonlinear and/or non-closed form control scheme such as adaptive, model 

predictive, fuzzy or variable structure systems.  

 

3.3 Derivation of the controllers 

Design of each controller 0 ( )K θ , ( )Q θ  and ( )vQ θ  can be reduced to design of 

gain-scheduled controller ( )K θ  as in Figure 1, by considering an appropriate 
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augmented plant )(0 θG , ( )QG θ  and ( )qG θ , respectively. 

Necessary and sufficient conditions of the existence of LPV controller ( )K θ  for 

the augmented plant ( )AG θ  that assures both stability and L2-gain performance have 

been clarified. Here, we assume that the augmented plants have a unified formulation 

as 

1 2

1 11 12

2 21 0

p p p

p p p

p p

A

A B B
G C D D

C D

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (3.9) 

(Hereafter, dependency on the parameter θ  will be omitted) 

After the augmented plant (3.9) is given, corresponding controllers can be 

obtained by means of the well-known procedure given by Theorem 2.1 of Apkarian 

and Adams (1998). The two-step design of the controller is summarized below. 

1. Solve for JH , , the factorisation problem THJXYI =− . 

2. Compute kkk CBA ,,  with 

T
kppkpkppk

T
k JCXBYCBYCDBAXAJHYXHA −− −−−−++= )ˆˆ)(ˆ( 2222

1  

)ˆ( 2
1

kpkk DXBBHB −= −  

T
pkkk JYCDCC −−= )ˆ( 2  

where ˆ ˆˆ, , , ,k k kX Y A B C  and kD  satisfies the following LMIs: 

( ) 0X I
I Y ≥   (3.10) 
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ˆ (*) * * *2
ˆ ˆ (*) * *2 2 2

0
ˆ( ) ( ) *1 21 1 2 21

ˆ
1 12 2 1 21 11 12 21

X XA B Cp pk
TA A B D C Y A Y B Cp p p p pk k k

T TXB B D B B D D Ip p p p pk k

C D D C C Y D C D D D D Ip p p p p p p pk k k

γ

γ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

+ + +

+ + − + + +
<

+ + −

+ + + −

(3.11) 

Terms denoted * are induced by symmetry. 

Finally, an admissible controller can be achieved as [ ], , ,k k k kA B C D . 

It is noted that above design procedure contains an NP-hard computational 

problem. Several alternative design procedures with some restrictions but needing 

less computational power have been proposed in Packard (1994) and Scherer (2001). 

A simple idea for turning this infinite-dimensional problem into a finite set of LMIs is 

to grid the value set of θ . 

 

4. Example 

We briefly illustrate design procedure with a classical example of parameter-varying 

unstable plant that can be viewed as a mass-spring-damper system with time-varying 

spring stiffness. The state space equation of this unstable un-weighted LPV plant is 

expressed as follows (Xie and Eisaka 2004). 

 ⎥
⎦

⎤
⎢
⎣

⎡
−−−

=
2.05.05.0

10
)(

θ
θA , ⎥

⎦

⎤
⎢
⎣

⎡
=

1
0

B , [ ]01−=C , 0=D . 

Here, for the simplicity, the scope of time-varying parameter )(tθ  assumed to be 
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varying in polytopic spaces }1,1{:1 −=Θ Co  and the trajectory of this parameter is 

4( ) cos(100 )tt e tθ −= .  

From the above realization and Eq. (18), a right coprime factorisation of the plant is 

given as )(~)(~)( 1 θθθ NMG −=  with 

29.4 1 0 29.4
[ ] 381 0.2 1 380 0.5

1 0 0 1
N M θ

⎡ ⎤− −⎢ ⎥
⎢ ⎥− − − − +⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

 by setting ,)()(
2

1
∑
=

=
i

ii LtL αθ where 

TL ]3814.29[1 −−=  and .]5.37944.29[2
TL −−=  In this case, because the inverse of 

the ( )G θ  is stable, we can obtain an exact model matching controller )(0 θK  

instead of the L2-gain approximation introduced in Subsection 3.1. 

 

4.1 Design of the nominal controller )(0 θK  

With a fast vertical convergence to the step reference, the LTI reference model was 

chosen as 

1/2/
1

220 ++
=

ωζω ss
T , where srad /4.22=ω  and 8.0=ζ .  

Since the inverse of ( )G θ  is stable, we obtain a simple controller that completes 

exact model matching derived as 1 1
0 0 0( ) ( ) (1 )K G T Tθ θ − −= − . 

The )(0 θK  is realized as ∑
=

⎥
⎦

⎤
⎢
⎣

⎡2

1

)(
i kiki

kiki
i DC

BA
tα  with 1 2

35.8 2 ,
0 0k kA A

⎡ ⎤−= = ⎢ ⎥
⎢ ⎥⎣ ⎦

 

1
139 ,0kB ⎡ ⎤= ⎢ ⎥
⎢ ⎥⎣ ⎦

 2
139 ,1.95kB ⎡ ⎤= ⎢ ⎥−⎢ ⎥⎣ ⎦

 [ ]012821 == kk CC  and 50021 −== kk DD . 

where 2/))(1()(1 tt θα −=  and 2/))(1()(2 tt θα += . 
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4.2 Design of the conditional controller )(θvQ  

Here we design a reduced order conditional controller )(θvQ . Here, the LTI 

weighting function was set to be 
11101000
1011.00001.0

2

2

++
++

=
ss
ssWQ . According to the 

augmented plant formulation (3.8), using Matlab’s LMI toolbox (Gahinet et al. 1995), 

we obtain a LTI [ , , , ]v q q q qQ A B C D  with optimal L2-gain performance 0023.0=γ  

as 

5.61 72670 5.61 5 4750 1.06 4
 2.79 512.6 2790 23.1 51.3 , ,2900 6.14 5 5310 1.12 4  6.14 7

626 1.34 5 1140 2590 1.34 7

q q

ee e
eA Be e e

e e

⎡ ⎤−⎡ ⎤− − ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥= =⎢ ⎥⎢ ⎥− − ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥− − −⎢ ⎥⎣ ⎦ ⎣ ⎦

 [ ]67, 38, 81, 102,qC= −  .0=qD  

 

4.3 Simulation results 

Performance of the GIMC architecture for LPV plant is illustrated compared to the 

one-degree-of-freedom LPV control system with only nominal controller. Here, an 

indicial reference response with following step disturbance is compared. 

0   0 2.5
( )

0.1 2.5
t

d t
t

⎧ < <⎪⎪= ⎨⎪ ≤⎪⎩
 

The conditional controller ( )vQ θ  rejects the disturbance but does not affect the 

reference response given by the nominal controller, and good tracking performance 

and good disturbance rejection are compatibly achieved by a nominal controller and a 
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conditional controller, respectively. 

 

Figure 8. Indicial reference responses for; 

(i) reference model )(0 θT  

(ii) TDOF control system with )(0 θK + )(θvQ  

(iii) ODOF control system with: )(0 θK . 

5. Conclusions 

A Generalized Internal Model Control (GIMC) architecture and its design strategy for 

linear parameter varying (LPV) systems have been proposed. First, coprime 

factorisation and Youla Parameterisation described in state space formulas have been 

introduced for LPV systems based on parameter-dependent Lyapunov function. 

Second, according to these descriptions, GIMC for LTI systems has been extended to 

LPV systems with respect to parameter-dependent quadratic stability. And then, the 
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standard design procedures of the nominal controller and the conditional controller 

have been proposed. In particular, a design of a lower order conditional controller has 

been considered. Because the lower controller is obtained without using information 

of the nominal controller, it is applicable to any existing control systems including 

nonlinear and/or non-closed form control scheme such as adaptive, model predictive, 

fuzzy or variable structure systems.  

Consequently, the controller design problem is formulated in terms of LMIs. 

Based on the proposed architecture, we can design a two-degree-of-freedom 

controller systematically. Moreover, due to the separate structure of the conditional 

controller, the tuning of it to obtain expected control performance can be easily 

executed at an industrial site. 

In the present paper, we have just focused on L2-gain performance to design 

controllers. Based on our results, however, the general Q-parameter approach can be 

applicable to LPV control systems. The Q-parameter approach will give us more 

practical validity to deduce the solution and covers more general control system 

designs including multi-objective and/or switching systems for LPV plants.  
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