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Abstract

We expand the difference-field boundary element method (DFBEM) to calculate wave scattering from a

variety of local periodic structure defects. The DFBEM is a numerical method for simulating the diffraction

caused by a periodic surface-relief structure with a defect. Although it is more efficient than conventional

techniques such as the finite-difference time-domain (FDTD) method, the original DFBEM is limited to

projection defects. Here, we derive the integral equations and expressions for crack and buried-pillar defects,

and also demonstrate some numerical analyses, validating the results by comparison with results from the

FDTD method and the dielectric interface boundary conditions.
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1. Introduction

Periodic surface relief structures appear in a variety of optical devices such as diffraction grat-

ings, photonic crystals, plasmonic devices, metamaterials, imaging devices, and photomasks

with periodic patterns. For example, diffraction gratings have been applied to chemical

analysis, pulsed-light shaping, and optical communication, while photomasks with periodic

patterns in lithography systems provide regularly aligned wiring and electrode patterns. In

all applications, the periodic surface relief structures must be fabricated with high accuracy.

For example, local defects in the periodic structure due to cracks, adherent particles, and

fabrication errors generate undesired wave scattering. These scattered waves can affect the

diffraction characteristics as well as the system precision and product quality. However, de-

signed defect cavities in photonic crystals, which localize the light waves within the defect,

can allow defects to be utilized actively. Thus, finely tuning the defect position, size, and

shape is critical for obtaining certain device characteristics such as the quality factor and

resonant wavelength.

To improve these optical devices, the influence of defects on the device properties must

be analyzed. In general, because the defects are comparable in size to the wavelength, defect

analysis requires vectorial electromagnetic field computations to solve Maxwell’s equations

while considering the boundary conditions at the dielectric interface. Rigorous coupled wave

analysis (RCWA), which is also known as the Fourier modal method, the finite difference

time domain (FDTD) method, and finite element method (FEM) are popular and versatile

numerical methods for performing this analysis. Although RCWA was developed for the

analysis of periodic structures, it has also been used to analyze non-periodic structures

through the introduction of super-cells [1–3] and absorbing layers [4, 5]. These approaches

also allow RCWA to be applied to defective periodic structures. On the other hand, the

FDTD method is suitable for both periodic and non-periodic structures. Many devices such

as photonic crystals with defects [6], metallic nanoslits [7], photomasks [8, 9], and defective

gratings [10] have been analyzed with the FDTD method. The FEM has also been applied to

defective photonic crystals [11], defective diffraction gratings [12], and the inverse problem

of defective gratings [13].

For the examination of defective structures, a perturbation method is also applied. In

this method, the field distribution is divided into unperturbed and scattered fields radiated

2



from the defects, and the scattered field is solved using tools such as the FEM and the

source model technique. To date, defects on perfect conductors have been analyzed using the

FEM [14, 15]. Further, problems featuring a single slit in a perfect conductor grating [16] and

a local defect in a photonic crystal [17] have been solved using the source model technique.

Other approaches have also been proposed by Sun and Zheng [18] and Watanabe et

al. [19]. Those methods provide the vectorial-field analysis of defective diffraction gratings.

The boundary element method (BEM) [20, 21] (essentially the same as the method of

moments: MoM) is a commonly used numerical method for scattering analyses. In BEM,

the fields on the perimeters of the defects, or scatterers, are obtained from integral equa-

tions, and the field distributions are then calculated both inside and outside the scatterers

using the integral expressions. The integral equations and expressions are obtained from

path integrals on the respective boundaries, and the discretization necessary for the integral

equations and expressions is limited to the fields on the perimeters of the scatterers. Thus,

the BEM can reduce the memory requirements of the calculation and enable efficient com-

putation, whereas the RCWA, FEM, and FDTD methods require a considerable amount of

memory because of the discretization of the region in addition to the boundary. Because

there is no fictitious light source required in the FDTD method and source model tech-

nique, the BEM provides rigorous field distributions that satisfy the Maxwell’s equations

and dielectric interface boundary conditions everywhere. Periodic surface relief structures

such as diffraction gratings are analyzed using only the path integrals in one period through

the application of Bloch’s theorem [22]. In contrast, similar analyses for non-periodic struc-

tures such as defective gratings are very difficult to perform, because the computational

cost associated with the discretization on the infinitely long boundary of the grating surface

increases considerably. Thus, the BEM and MoM calculations of such optical devices are

limited to ridge waveguides when the field is confined in the core [23], finite-sized optical

elements [24], narrow illumination areas on optical elements [25], and finite-sized defective

etched diffraction gratings [26].

In our previous work, we developed the difference-field boundary element method (DF-

BEM) [27] for the analysis of infinitely large defective gratings with plane-wave illumination,

which is also based on the perturbation method and the BEM. The field distribution (total

field) of a defective grating is divided into two components: a base field and a difference

field. The base field is for a non-defect structure, and can be easily calculated using Bloch’s
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theorem, whereas the difference field is given by solving the integral equations. We elimi-

nated the path integrals on the infinitely-long boundary, so the DFBEM solves the integral

equation with path integrals only around the defect, resulting in high-accuracy calculations

with a shorter computational time than either the RCWA or FDTD methods. However, the

DFBEM is strongly restricted by the topology of the defect structure due to the allowed

integration paths in the integral equations. In fact, the original DFBEM described in Ref.

[27] can only be applied to gratings with projection defects on the surface, and the feasibility

of efficient calculation for other defect types has not yet been investigated.

In this paper, we expand the DFBEM to analyze a variety of defect topologies. First,

we present the integral equations and expressions for two additional defect types: crack

and buried-pillar defects. Crack defects are formed by removing a part of the groove or

substrate, whereas buried-pillar defects are formed by a pillar partially buried in the grating

surface. In both cases, the integral equations and expressions are derived in such a way as

to remove the infinitely long path integrals. This derivation is discussed in Section 2. In

Section 3, the fields obtained by DFBEM are validated using two approaches: (i) the field

around the surface of the defective grating is compared with the FDTD method result, and

(ii) the fields close to the defect are taken to be verified if they satisfy the electromagnetic

boundary conditions on the dielectric interface.

2. Formulation of the integral equations and expressions

First, to simplify the notation of the common terms in the integral equations, we introduce

the following integral operators, I and I ′, which are defined as

IC
p,q [f ] ≡

∫
C

{
Gp(ρ;ρ

′)
∂f(ρ′)
∂n′

−f(ρ′)
∂Gp(ρ;ρ

′)
∂n′

}
dl′, (1)

I ′C
p,q [f ] ≡

∫
C

{
Gp(ρ;ρ

′)
ηp
ηq

∂f(ρ′)
∂n′

−f(ρ′)
∂Gp(ρ;ρ

′)
∂n′

}
dl′. (2)

The integral path, C, is the boundary between the regions, Sp and Sq. Examples of C are

shown in Figs. 1(a) and 1(b), which are the cross-sectional schematics of an isolated pillar

and semi-infinite scatterer, respectively. The two-dimensional position vector, ρ, defines
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a position in the cross-sectional plane. The coordinates, (n, l, z), form a local coordinate

system on C, where n and l are normal and tangent to C, respectively, and z is perpendicular

to n and l. The constant, ηp, is the magnetic permittivity in Sp, in the case of s-polarization,

or the electric permittivity in Sp for p-polarization. Finally, Gp is a free-space Green’s

function for Sp, with

Gp(ρ;ρ
′) = −j

4
H

(2)
0 (kp|ρ− ρ′|) , (3)

where j is an imaginary unit, and H
(2)
0 is a zeroth-order Hankel function of the second

kind. The wavenumber, kp, is defined by npω/c, where np, ω, and c are the refractive index

(complex value) in Sp, the angular frequency of the incident field, and the velocity of light

in vacuum, respectively. In Eqs. (1) and (2), f is either the z-component of the electric

field in the case of s-polarization, or the z-component of the magnetic field in the case of

p-polarization. Therefore, the field in Sp is expressed as fp. The operators, IC
p,q and I ′C

p,q,

operate on the field distribution on C, f .

Both I and I ′ must be used according to the integrand f . When the integrand is fp (the

field on the Sp side of C), the IC
p,q operator must be used, whereas I ′C

p,q should be applied

for fq (the field exterior to Sp). In the I ′C
p,q operator, the integrand (fq) and ∂fq/∂n are

converted to the notation for Sp using the boundary condition on C, such that

fp(ρ) = fq(ρ), (4)

1

ηp

∂fp(ρ)

∂n
=

1

ηq

∂fq(ρ)

∂n
. (5)

Using these integral operators, the integral equations that describe the field on C [20]

can be expressed simply as

1

2
fp(ρ) =IC

p,q [fp] , (ρ ∈ C), (6)

1

2
fp(ρ) =f inc

q (ρ)− I ′C
q,p [fp] , (ρ ∈ C), (7)

where f inc is the incident field and fp is an unknown variable. Since fp in Eq. (7) is the field

exterior to the Sq side, we must use I ′
q,p instead of Iq,p.

After solving Eqs. (6) and (7), the fp(ρ) and fq(ρ) fields, excluding ρ ∈ C, are given by

the following integral expressions

fp(ρ) =IC
p,q [fp] , (ρ ∈ Sp), (8)

fq(ρ) =f inc
q (ρ)− I ′C

q,p [fp]m (ρ ∈ Sq). (9)
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Fig. 1. Cross-sectional schematic of (a) an isolated scatterer and (b) a semi-infinite scatterer in

free space, where Sp and Sq are the interior and exterior regions of the scatterer, respectively, and

C is the boundary between them.

2.A. Pattern I: Projection defect

We first describe the integral equation for a projection defect [27], in order to compare it

with the crack and buried-pillar defects discussed below. Projection defects occur when

part of the substrate material extends outside the grating or adheres to the dielectrics on

the groove surface. The cross-sectional schematic is shown in Fig. 2(a). Here S1, S2, and

S3 are the interior grating (within the grating), exterior grating (outside the grating), and

interior defect (within the defect) regions, respectively. Each region must be composed of

the same uniform material. If the refractive index, n3, in S3 is equal to the refractive index,

n1, in S1 (n3 = n1), then S3 represents a projection. Otherwise, if n3 �= n1, S3 represents

an adherent dielectric. The integral equations consist of path integrals on the C0, C1, and

C2 boundaries, where C0 (solid line in Fig. 2) is the surface of the substrate excluding the

defect, C1 (dotted line in Fig. 2) is the boundary between the defect and the grating, and

C2 (dashed line in Fig. 2) is the boundary on the defect surface.

First, we represent the total field distributions in S1, S2, and S3 as f1 + Δf1, f2 + Δf2,

and f3, respectively. For S1 and S2, the total fields are expressed by the sum of the base

field, f1 or f2, and the difference field is Δf1 or Δf2. We obtain the integral equations such
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that

1

2
f1(ρ) +

1

2
Δf1(ρ) =IC0

1,2 [f1 +Δf1]

+ I ′C1

1,3 [f3] , (ρ ∈ C0), (10)

1

2
f3(ρ) =IC0

1,2 [f1 +Δf1]

+ I ′C1

1,3 [f3] , (ρ ∈ C1), (11)

1

2
f2(ρ) +

1

2
Δf2(ρ) =f inc(ρ)− I ′C0

2,1 [f1 +Δf1]

− I ′C2

2,3 [f3] , (ρ ∈ C0), (12)

1

2
f3(ρ) =f inc(ρ)− I ′C0

2,1 [f1 +Δf1]

− I ′C2

2,3 [f3] , (ρ ∈ C2), (13)

1

2
f3(ρ) =− IC1

3,1 [f3] + IC2
3,2 [f3] , (ρ ∈ C1), (14)

1

2
f3(ρ) =− IC1

3,1 [f3] + IC2
3,2 [f3] , (ρ ∈ C2). (15)

However, this set of equations is unsuitable for numerical calculation because Eqs. (10)–(13)

contain path integrals on C0, which is an infinitely long boundary. Next, we consider the

non-defective grating shown in Fig. 2(b). The boundary of the structure consists of C0 and

C1 and, thus, the following equations are composed of path integrals on C0 and C1, such

that

1

2
f1(ρ) =IC0

1,2 [f1] + IC1
1,2 [f1] , (ρ ∈ C0), (16)

1

2
f1(ρ) =IC0

1,2 [f1] + IC1
1,2 [f1] , (ρ ∈ C1), (17)

1

2
f2(ρ) =f inc(ρ)− I ′C0

2,1 [f1]− I ′C1

2,1 [f1] , (ρ ∈ C0), (18)

f2(ρ) =f inc(ρ)− I ′C0

2,1 [f1]− I ′C1

2,1 [f1] , (ρ ∈ C2). (19)

By performing the following subtractions: Eq. (10)−Eq. (16), Eq. (11)−Eq. (17), Eq.
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(12)−Eq. (18), and Eq. (13)−Eq. (19), we find

1

2
Δf1(ρ) =IC0

1,2 [Δf1] + I ′C1

1,3 [f3]

− IC1
1,2 [f1] , (ρ ∈ C0), (20)

1

2
f3(ρ)− 1

2
f1(ρ) =IC0

1,2 [Δf1] + I ′C1

1,3 [f3]

− IC1
1,2 [f1] , (ρ ∈ C1), (21)

1

2
Δf1(ρ) =− I ′C0

2,1 [Δf1]− I ′C2

2,3 [f3]

+ I ′C1

2,1 [f1] , (ρ ∈ C0), (22)

1

2
f3(ρ)− f2(ρ) =− I ′C0

2,1 [Δf1]− I ′C2

2,3 [f3]

+ I ′C1

2,1 [f1] , (ρ ∈ C2). (23)

To obtain the left-hand side of Eqs. (22), we replace f2 and Δf2 by f1 and Δf1, respectively,

by applying the boundary conditions f1 = f2 and f1 +Δf1 = f2 +Δf2 on C0. We assume

that the integrand, Δf1, for the integral on C0 decays to zero with increasing distance from

the defect. Under this assumption, it is possible to truncate C0 around the defect without

affecting the accuracy of the solution. This assumption is valid as long as any propagation

mode that propagates along the grating surface does not exist, because Δf1 is an outgoing

wave radiated from the scatterer S3, reducing its amplitude with propagation distance (the

wavefronts are shown in Section 3). Any propagation mode does not exist when S1 and

S2 consist of non-conductive dielectrics. In contrast, when S1 consists of a metal and the

incident wave is p−polarization, the radiated wave excites the surface plasmon polariton

modes on C0. Those modes keep the amplitude constant along the surface, and do not

decay with increasing distance from the defect.

Eqs. (14), (15), and (20)–(23) form a set of simultaneous equations, with Δf1 on C0 and

f3 on C1 and C2 as unknown variables. The IC1
1,2 [f1] terms in Eqs. (20) and (21), f1(ρ)/2 in

Eq. (21), and f1(ρ) in Eq. (23) are constant terms given by f1 on C1 and C2 and ∂f1/∂n

on C1. In other words, it is possible to solve the integral equation using the base field along

the defect outline.

The calculation cost (the operation number) required for the solution of the simultane-

ous equations is O(N3), when direct solvers such as Gauss’s elimination method and LU

decomposition are applied. Here, N is the number of unknown variables, which depends on
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the truncated length of C0 and the length of the defect perimeter (C1 and C2). When N

is extremely large, that fast multipole method (FMM) [28, 29] with an iterative solver is

applicable, as well as the conventional BEM. In that case, the number of necessary resources

is O(N), for large N [30].

Similar to the previous step, the integral expressions can be obtained by subtracting the

integral expressions for defective and non-defective structures, such that

Δf1(ρ) =IC0
1,2 [Δf1] + I ′C1

1,3 [f3]− IC1
1,2 [f1] , (ρ ∈ S1), (24)

Δf2(ρ) =− I ′C0

2,1 [Δf1]− I ′C2

2,3 [f3] + I ′C1

2,1 [f1] , (ρ ∈ S2), (25)

f3(ρ) =− IC1
3,1 [f3] + IC2

3,2 [f3] , (ρ ∈ S3). (26)

The difference field distribution is given by calculating these integral expressions (O(N)

operation) for different ρ. Thus, the total number of resources required to obtain the

difference field distribution is O(MN), where M is the number of discretized points in the

field distribution.

(b)

C2

C0

C1
S1

S2 S3

(a)

C2

C0

C1
S1

S2

C0

C0

Fig. 2. Cross-sectional schematic of a grating (a) with a projection defect and (b) without a

defect, where S1, S2, and S3 are the interior grating, exterior grating, and interior defect regions,

respectively. The boundaries on the grating (solid lines), between the defect and the grating (dotted

lines), and on the surface of the defect (dashed lines) are denoted by C0, C1, and C2, respectively.

The arrows on C0, C1, and C2 denote the path integral directions (direction of the l coordinate).
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2.B. Pattern II: Crack defect

A crack defect occurs when part of the substrate material vanishes because of mechanical

cracks or fabrication errors, or when the refractive index of a groove surface is locally altered

as a result of factors such as oxidation. The cross-sectional schematic is shown in Fig. 3(a).

The S1, S2, and S3 terms have the same meaning as in the previous section. Here, if n3 is set

such that n3 = n2, then S3 represents a crack. Otherwise, S3 represents an altered dielectric.

The integral equations consist of path integrals on the C0, C1, and C2 boundaries, as shown

in Fig. 3(a), where C0 (solid line in Fig. 3) is the surface of the substrate excluding the

defect, C1 (dotted line in Fig. 3) is the boundary between S2 and S3, and C2 (dashed line

in Fig. 3) is the crack surface.

First, we consider the defective grating. Similar to Pattern I, we denote the total fields

in S1, S2, and S3 as f1 +Δf1, f2 +Δf2, and f3, respectively. Because the perimeter of S1 is

defined by C0 and C2, the integral equation, Eq. (6), at any ρ ∈ C0 and C2, satisfies

1

2
f1(ρ) +

1

2
Δf1(ρ) =IC0

1,2 [f1 +Δf1]

+ I ′C2

1,3 [f3] , (ρ ∈ C0), (27)

1

2
f3(ρ) =IC0

1,2 [f1 +Δf1] + I ′C2

1,3 [f3] , (ρ ∈ C2). (28)

In Eqs. (27) and (28), we have expressed the total field on C2 by f3 instead of f1(ρ)+Δf1(ρ).

Because f3 does not denote the field on the S1 side, the operator associated with f3 must

be I ′C2
1,3 instead of IC2

1,3. Similar to the integral equation, Eq. (7), the path integral along C0

and C1, which surrounds the S2 region, must satisfy the following equations:

1

2
f2(ρ) +

1

2
Δf2(ρ) =f inc(ρ)− I ′C0

2,1 [f1 +Δf1]

− I ′C1

2,3 [f3] , (ρ ∈ C0), (29)

1

2
f3(ρ) =f inc(ρ)− I ′C0

2,1 [f1 +Δf1]

− I ′C1

2,3 [f3] , (ρ ∈ C1). (30)

Because the integrands of I ′C0
2,1 [f1 +Δf1] and I ′C1

2,3 [f3] describe the exterior of S2, we must

use I ′ instead of I. For the S3 region, the integral equations are given by the path integral
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along the perimeter boundaries, C1 and C2, as

1

2
f3(ρ) =IC1

3,2 [f3]− IC2
3,1 [f3] , (ρ ∈ C1), (31)

1

2
f3(ρ) =IC1

3,2 [f3]− IC2
3,1 [f3] , (ρ ∈ C2). (32)

Next, we consider the non-defective grating shown in Fig. 3(b). The field distributions

inside S1 and S2 are expressed as f1 and f2, respectively. Because C0 is a part of the boundary

that surrounds S1, any ρ ∈ C0 satisfies

1

2
f1(ρ) =IC0

1,2 [f1] + IC1
1,2 [f1] , (ρ ∈ C0). (33)

Moreover, ρ ∈ C2 is a point in S1; therefore, f1(ρ) is given by the path integrals along C0

and C1 surrounding S1, such that

f1(ρ) =IC0
1,2 [f1] + IC1

1,2 [f1] , (ρ ∈ C2). (34)

For the S2 region, any point ρ ∈ C0 and C1 satisfies

1

2
f2(ρ) =f inc(ρ)− I ′C0

2,1 [f1]− I ′C1

2,1 [f1] , (ρ ∈ C0), (35)

1

2
f2(ρ) =f inc(ρ)− I ′C0

2,1 [f1]− I ′C1

2,1 [f1] , (ρ ∈ C1). (36)

Note that the integrands on the right-hand side in Eqs. (35) and (36) are the exterior field

of S2; thus, we must use I ′ instead of I.
By performing the following subtractions: Eq. (27)−Eq. (33), Eq. (28)−Eq. (34), Eq.

(29)−Eq. (35), and Eq. (30)−Eq. (36), we find

1

2
Δf1(ρ) =IC0

1,2 [Δf1] + I ′C2

1,3 [f3]

− IC1
1,2 [f1] , (ρ ∈ C0), (37)

1

2
f3(ρ)− f1(ρ) =IC0

1,2 [Δf1] + I ′C2

1,3 [f3]

− IC1
1,2 [f1] , (ρ ∈ C2), (38)

1

2
Δf1(ρ) =− I ′C0

2,1 [Δf1]− I ′C1

2,3 [f3]

+ I ′C1

2,1 [f1] , (ρ ∈ C0), (39)

1

2
f3(ρ)− 1

2
f1(ρ) =− I ′C0

2,1 [Δf1]− I ′C1

2,3 [f3]

+ I ′C1

2,1 [f1] , (ρ ∈ C1). (40)
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To obtain Eqs. (39) and (40), we replaced f2 and Δf2 on the left-hand sides by f1 and Δf1,

respectively, by applying the boundary condition on C0 (f1 = f2 and f1 +Δf1 = f2 +Δf2)

and that on C1 (f1 = f2).

Eqs. (31), (32), and (37)–(40) form a set of simultaneous equations. As well as the

projection defects (Pattern I), we assume that the integrand, Δf1, of the path integrals on C0

decays to zero with increasing distance from the defect. Therefore, similar to the procedure

in Pattern I, we can truncate C0 around the defects without affecting the solution. The

simultaneous equation provides the solutions for Δf1 and ∂Δf1/∂n on C0 as well as f3 and

∂Δf3/∂n on C1 and C2. The constant terms are given by the base field on the perimeter

of the defect: f1 on C2 as well as f1 and ∂Δf1/∂n on C1. If the size of the defect and the

truncated length of C0 are equal to those for Pattern I, the computational cost of Pattern

II is the same as that of Pattern I. The FMM is also applicable for solving the simultaneous

equation.

As previously, the integral expressions are given by subtracting the integral expressions

for the defective and non-defective structures, such that

Δf1(ρ) =IC0
1,2 [Δf1] + I ′C2

1,3 [f3]− IC1
1,2 [f1] , (ρ ∈ S1), (41)

Δf2(ρ) =− I ′C0

2,1 [Δf1]− I ′C1

2,3 [f3] + I ′C1

2,1 [f1] , (ρ ∈ S2), (42)

f3(ρ) =IC1
3,2 [f3]− IC2

3,1 [f3] , (ρ ∈ S3). (43)

The integrands on the right-hand sides are the base field and the solution of the simultaneous

equation. Thus, Eqs. (41)–(43) are solvable after the simultaneous equations have been

solved.

2.C. Pattern III: Buried-pillar defect

A buried-pillar defect occurs when a pillar becomes partially embedded in the grating. The

cross-sectional schematic of the defective grating is shown in Fig. 4(a). The S3 region is

the cross-section of the pillar, C0 is the substrate surface excluding the defect, and C1 is

the boundary that disappears when the defect is introduced. Finally, C2 and C3 are the

perimeters of the defect on the S2 and S1 sides, respectively.

First, we represent the total field distributions in S1, S2, and S3 as f1 + Δf1, f2 + Δf2,

and f3, respectively. The boundary of the S1 region is defined by C0 and C3 and, thus, we
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(a)

C2

C0

C1

S1

S2

(b)

C2

C0

C1

S1

S2

S1 C0

C0
S3

Fig. 3. Cross-sectional schematic of a grating (a) with a crack defect and (b) without a defect,

where S1, S2, and S3 have the same meanings as in the previous figure. The boundaries on the

grating (solid lines), that which disappears by the crack (dotted lines), and on the surface of the

crack (dashed lines) are labeled as C0, C1, and C2, respectively. The arrows on C0, C1, and C2

denote the path integral directions (direction of the l coordinate).

write

1

2
f1(ρ) +

1

2
Δf1(ρ) =IC0

1,2 [f1 +Δf1]

+ I ′C3

1,3 [f3] , (ρ ∈ C0), (44)

1

2
f3(ρ) =IC0

1,2 [f1 +Δf1]

+ I ′C3

1,3 [f3] , (ρ ∈ C3). (45)

The operators in the second terms of the right-hand side in Eqs. (44) and (45) are I ′ because

these integrands (f3) are exterior to S1. The integral equations for S2 are given by the path

integral along C0 and C2, such that

1

2
f2(ρ) +

1

2
Δf2(ρ) =f inc(ρ)− I ′C0

2,1 [f1 +Δf1]

− I ′C2

2,3 [f3] , (ρ ∈ C0), (46)

1

2
f3(ρ) =f inc(ρ)− I ′C0

2,1 [f1 +Δf1]

− I ′C2

2,3 [f3] , (ρ ∈ C2). (47)
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The original term on the left-hand side of Eq. (47), f2(ρ)/2 +Δf2(ρ)/2, has been replaced

with f3(ρ)/2. For the S3 region, the following equations are satisfied:

1

2
f3(ρ) =IC2

3,2 [f3]− IC3
3,1 [f3] , (ρ ∈ C2), (48)

1

2
f3(ρ) =IC2

3,2 [f3]− IC3
3,1 [f3] , (ρ ∈ C3). (49)

Next, we consider the non-defective grating case, as shown in Fig. 4(b). The following

equations are satisfied for the S1 region, where

1

2
f1(ρ) =IC0

1,2 [f1] + IC1
1,2 [f1] , (ρ ∈ C0), (50)

f1(ρ) =IC0
1,2 [f1] + IC1

1,2 [f1] , (ρ ∈ C3). (51)

Likewise, the following equations are satisfied for S2:

1

2
f2(ρ) =f inc(ρ)− I ′C0

2,1 [f1]− I ′C1

2,1 [f1] , (ρ ∈ C0), (52)

f2(ρ) =f inc(ρ)− I ′C0

2,1 [f1]− I ′C1

2,1 [f1] , (ρ ∈ C2). (53)

By performing the following subtractions: Eq. (44)−Eq. (50), Eq. (45)−Eq. (51), Eq.

(46)−Eq. (52), and Eq. (47)−Eq. (53), we find

1

2
Δf1(ρ) =IC0

1,2 [Δf1] + I ′C3

1,3 [f3]

− IC1
1,2 [f1] , (ρ ∈ C0), (54)

1

2
f3(ρ)− f1(ρ) =IC0

1,2 [Δf1] + I ′C3

1,3 [f3]

− IC1
1,2 [f1] , (ρ ∈ C3), (55)

1

2
Δf1(ρ) =− I ′C0

2,1 [Δf1]− I ′C2

2,3 [f3]

+ I ′C1

2,1 [f1] , (ρ ∈ C0), (56)

1

2
f3(ρ)− f2(ρ) =− I ′C0

2,1 [Δf1]− I ′C2

2,3 [f3]

+ I ′C1

2,1 [f1] , (ρ ∈ C2). (57)

To obtain Eq. (56), we replaced f2 on the left-hand side with f1 by applying the boundary

condition on C0 (f1 = f2 and f1 +Δf1 = f2 +Δf2).

Eqs. (48), (49), and (54)–(57) form a set of simultaneous equations. The integrand for

the path integral on C0 remains only for Δf1. Similar to the integral equations for Patterns

14



I and II, we assume that the Δf1 on C0 decays to zero with increasing distance from the

defect. Therefore, it is possible to truncate the path (C0) around the defect without affecting

the solution. The unknown variables are Δf1 and ∂Δf1/∂n on C0 as well as f3 and ∂f3/∂n

on both C2 and C3. The constant terms require the base field: f1 and ∂f1/∂n on C1, f2 on

C2, and f1 on C3. Since any unknown variable is not assigned on C1, which passes across

the defect, the number of unknown variables is determined by the truncated length of C0

and the length of the defect perimeter (C2 and C3). Therefore, the computational cost is

comparable to that of Pattern I. The FMM is also applicable to solving the simultaneous

equations.

As previously, the integral expressions for S1, S2, and S3 are given by the subtraction of

the integral expressions for defective and non-defective structures, such that

Δf1(ρ) =IC0
1,2 [Δf1] + I ′C3

1,3 [f3]− IC1
1,2 [f1] , (ρ ∈ S1), (58)

Δf2(ρ) =− I ′C0

2,1 [Δf1]− I ′C2

2,3 [f3] + I ′C1

2,1 [f1] , (ρ ∈ S2), (59)

f3(ρ) =IC2
3,2 [f3]− IC3

3,1 [f3] , (ρ ∈ S3). (60)

3. Validity of DFBEM

To verify the integral equations and expressions derived in the previous section, we performed

calculations on defective gratings corresponding to Patterns I, II, and III. The calculation

results were verified in two ways: the field distribution around the defect should agree with

that given by the FDTD technique, and the field on the defect perimeter should satisfy the

boundary conditions expressed in Eqs. (4) and (5).

For the three defective gratings, the groove period, T , the groove width, and the groove

depth were set to 3.5λ (λ ≡ 2πc/ω), 0.5T , and 0.3T , respectively. The cross sections before

adding the defects are sketched in Fig. 5. The refractive indices for the interior and exterior

of the gratings were 1.5 and 1.0, respectively. The incident field was p-polarized, and the

amplitude of the magnetic field was 1.0. The field distributions for p-polarization have sharp

(non-differentiable) profiles at the dielectric boundaries according to Eq. (5), whereas the

s-polarized field always yields smooth profiles. Hence, in p-polarization, we can easily find

boundary condition errors in the calculated field profiles. The propagation direction was

15



(a)

C2

C1

C0

S1

S2

(b)

C2

C1

C3

C0

S1

S2 S3

C0

C0

C3

S3

Fig. 4. Cross-sectional schematic of a grating (a) with a buried-pillar defect and (b) without a

defect, where S1, S2, and S3 have the same meanings as previously. The boundaries on the grating

(solid lines) and that which disappears when the defect is introduced (dotted lines) are denoted by

C0 and C1, respectively. The pillar surfaces between S2 and S3 and between S1 and S3 are denoted

by C2 and C3, respectively. The arrows on C0, C1, C2, and C3 denote the path integral directions

(direction of the l coordinate).

set to −45◦, which is the angle between the x axis (parallel to the grating surface) and

the incident wave vector. The base fields, f1 and f2, were calculated using the BEM [22],

while the numerical calculation of the base fields and difference fields was performed by

discretizing the boundaries with line segments (boundary elements). The lengths of the

boundary elements were set to approximately λ/12, and the field and its n-derivative were

considered to be constant within a given boundary element (constant boundary element).

We solved the integral (simultaneous) equations using LU decomposition in the LAPACK

library. In the difference field calculations, the infinite boundary (C0) was truncated at

x = ±5.25T (the origin, x = 0 is indicated in Fig. 5). Defects for Patterns I, II, and III are

aligned near x = 0. The rectangular area around the defect was discretized by 841 × 266

points with an interval of λ/40, and we obtained the difference field for each point with

integral expressions.

In the FDTD calculation, the analysis area in −15T ≤ x ≤ 15T was discretized by

square Yee’s cells with λ/40 on each side. The incident plane wave was excited by a line
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(a)

(b)

Incident wave

x0

T λ=3.5 T0.3

T0.5

Incident wave

x0

T λ=3.5 T0.3

T0.5

y

y

Fig. 5. Cross sections of the periodic gratings before adding defects. The groove period T is 3.5λ.

The groove width and height are 0.5T and 0.3T . The refractive indices for the interior and exterior

of the gratings are 1.5 and 1.0, respectively. The incident wave is a plane wave of p-polarization.

source, which was placed external to the grating, parallel to the x axis. We placed Bloch’s

boundary conditions on the perimeters of the analysis area, x = ±15T , and also positioned

perfectly matched absorbing layers on the other edges. Bloch’s boundary condition enables

the propagation of the incident plane wave in the analysis area without deformation near the

boundaries at x = ±15T . For comparison with the DFBEM, the obtained field distributions

were trimmed so as to be the same size as those of the DFBEM.

For a comparison of computational costs, each computation was performed with the

same computer (a workstation with an Intel Xeon CPU 3.20 GHz and 6 GB RAM). The

calculation programs for both the DFBEM and the FDTD technique were written in Fortran

90, without using any parallel computing such as multicore processing, clustering, or a

graphics processing unit.

Figure 6 is a defect added to the periodic grating shown in Fig. 5(a). The element nodes

on C2 are listed in Table 1. This defect shallows the groove at −0.25T < x < 0.25T . The

geometry of the defective grating corresponds to Pattern I. The value of n3 (refractive index

in the defect region S3) was set to 1.5 to represent a defect formed by insufficient etching or

ruling. Figure 7(a) is the base field obtained by the method in Ref. [22], while Figure 7(b)

is the difference field given by Eqs. (24)–(26). Figure 7(c) is the total field, where the total

field within S3 is equal to that of Fig. 7(b), and the total field within S1 and S2 is given

by the sum of Fig. 7(a) and Fig. 7(b). The numerical results obtained using the FDTD
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Fig. 6. Profile of the shallow-groove defect. The position for each node is listed in Table 1.

Table 1. Positions of the nodes on the defect surface C2 numbered in Fig. 6

node x/T y/T node x/T y/T

1 0.2500 0.3000 16 -0.02520 0.05200

2 0.2440 0.2732 17 -0.05520 0.05280

3 0.2352 0.2456 18 -0.08560 0.05760

4 0.2272 0.2204 19 -0.1132 0.06720

5 0.2176 0.1928 20 -0.1400 0.08000

6 0.2048 0.1692 21 -0.1620 0.09800

7 0.1928 0.1420 22 -0.1780 0.1188

8 0.1780 0.1188 23 -0.1928 0.1420

9 0.1620 0.09800 24 -0.2048 0.1692

10 0.1400 0.08000 25 -0.2176 0.1928

11 0.1132 0.06720 26 -0.2272 0.2204

12 0.08560 0.05760 27 -0.2352 0.2456

13 0.05520 0.05280 28 -0.2440 0.2732

14 0.02520 0.05200 29 -0.2500 0.3000

15 0.0 0.05200

method are shown in Fig. 7(d), while the error in the total field between the DFBEM and

the FDTD method is also shown in Fig. 7(e). The computational time of the DFBEM was

37.04 s for the base field and 921.0 s (8.416 s for the integral equation solution and 964.0 s for

the difference field calculation at 841 × 266 = 223, 706 points with the integral expression)
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(c) total field (DFBEM)

(b) difference field

(a) base field

(d) total field (FDTD)

(e) error

2.511-2.511 0

2.511-2.511 0

2.511-2.511 0

2.511-2.511 0

0.11790

Fig. 7. (a) Base field distribution for the non-defective grating. (b) Difference-field distribution

given by Eqs. (24)–(26). (c) Total field distribution obtained from the sum of (b) and (c). (d)

Field distribution calculated using the FDTD method. (e) Error in total field between the DFBEM

and the FDTD method.

for the difference field calculation, and 37.62 MBytes of memory was consumed. In contrast,

the calculation time of the FDTD method was 1,353 s and the memory consumption was

290.6 MBytes.

Figure 8 is a defect added to the periodic grating shown in Fig. 5(b). The element nodes

on C2 are listed in Table 2. The upper-left corner at x = −0.25T is removed by a crack.
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Fig. 8. Profile of the cracked-groove defect. The position for each node is listed in Table 2.

Table 2. Positions of the nodes on the defect surface C2 numbered in Fig. 8

node x/T y/T node x/T y/T

1 -0.03000 0.3000 9 -0.1680 0.1848

2 -0.05600 0.2896 10 -0.1800 0.1660

3 -0.07520 0.2828 11 -0.1980 0.1476

4 -0.09600 0.2712 12 -0.2116 0.1344

5 -0.1128 0.2560 13 -0.2252 0.1200

6 -0.1284 0.2388 14 -0.2416 0.1028

7 -0.1428 0.2204 15 -0.2500 0.08000

8 -0.1544 0.2024

The geometry of the defective grating corresponds to Pattern II. The value of n3 was set to

1.0 to represent a cracked corner. The base, difference, and total fields are shown in Figs.

9(a), 9(b), and 9(c), respectively, while the numerical results obtained by the FDTD method

are given in Fig. 9(d). The total field error between the DFBEM and the FDTD method

(absolute value of the difference) is also shown in Fig. 9(e). The computational time of the

DFBEM was 38.20 s for the base field and 900.0 s for the difference field calculations, and

the memory consumption was 36.15 MBytes. In contrast, the calculation time of the FDTD

method was 1,630 s and the memory consumption was 290.6 MBytes.

Figure 10 is a defect added to the periodic grating shown in Fig. 5(a). The element nodes

on C2 are listed in Table 3. A cylindrical defect parallel to z axis is buried on the bottom

of the groove at x = 0. The geometry of the defective grating corresponds to Pattern III.
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(c) total field (DFBEM)

(b) difference field

(a) base field

(d) total field (FDTD)

(e) error

2.563-2.563 0

2.563-2.563 0

2.563-2.563 0

2.563-2.563 0

0.11780

Fig. 9. (a) Base field distribution for the non-defective grating. (b) Difference-field distribution

given by Eqs. (41)–(43). (c) Total field distribution obtained from the sum of (b) and (c). (d)

Field distribution calculated using the FDTD method. (e) Error in total field between the DFBEM

and the FDTD method.

The value of n3 was set to 1.7 so that S3 represents a partially buried dielectric. The base,

difference, and total fields are shown in Figs. 11(a), 11(b), and 11(c), respectively. The

numerical results obtained from the FDTD method are presented in Fig. 11(d), while the

total field error between the DFBEM and the FDTD method is also shown in Fig. 11(e).

The computational time of the DFBEM was 37.23 s for the base field and 876.5 s for the
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Fig. 10. Profile of the buried-pillar defect. The position for each node is listed in Table 3.

difference field calculations, and the memory consumption was 35.72 MBytes. In contrast,

the calculation time of the FDTD method was 1,362 s and the memory consumption was

290.6 MBytes.

Comparing the shape of the wavefront obtained by the DFBEM (Figs. 7(c), 9(c), and

11(c)) to the results from the FDTD method (Figs. 7(d), 9(d), and 11(d)), we find that the

results are well matched. The relative errors with respect to each maximum value of the

total field are less than 4.695% for Pattern I, 4.596% for Pattern II, and 5.221% for Pattern

III. The error distribution in Figs. 7(e), 9(e), and 11(e) is closer to the base field distribution

than the difference field distribution. These errors are attributed to the error between the

base fields in the BEM and the FDTD method. To estimate the error in the base field, we

calculated the base field with the FDTD method and the BEM for the grating (Fig. 5(a)) at

(x, y) = (−0.9571T,−0.6786T ), where we obtained the maximum error in the total field for

Pattern I (Fig. 7(e)). The calculation was performed changing the discretization parameter,

λ/ΔL. The ΔL corresponds to the Yee-cell size for the FDTD method and the boundary-

element length for the BEM. We assumed that the base field for BEM at λ/ΔL = 30 is the

true value, and plotted the relative error in Fig. 12. Although the convergence speed for

the FDTD is slower than that for the BEM, the relative errors are reduced as the λ/ΔL

is increased. In the demonstration shown in Figs. 7, 9, and 11, we selected λ/ΔL = 12

for the BEM and λ/ΔL = 40 for the FDTD method. At these discretization parameters,

the relative errors in the base fields for the FDTD method and the BEM are 6.325% and

1.998%, respectively, and the difference, 4.327% is close to the relative error in the total

field for Pattern I, 4.596%. Therefore, the error in the total fields of the defective grating

is mostly due to the error in the base-field component. More rapid convergence and lower

relative error can be achieved by applying such as higher-order boundary elements (linear or
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(c) total field (DFBEM)

(b) difference field

(a) base field

(d) total field (FDTD)

(e) error

2.536-2.536 0

2.536-2.536 0

2.536-2.536 0

2.536-2.536 0

0.13240

Fig. 11. The refractive index in the defect pillar is 1.7. (a) Base field distribution for the non-

defective grating. (b) Difference-field distribution given by Eqs. (58)–(60). (c) Total field distri-

bution obtained from the sum of (b) and (c). (d) Field distribution calculated using the FDTD

method. (e) Error in total field between the DFBEM and the FDTD method.

quadratic elements) and higher-order numerical differentiation in the FDTD method. Note

that the higher-order boundary elements are applicable to the DFBEM without changing

the integral equations and expresssions described in Section 2.

Next, we discuss the convergence of the difference-field component for validating the

assumption that the Δf1 on C0 decays to zero with increasing distance from the defect. We
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Table 3. Positions of the nodes on the defect surface C2 and C3 numbered in Fig. 10

node x/T y/T node x/T y/T

1 0.1600 0.0 25 0.1455 -0.1022

2 0.1514 0.02037 26 0.1282 -0.1224

3 0.1376 0.04022 27 0.1124 -0.1381

4 0.1167 0.06042 28 0.09137 -0.1508

5 0.09958 0.07667 29 0.07357 -0.1617

6 0.07733 0.08797 30 0.05269 -0.1710

7 0.05526 0.09687 31 0.03232 -0.1777

8 0.03506 0.1017 32 0.01230 -0.1826

9 0.01384 0.1041 33 -0.007907 -0.1850

10 -0.003105 0.1059 34 -0.02725 -0.1857

11 -0.01936 0.1059 35 -0.04950 -0.1850

12 -0.03853 0.1041 36 -0.06747 -0.1826

13 -0.06027 0.10166 37 -0.0885 -0.1777

14 -0.08320 0.09687 38 -0.1092 -0.1710

15 -0.1029 0.08797 39 -0.1294 -0.1617

16 -0.1243 0.07667 40 -0.1496 -0.1508

17 -0.1455 0.06042 41 -0.1671 -0.1381

18 -0.1662 0.04022 42 -0.1784 -0.1224

19 -0.1809 0.02037 43 -0.1874 -0.1022

20 -0.1900 0.0 44 -0.1921 -0.08267

21 0.1641 -0.02020 45 -0.1956 -0.06110

22 0.1651 -0.04073 46 -0.1965 -0.04073

23 0.1615 -0.06110 47 -0.1953 -0.02020

24 0.1564 -0.08267

calculated the difference fields at the points near the defects; (x, y) = (0.0, 0.3T ) for Pattern

I, (x, y) = (−0.35T, 0.2T ) for Pattern II, and (x, y) = (0.0, 0.3T ) for Pattern III, changing
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Fig. 12. Convergence of the base field with respect to the discretization parameter ΔL. The

parameter ΔL corresponds to the Yee-cell size for the FDTD method and bounary-element length

for the BEM. The observation point of the base field is (x, y) = (−0.9571T,−0.6786T ) in the

periodic grating shown in Fig. 5(a).

the truncated positions ±xt of C0. We considered the difference fields for xt = 10.25T are

the true values, and plotted the relative error in Fig. 13. The difference fields for either

three patterns exponentially converged. This results indicate the path integral on C0 (Eqs.

(25), (42), and (59)) at far distance from the defects does not contribute to the difference

field at P, and the difference fields on C0 are also converged to zero at far distance from the

defects.

The factor of rapid convergence of the difference field is non-existence of propagation

modes on C0. In addition to that, we discuss another convergence factor, difference fields

on C0 being much less than those on the other boundaries. In the difference field distribu-

tions (Figs. 9(b), and 11(b)), the difference field is strongly radiated toward −45◦. When

we regard the difference field with scattering wave from the defects, the strong radiations

toward −45◦ correspond to the forward-scattering. Indeed, in the typical Mie scattering, the

forward-scattering becomes largest, and the side-scattering is much less than the forward-

scattering and the back-scattering. In the case of the defective grating, the direction along

the C0 is close to the direction of the side-scattering, and thus the difference fields on C0 are

less than those on C1, C2, and C3. Accordingly the integrals on C0 in the integral expressions

for the difference fields, including the effect of C0 truncation, do not critically contribute the

difference fields.

For other defect structures, truncation of C0 may exhibit the different convergence prop-
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erties. The irradiance of the difference field on C0 (side-scattering) depends on the size and

shape of the defect. For example, when the scatterer is much smaller than the wavelength

(Rayleigh scattering), the irradiance of the side scattering is comparable to the forward scat-

tering. The incident angle also depends on the convergence property. In the case of shallow

incident angle, the forward scattering wave becomes close to the C0, and the difference field

on C0 would be increased. Hence, when we change the defect structure or incident wave sig-

nificantly, reexamination of the convergence property is necessary to maintain the accuracy

of the calculation result.
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Fig. 13. Convergence of the relative errors in the difference fields at (x, y) = (0.0, 0.3T ) for Pattern

I, (x, y) = (−0.35T, 0.2T ) for Pattern II, and (x, y) = (0.0, 0.3T ) for Pattern III, changing the

truncated position of the integral paths C0.

Finally, we validated the boundary conditions of the total field distribution obtained

using the DFBEM (Figs. 7(c), 9(c), and 11(c)). For Pattern I, we calculated the field profile

across the C1 and C2 boundary, as represented by open circles in Figs. 14(a) and 14(b).

The lateral axes are given by the n coordinate and the detailed profile positions are shown

in Fig. 14(c). The profiles in Figs. 14(a) and 14(b) are calculated along segment AB and

segment PQ, respectively. The solid lines in Figs. 14(a) and 14(b) on the S3 side are drawn

so as to pass through the total fields at n = 0, with slopes determined by ∂f3/∂n. Note

that ∂f3/∂n is included in the solution of the integral equations (14), (15), and (20)–(23).

The solid lines on the other side (S1 or S2 side) are drawn so as to connect with the solid

line for the S3 side at n = 0, with slopes given by ∂f3/∂n on the S3 side and Eq. (5). For

example, the slope on the S1 side is given by (ε1/ε3)(∂f3/∂n). If the total fields satisfy the

theoretical boundary conditions given in Eqs. (4) and (5), the solid lines must be tangent

lines of the total fields at n = 0, for both the S3 side and the other side.
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Fig. 14. Total-field profiles across (a) C1 and (b) C2. The profile positions are indicated in (c) by

the dashed line segments of AB for (a) and PQ for (b). The slopes of the solid lines in (a) and (b)

for the S3 side are given by the integral equations Eqs. (14), (15), and (20)–(23), while that of the

other side is determined by the theoretical boundary condition, Eq. (5). Fitting the open circles

to the solid lines at n = 0 represents the calculated total fields satisfying both the continuity (Eq.

(4)) and the theoretical boundary conditions (Eq. (5)).

The total field indicated in Fig. 14(a) continuously and smoothly varies at the boundary

C1, as indicated by the solid line fit to the total-field profile for both the S3 and S1 sides.

Because the electric permittivities on both sides of C1 are equal, the total field at C1 is

continuous and differentiable at n = 0. Therefore, the total field at C1 precisely satisfies the

boundary condition, even if it is obtained from different equations (sum of f1 and Δf1 (Eq.

(24)) for the S1 side or f3 (Eq. (26)) for the S3 side, as well as the solution of the integral

equation for n = 0). As shown in Fig. 14(b), the total-field profile on the dielectric boundary

(C2) must have different slopes on the S2 and S3 sides, according to the boundary condition

Eq. (5). The calculated total field also fits the polygonal solid line, showing that the total

field given by DFBEM satisfies the boundary condition even on the dielectric boundary.

Similarly, we show the total field profiles for Patterns II (Fig. 15) and III (Fig. 16).

For Pattern II, Fig. 15(a) is the profile around the boundary (C1) in the homogeneous

medium, and Fig. 15(b) is the profile around the dielectric boundary (C2). Similar to the
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Fig. 15. Total-field profiles across (a) C1 and (b) C2. The positions of these profiles are indicated

in (c) with the dashed line segments of AB for (a) and PQ for (b). The slopes of the solid lines

in (a) and (b) for the S3 side are given by the integral equations, Eqs. (31), (32), and (37)–(40),

while that of the other side is determined from the theoretical boundary condition Eq. (5). Fitting

the open circles to the solid lines at n = 0 represents the calculated total fields satisfying both the

continuity (Eq. (4)) and the theoretical boundary (Eq. (5)) conditions.

profiles for Pattern I, both total field profiles are continuous and fit the solid lines. This

result shows that the total field obtained from the integral equations and expressions for

Pattern II satisfies the theoretical boundary conditions as well as Pattern I. For Pattern III,

Fig. 16(a) is the profile around C2 (segment AB), and Fig. 16(b) is the profile around C3

(segment PQ). The total field profiles for both AB and PQ (plotted using open circles) are

continuous and fit the solid lines at n = 0, indicating the validity of the integral equations

and expressions for Pattern III.

4. Conclusion

We have expanded the DFBEM for the analysis of defective gratings with a variety of

defect topologies. First, in addition to the original DFBEM, which is capable of computing

projection defects, we derived integral equations and expressions for two additional defect

types: crack and buried-pillar defects. The integral equations and expressions consist of
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Fig. 16. Total-field profiles across (a) C1 and (b) C2. The positions of these profiles are indicated

in (c) by the dashed line segments of AB for (a) and PQ for (b). The slopes of the solid lines in

(a) and (b) for the S3 side are given by the integral equation, Eqs. (48), (49), and (54)–(57), while

that for the other side is determined by the theoretical boundary condition (Eq. (5)). Fitting the

open circles to the solid lines at n = 0 represents the calculated total fields satisfying both the

continuity (Eq. (4)) and the theoretical boundary (Eq. (5)) conditions.

path integrals on the boundaries around the defect, which is free from infinitely long path

integrals. By changing the integral paths, we can analyze different groove types and defect

shapes under the conditions that the target structure has a clear dielectric interface, and

the topology of the defect is unchanged. As for the material of the grating and the defect,

lossless and lossy dielectric, metal and dispersive materials are acceptable, provided the

(complex) refractive indices for the wavelength of the illumination light are known. The

present DFBEM cannot treat diffraction gratings with propagation modes. Some sort of

expression for propagation modes without using the integrals along the diffraction surfaces

is necessary. For example, in analyses of the scattering from a waveguide edge, Chien et al.

have separately treated the scattering-field and propagating-field components [31].

The integral equations and expressions for the two additional defect types have been

validated by comparing the field distributions with those obtained using the FDTD method.
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The relative error in the field between the DFBEM and the FDTD method is less than

5.221%. Most of the relative error is due to the error in the base-field component. The

base-field component with the BEM has a rapid convergence property, whereas that with

the FDTD method is slower, and thus we could not sufficiently reduce the relative error. For

three defect patterns we described in this paper, we also verified rapid convergence of the

difference-field component with DFBEM with respect to the truncated lengths of the integral

paths C0. Considering the rapid convergence for both base-field component with the BEM

and the difference-field component with DFBEM, the total fields of the defective gratings

also have rapid convergence property for three defect patterns. Although the convergence

speed would be changed by such as the angle of the incident wave, size, and shape of the

defect, truncation of the C0 is valid in our derived integral expressions. Finally, we also

validated the DFBEM by precisely satisfying the dielectric boundary condition.

In the validation with the FDTD method, we also compared the calculation cost. In our

demonstration involving a projection defect (comparable with other types of defects), the

DFBEM calculation required 8.416 s at first to solve the integral equation, and then 4.079

ms per point to calculate the difference field. Therefore, when a lesser number of points in

the field calculation are required, the DFBEM performs the calculation more rapidly. In

contrast, the FDTD method requires many points discretized with Yee’s cells, even if the

fields at only a few points are required. For example, the simulation of an optical system

with a defective grating is an appropriate problem for the DFBEM. Simulations of optical

systems can generally be performed only by calculating several far fields radiated from the

constituent optical elements. If the number of calculation points is 100, the estimated

calculation time for the DFBEM is only 8.416+100×4.079×10−3 = 8.808 s, which is 153.7

times less than that of the FDTD method, at 1353 s.

The expanded DFBEM is designed for two-dimensional problems, therefore, the grating

is limited to one-dimensional grooves. In the future, we hope to apply the DFBEM to

a three-dimensional problem in order to analyze grooves with particle or two-dimensional

defects.
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