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ABSTRACT: In this study, to examine the effect of the fabric anisotropy on elastic 
moduli (shear and Young's moduli), the bender element, cyclic and monotonic 
triaxial tests were performed on reconstituted clay specimens with different fabric 
characteristics. The specimens with the angle between the axial direction of the 
triaxial specimen and the bedding direction of 0 and 90 degrees were cut from the 
pre-consolidated clay block. These specimens were isotropically consolidated under 
several kinds of confining pressures. The shear wave velocities in three different 
directions (VH, HH, HV-wave) were measured by bender element tests, and the 
stiffness under wide ranges of strain levels up to failure were measured by cyclic and 
monotonic triaxial tests. Test results showed that; 1) the shear modulus obtained from 
the shear wave for propagating and vibrating horizontal to the bedding plane is 
higher than the others two kinds of moduli, 2) the horizontal Young’s modulus at 
small strain is also higher than the vertical one, 3) the anisotropy of the elastic 
modulus of clay is larger than that with sand, but becomes lower with the increase in 
strain level and consolidation stress. 
 
 
INTRODUCTION 
  The shear and Young's moduli at small strain, Gmax and Emax, called “quasi-elastic 
modulus”, are known to be close to the maximum value under given stress/strain 
conditions, and they are independent of shearing rate, type of loading (monotonic or 
cyclic), number of cycles, etc. To assess the in-situ small strain stiffness, laboratory 
tests on samples retrieved from the site or in-situ tests have been performed. In 
in-situ seismic surveys, the down-hole or suspension technique measures Vvh, 
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whereas Vhh or Vhv is measured by the cross-hole technique. Note that the first and 
second subscripts for V denote the directions of shear wave propagation and 
polarization, respectively. On the other hand, in laboratory tests, one technique that 
has been widely adopted in the last decade is the propagation of seismic waves by 
means of piezoelectric transducers, called simply “bender element”, housed in a 
triaxial apparatus (e.g. Dyvik and Madshus 1985). In this method, the shear wave 
velocity propagated vertically, Vvh, is commonly measured. 
  The above techniques are based on the following relationship between the velocity 
of the seismic body wave and the shear modulus of an isotropic homogeneous elastic 
medium; 

2
Smax VG ρ=       (1) 

where Gmax is the maximum shear modulus; ρ is the total mass density of the 
medium; and VS is the shear wave velocity. 
  If the soil ground is homogeneous and under isotropic stress conditions, the shear 
wave velocity, Vvh, should be equal to Vhh and Vhv. However, the shear wave 
velocities are different from the propagating directions, since the in-situ stress 
conditions may be mostly anisotropic, and the in-situ subsoil has an anisotropic 
fabric. 
  In the literature, Butcher and Powell (1995) and Hight et al. (1997) reported that 
in-situ shear wave velocities measured by cross-hole and down-hole techniques are 
different based on the propagating directions, and they are different based on the 
kinds of soils (sandy or clayey soils). In addition, Yimsiri and Soga (2002) reported 
that clays are generally more anisotropic than sands in terms of small-stain stiffness 
and fabric conditions in the laboratory test. 
  In this paper, to clarify the effect of the propagating and vibrating directions of 
shear wave relative to the bedding plane on a clay specimen’s small-strain stiffness, 
bender element tests, and monotonic and cyclic triaxial tests were performed on 
reconstituted clay specimens. The shear wave velocities from three different 
directions (VH, HH, HV-wave) and the stiffness under a wide range of strain levels 
up to failure were measured by bender element and triaxial tests. 
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FIG. 1. Illustration of a Cross-Anisotropic Material, 
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STRESS STRAIN RELATIONSHIP 
Cross Anisotropic Model 
  When elasticity is cross-anisotropic and if the anisotropy is symmetrical about the 
vertical axis, as shown in Fig. 1, we obtain the following stress-strain equation: 
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where x and y-axes are horizontal and z-axis is vertical; Ev and Eh are the vertical 
and horizontal Young’s moduli; νvh, νhh and νhv are the Poisson’s Ratios; Gvh, Ghh and 
Ghv are the shear moduli. 
  From Eq.(2), the following stress-strain relations are obtained; 
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From the symmetry of the matrix and the isotropic property in the horizontal plane, 
Eqs. (6) and (7) are obtained; 
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Drained and Undrained Triaxial Tests under Constant Lateral Pressure on 
V-Specimens 
  When the loading direction is z-direction, δσxx' and δσyy' are zero, in the drained 
triaxial test on the V-specimen, which was vertically cut from the block sample as 
shown in Fig. 1. Thus, from Eq.(5), the following relation is obtained; 
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where q is the deviator stress. 
  On the other hand, in the undrained test, since δσxx' is equal to δσyy', substitution 
of Eq.(6) into Eq.(5) leads to; 
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Under undrained conditions, the volumetric strain δεvol is zero. δεxx is equal to δεyy, 
when the loading direction is the z-direction. 

0zzyyxxvol =δε+δε+δε=δε    (10a) 
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Substitution of Eq.(11) into Eq.(9b) leads to the Young’s modulus for the vertical 
direction under undrained conditions, (Ev)u. 

( )
zzzz

xxzz
uv

q''E
δε
δ

=
δε
δσ−δσ

=    (12) 

  Accordingly, the vertical Young’s modulus is directly measured from the 
increment of axial stress and strain from drained or undrained triaxial tests under 
constant lateral pressure on V-specimens. 
 
Drained and Undrained Triaxial Tests under Constant Lateral Pressure on 
H-Specimens 
  When the loading direction is x-direction, δσyy' and δσzz' are zero, in the drained 
triaxial test on the H-specimen, which was horizontally cut from the block sample as 
shown in Fig. 1. Thus, from Eq.(3), the following relation is obtained; 
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  On the other hand, in the undrained test, since δσyy' is equal to δσzz', substitution 
of Eq.(6) into Eq.(3) leads to: 
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From undrained conditions, the axis symmetry and Eq. (10b), the following relations 
are obtained; 
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Substitution of Eq.(15c) into Eq.(14b) leads to Young’s modulus for the horizontal 
direction under undrained conditions, (Eh)u. 
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  Accordingly, the horizontal Young’s modulus is also directly measured from the 
increment of axial stress and strain from drained or undrained triaxial tests under 
constant lateral pressure on H-specimens. 
 
Bender Element Tests 
  In the bender element tests, three kinds of shear moduli (Gvh, Ghh and Ghv) can be 
calculated from the shear wave velocities from three different directions (Vvh, Vhh 
and Vhv). Accordingly, all five elastic moduli (Young’s and shear moduli) shown in 
Eq.(2) are obtained from the triaxial loading test and the bender element test. 
 
 
TEST PROGRAM 
Test Material and Sample Preparation Method 
  The tested material is NSF clay (ρs = 2.724 g/cm3, wL = 58.4 %, wP = 28.1 %, IP = 
30.3, clay content (< 5 mm) = 100 %). The reconstituted samples were prepared in 
the laboratory by means of one-dimensional consolidation of slurry having an initial 
water content of twice the liquid limit. The vertical pre-consolidation pressure was 
150 kPa that was maintained constant over 10 days. Specimens with angles between 
the axial direction of the triaxial specimen and the bedding plain of 0° (V-specimen) 
and 90° (H-specimen) were cut from the pre-consolidated clay block, as shown in 
Fig. 1. The diameter and height of specimens are 70 mm and 150 mm, respectively. 
 
Bender Element Tests 
  In bender element (BE) tests, the shear wave velocities were measured in three 
different directions (VH, HV, HH-wave). One pair of bender elements was attached 
to the top cap and the pedestal. Two pairs of bender elements were attached to the 
lateral surface of the specimen after specimen set up. The lateral BEs were composed 
of a metallic plate (aluminum plate) glued with one end of a BE (Fioravante 2000). 
The plate was glued to the internal surface of the membrane with buttonholes 
(rectangular-hole). The BE was glued on a metal plate through a buttonhole on the 
membrane using quick-drying glue, after the complete preparation of the specimen 
(Yamashita et al. 2005). This method does not disturb the specimen, because the BE 
does not penetrate into the specimen. The transmitting element was driven by ±10V 
amplitude waves from a generator with a single sinusoidal wave of different 
frequencies. The effective propagating distance and the arrival time of the shear 
wave were defined by the distance from tip-to-tip of the bender elements and the 
starting points of the input and received waves, respectively (Yamashita and Suzuki 
2001). The shear wave velocity used was the average of those measured using 
sinusoidal waves of 10, 15 and 20 kHz. 
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FIG. 2. Relations between Propagating Direction and Bedding Plane 
 
    TABLE 1. Relations between Propagating Direction and 
    Shear Moduli 

Wave V-specimen H1-specimen H2-specimen 
VH-wave 
HH-wave 
HV-wave 

Gvh* 
Ghh* 
Ghv* 

Ghv* 
Ghv* 
Gvh* 

Ghh* 
Gvh* 
Ghh* 

 
 
  Figure 2 illustrates the relationship of the propagating direction of the shear wave 
to the bedding plane. There are two kinds of H-specimens based on the difference in 
penetration direction of the bender elements relative to the bedding plane. The 
following three kinds of shear moduli (G = ρVS

2), which were defined by the 
relations of the propagating direction versus the bedding plane, were measured on 
these specimens (see Table 1) 

Gvh* = the propagating direction of the shear wave is perpendicular and the 
vibrating direction of the particles is parallel relative to the bedding plane; 

Ghh* = the propagating direction of the shear wave and the vibrating direction of 
the particles are parallel relative to the bedding plane; and 

Ghv* = the propagating direction of the shear wave is parallel and the vibrating 
direction of the particles is perpendicular relative to the bedding plane. 

 
Monotonic and Cyclic Triaxial Tests 
  After each reconstituted specimen was set up in the cell, the cell pressure was 
raised to 30 kPa. Subsequently, deaired water was permeated through the specimen. 
Back pressure of 98 kPa was, thereafter, applied for about one day. All specimens 
were isotropically consolidated to σc' = 49, 98, 196 or 392 kPa. The stress path at 
consolidation and tested stress states are shown in Fig. 3. The shear wave velocities 
in three different directions were measured by the bender element (BE) method on 
each consolidation state (circle mark in Fig. 3 and Table 2). In addition, the 
undrained equivalent Young's modulus at small strain (0.001 %) was measured by 
cyclic triaxial (CTX) loading from the same consolidation states. In each state, the 
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specimen was subjected to eleven undrained loading cycles performed by applying 
uniform triangular cyclic axial displacements with a frequency of 0.1 Hz. The axial 
stress and the axial strain were measured by a load cell and one pair of proximity 
transducers placed inside the cell, respectively. The equivalent Young’s modulus, Eeq, 
is defined by the average value of those from the 2nd to 10th cycles. After each 
specimen was tested with BE and small-strain CTX tests, monotonic undrained 
triaxial compression (MTX) tests were performed, as shown in Fig. 3 and Table 2. 
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FIG. 3. Stress Path at Consolidation and Tested Stress States 

 
TABLE 2. Test Conditions 

Effective confining pressure, σc’ 
49 kPa 98 kPa 196 kPa 392 kPa Stress 

points 
BE, CTX BE, CTX BE, CTX BE, CTX

σc’ 
at MTX test 

A 
B 
C 
D 

○ 
○ 

○ 
○ 

— 

○ 
○ 

○ 

— 
— 

○ 
○ 

— 
— 
— 
○ 

49 kPa 
98 kPa 
196 kPa 
392 kPa 

 
 
TEST RESULTS 
Bender Element Tests 
  Figure 4 shows some examples of input and received waveforms on V, H1 and 
H2-specimens in BE tests (σc’ = 196 kPa, f = 10 kHz). In the V-specimen, the 
propagation time, Δt, in the HH-wave is clearly faster than that in the HV-wave, as 
shown in Fig. 4(a). Although Δt in the VH-wave is slower than the others waves 
because the tip-to-tip distance, Δs, of the bender elements is longer than the others, 
the shear modulus in the VH-wave, Gvh, is similar to Ghv. On the other hand, in the 
H1-specimen, Δt in the HH-wave is almost the same as Δt in the HV-wave, as shown 
in Fig. 4(b). The shear moduli estimated from the shear wave velocities are almost 
the same, irrespective of propagating direction in the H1-specimen.  Note that in the 
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FIG. 4. Examples of input and received waveforms; 

(a) V-Specimen, (b) H1-Specimen, and (c) H2-Specimen 
 
 
H1-specimen the propagating or vibrating direction of the shear waves is 
perpendicular or parallel relative to the bedding plane as shown in Fig. 2. In the 
H2-specimen, Δt in the HV-wave is faster than that in the HH-wave, as shown in 
Fig.4(c). Note that in the H2-specimen the propagating and vibrating directions in the 
HV-wave are both parallel relative to the bedding plane as shown in Fig. 2. Although 
Δt in the VH-wave is slower than those in the others waves because the tip-to-tip 
distance, Δs, is longer than the others BEs, the shear modulus in the VH-wave is 
similar to that in the HV-wave. This is due to the propagating and vibrating directions 
in VH and HV-waves being both parallel relative to the bedding plane in the 
H2-specimen, as shown in Fig. 2. 
  Figure 5 shows the relations of the shear modulus versus the effective confining 
pressure measured with the same propagating direction of the shear wave relative to 
the axial direction of the specimen with a different direction of bedding plane. 
Although the propagating direction of the shear wave relative to the axial direction of 
the specimen is different, when the propagating direction of the shear wave relative 
to the direction of bedding plane is the same, the shear moduli for propagation and 
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vibration parallel to the bedding plane, Ghh*, are clearly higher than Gvh* and Ghv*. 
Gvh* is almost the same as Ghv*. From the above discussion, it can be said that shear 
waves propagate faster in the plane parallel to the bedding plane than perpendicular 
to it. 
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FIG. 5. Effect of Fabric Anisotropy on Shear Modulus 
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FIG. 6. Relation of Ghh* or Ghv* to Gvh*     FIG. 7. Relation of Ratio of Shear 
                                       Modulus to Consolidation Stress 
 
 
  Figure 6 shows Ghh* and Ghv* versus Gvh* on the NSF clay specimens. It can be 
seen that Ghh* is higher than Gvh* with an average value of Ghh*/(Gvh* = Ghv*) = 1.9. 
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This difference of stiffness between Ghh and Gvh (Ghv) is much larger than the results 
from sand specimens (Yamashita et al. 2005). It would seem that this is because the 
difference of clay content and mineralogy of soil. The clay content less than 5 
micrometer in size of NSF clay is 100 %. The main materials of NSF clay are Quartz 
and Pyrophyllite from X-ray diffraction. The shape of Pyrophyllite is a plate type. 
  Figure 7 shows the relation between the ratio of the shear moduli and the 
confining pressure. It is found that although the horizontal shear modulus, Ghh, is 
larger than the other moduli irrespective of consolidation stress, the ratios of Ghh to 
Gvh decrease with an increase of isotropic consolidation stress. It seems that the 
fabric anisotropy formed by one-dimensional pre-consolidation was decreased by an 
increase of isotropic confining pressure. 
 
Anisotropy of Elastic Modulus at Small Strain 
  Figure 8 shows the relationship between the confining pressure and the undrained 
Young’s modulus, (E)u, obtained from undrained MTX and CTX tests at small strains 
(0.001 %) on V and H-specimens. It is found that the horizontal Young’s modulus, Eh 
(Eeq or Esec on H-specimen), is larger than the vertical Young’s modulus, Ev (Eeq or 
Esec on V-specimen), irrespective of loading method (monotonic or cyclic). 
  Figure 9 shows the relation of Ev versus Eh on V and H-specimens. It can be seen 
that the horizontal Young’s modulus, Eh, is much larger than the vertical one, Ev, as 
well as the shear modulus, and the ratio of Eh/Ev is about 1.5. Figure 10 shows the 
relation between the ratio of the Young’s moduli and the confining pressure. It is also 
found that the ratios of Eh to Ev decrease with an increase of isotropic confining 
pressure, as well as the shear modulus. From these results, it is said that the 
anisotropy of modulus formed by one-dimensional pre-consolidation was decreased 
by an increase of isotropic confining pressure. Moreover, the anisotropy of stiffness 
does not disappear, even if the reconstituted sample was consolidated with a doubled 
pre-consolidation stress. 
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Anisotropy of Elastic Modulus at Small to Large Strains 
  Figure 11 shows the secant Young’s modulus, Esec, plotted against the logarithm of 
axial strain, εa, obtained by monotonic undrained triaxial tests on V and H-specimens. 
It is found that the Young’s modulus on H-specimens is much larger than that on 
V-specimen at small to medium strains. At strain levels greater than about 5 x 10-4, 
however, the Young’s moduli of V and H-specimens become almost the same. The 
main reason for this is the lowering of fabric anisotropy induced by the shearing. 
  Figure 12 shows the stress strain relations of monotonic undrained triaxial 
compression tests on V and H-specimens up to failure strains. The strength of 
H-specimens is slightly larger than that of V-specimen at failure due to the difference 
of excess pore pressure (see Fig. 12). On the other hand, Fig. 13 shows the effective 
stress paths of undrained MTX tests. Although the maximum deviator stresses of 
H-specimens are slightly larger than that of V-specimens, the inclinations of deviator 
and effective confining stresses are almost the same, because the excess pore 
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pressures of V-specimens are slightly larger than that of H-specimens. This result is 
the same to the result on reconstituted Kaolin specimens (Duncan and Seed 1966). 
  Figure 14 shows the ratios of Eh/Ev plotted against the axial strain obtained from 
monotonic undrained triaxial tests with different consolidation stresses. It is found 
that the anisotropy of stiffness decreases with an increase of strain levels. The ratios 
of moduli become unity at an axial strain of about 10-2. The reason seems to be that 
the disturbance of fabric structure due to the increase of shear stress (strain). 
However, the ratios become again larger than unity at still larger strain levels due to 
the difference of excess pore pressure between V and H-specimens, as mentioned 
above. It is also found that the anisotropy of stiffness decreases with a decrease of 
consolidation stress. 
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Comparison of Elastic Modulus by Triaxial and Bender Element Tests 
  Figure 15 shows the comparison between the shear modulus estimated by Young’s 
modulus obtained from undrained triaxial tests and bender element tests. In this 
figure, the shear moduli from cyclic triaxial tests were estimated using two methods. 
One method assumed that the specimen was an isotropic homogeneous elastic 
medium, and the shear modulus was estimated from the result of CTX test; 

( ) ( )u

v
CTX 12

E
G

ν+
=     (17) 

where Ev is the Young’s modulus of V-specimen; νu is the undrained Poisson’s Ratio 
(νu = 0.5). 
  Another method is using the cross-anisotropic elastic model; 

( ) ( )hh

h
CTXhh 12

EG
ν+

=     (7 bis) 

where Eh is the Young’s modulus of H-specimen; νhh is obtained from the following 
relations; 

5.0E
E hv

vh

hv

v

h ν
=

ν
ν

=          (6 bis) 

1hvhh =ν+ν          (15c bis) 
where νhv was the estimated by the ratio of Eh/Ev in triaxial tests. 
  From Fig. 15, the shear modulus, assumed as an cross-anisotropic specimen, 
Ghh(CTX), and obtained from BE tests, Gvh(BE) and Ghh(BE), are larger than that assumed 
as an isotropic homogeneous specimen, G(CTX). It is also found that the horizontal 
shear modulus obtained from CTX tests, Ghh(CTX), is smaller than that from BE tests, 
Ghh(BE). This reason seems to be that the effects of the difference of strain level in 
CTX (10-5) and BE (<10-5) tests, the bedding error in triaxial tests, and the low 
B-value in the undrained triaxial tests (B was about 0.9), etc. Thus, for example, the 
assumption of an undrained Poisson’s Ratio, νu, of 0.5 might be incorrect. Further 
research will be necessary to clarify the difference between the results of triaxial and 
bender element tests. However, it is concluded at least that the shear modulus 
estimated from triaxial test using the isotropic elastic model underestimates the 
modulus. 
  In this study, the tested clay is only kind of clay. The sample is artificially created 
from a one-dimensional pre-consolidation sample. As a result, the anisotropy of 
stiffness might be larger. Further research will be necessary using the others kinds of 
clays and undisturbed samples. 
 
 
CONCLUSIONS 
(1) The Gvh is almost the same to the Ghv on NSF clay samples as well as sand 

samples. On the other hand, the Ghh is much larger than the Gvh and Ghv on 
reconstituted NSF clay samples under isotropic consolidated state. 

(2) The Eh at small strains is also larger than the Ev on reconstituted NSF clay sample 
under isotropic consolidated state. 

(3) The anisotropy of stiffness on NSF clay is larger than the results on sand 

 13



specimens. The reasons seem the difference of clay content, clay mineral. 
(4) The anisotropy of stiffness at small strain becomes lower with the increase in 

strain level and consolidation stress. 
(5) The shear modulus estimated from the Ev on CTX tests is lower than that from 

BE test. 
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