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Resonant frequency analysis of the fundamental and higher-order modes of Lamé mode resonators on a

lossless isotropic solid is carried out by the finite-difference time-domain (FD-TD) method with the staggered

grid with collocated grid points of velocities (SGCV). The symmetry boundary condition is implemented

to reduce the size of the computational domain for the FD-TD method with the SGCV. One spectrum

estimation technique based on the Padé approximation is employed to effectively extract the resonant

frequencies from a spectrum transformed from the time series data calculated by the FD-TD method.

Numerical results show the validity and efficiency of these techniques.

1. Introduction

The finite-difference time-domain (FD-TD) method is a powerful and attractive tool for

modeling the propagation and scattering of acoustic1–8) or elastic9–22) waves. Discretiza-

tion of two first-order partial differential equations with finite-difference approximations

results in a staggered grid (SG),9,10) a rotated SG11,12) a diagonal SG,13–15) a Lebedev

grid,16–18) or an SG with collocated grid points of velocities (SGCV).19–21)

The SGCV was proposed for FD-TD analysis of elastic-wave propagation in

anisotropic solids.19) Since the SGCV is derived from a single control volume of the

momentum conservation law and line integration of the displacement gradient, bound-

ary conditions are simply imposed on the FD-TD method.

To demonstrate the simply imposed boundary conditions on free-surfaces, an FD-

TD model with SGCV was applied to resonance frequency analysis of a Lamé mode

resonator on a lossless isotropic solid, which has free-surfaces between the vacuum and

the solid; the results showed good agreement with the analytical values.20) It was also

shown that the accuracies of results computed by SGCVs and SGs were comparable.21)
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For resonant mode analysis, particle velocity and stress fields are either symmetric

or antisymmetric with respect to axes of symmetry. It has been shown that imposing

appropriate symmetry boundary conditions on axes of symmetry can effectively reduce

the computational time for the resonant frequency analysis of the fundamental Lamé

mode.22)

In addition, after the FD-TD calculation, we need to transform the calculated time

response of the elastic field components into the frequency spectrum by FFT to extract

resonant frequencies.22) However, an inherent limitation of the FFT approach is the

inadequate frequency resolution. Thus, it is necessary to run the FD-TD calculation

for a sufficiently large number of time steps. To overcome this limitation, Dey and

Mittra apply one of the techniques for spectrum estimation, the so-called FFT/Padé

technique,23,24) to electromagnetic wave cavity problems.

In this study, resonant frequency analysis by the FD-TD method with SGCV is

carried out for the fundamental and higher-order modes of Lamé mode resonators on

an isotropic solid. The symmetry boundary condition is implemented to reduce the size

of the computational domain for the FD-TD method with the SGCV. The FFT/Padé

technique23,24) is employed for efficient extraction of resonant frequencies from a spec-

trum transformed from a time response calculated by the FD-TD method. Numerical

results show the validity and efficiency of these techniques.

2. Fundamental equations

Newton’s equation of motion and Hook’s law are respectively represented in a Cartesian

coordinate system (x1, x2, x3) as

ρ
∂v′xk

∂t
=

3∑
i=1

∂Txkxi

∂xi

(k = 1, 2, 3), (1)

∂Txixj

∂t
=

3∑
k=1

3∑
m=1

C ′
xixjxkxm

∂v′xk

∂xm

(i, j = 1, 2, 3), (2)

where t, ρ, v′xi
, Txixj

, and C ′
xixjxkxm

(i, j, k,m = 1, 2, 3) are respectively the time, the

mass density, the xi-component of particle velocity, the xixj-component of the stress

tensor, and the xixjxkxm-component of the stiffness tensor.

In this paper, we consider two-dimensional [∂/∂x3 = 0] rectangular Lamé mode

resonators on an isotropic solid with the length L2 and width L1, as shown in Fig. 1.

From Eqs. (1) and (2), we obtain the following normalized equations with abbreviated
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subscripts:

∆t
∂v1
∂t

= R∆

(
∂T1

∂x1

+
∂T6

∂x2

)
, (3)

∆t
∂v2
∂t

= R∆

(
∂T6

∂x1

+
∂T2

∂x2

)
, (4)

∆t
∂T1

∂t
= R∆

(
C11

∂v1
∂x1

+ C12
∂v2
∂x2

)
, (5)

∆t
∂T2

∂t
= R∆

(
C21

∂v1
∂x1

+ C22
∂v2
∂x2

)
, (6)

∆t
∂T6

∂t
= R∆

(
C66

∂v1
∂x2

+ C66
∂v2
∂x1

)
. (7)

Here, vi = Z0v
′
i (i = 1, 2) and Cij = C ′

ij/C
′
11 (ij = 11, 12, 21, 22, 66) are respectively the

normalized components of the particle velocity and stiffness tensor, where Z0 =
√
ρC ′

11.

We define the Courant number R as

R =
Vp∆t

∆
, (8)

where Vp =
√
C ′

11/ρ, ∆, and ∆t are respectively the phase velocity of the P-wave, the

spatial interval of the grid, and the time interval.

3. Discretization and boundary conditions

For the FD-TD analysis, the computational domain is discretized with square SGCVs20)

with the side length ∆, as shown in Fig. 2. Here, I and J are integers for a grid point

with the position vector p = (Ix̂1 + Jx̂2)∆, where x̂1 and x̂2 are the unit vectors in the

x1− and x2−directions, respectively. To discretize Eqs. (3) – (7), we use a scheme of

second-order accuracy in the time and spatial differences. Bilinear interpolation with

four adjoining grids is used to evaluate the gradients of particle velocity on grids just

inside the free-surface boundaries at the edges of the resonators.20,21)

At the edges of the resonators, the following free-surface boundary conditions are

imposed:

T1(x1, x2) = 0, T6(x1, x2) = 0 (9)

for x1 = ±L1/2, and

T2(x1, x2) = 0, T6(x1, x2) = 0 (10)

for x2 = ±L2/2.
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Owing to the symmetric distribution of elastic field components, required computa-

tional resources can be reduced by imposing the symmetry boundary conditions on the

symmetry axes, x1 = 0 and/or x2 = 0, as shown in Fig. 3. In Fig. 3(a), the symmetry

boundary condition is imposed on x2 = 0, so that the size of the computational domain

can be reduced to half of the domain. In Fig. 3(b), the symmetry boundary conditions

are imposed on x1 = 0 and x2 = 0, so that the size of the computational domain can

be reduced to one-quarter.

The parity of elastic field components on the symmetric boundaries is shown in

Tables I and II. The particle velocity components, v1 and v2, located on the lines of

x1 = −∆/2 and x2 = −∆/2 as shown in Fig. 3, are for a simple implementation

of the symmetry boundary conditions. We copy the values of velocity components on

x1 = ∆/2 and x2 = ∆/2 to those on x1 = −∆/2 and x2 = −∆/2, respectively, with

consideration of the parity imposed on the condition. Note that the standard time-

updating procedure20) for the stress components automatically satisfies their symmetry

conditions owing to the external particle velocity components.

4. Spectrum estimation with the Padé approximation

After an FD-TD calculation, we need to transform the calculated time response to

the frequency domain using the FFT. An inherent limitation of this approach is the

inadequate frequency resolution. Thus, it is necessary to run the FD-TD calculation for

a sufficiently large number of time steps.

To overcome this limitation, Dey and Mittra23,24) employ a two-step procedure, the

so-called the FFT/Padé technique. First, the FFT is applied to the FDTD-calculated

time response to obtain a frequency response. Then, the accuracy of the frequency

response is improved with the Padé approximation.

Under the Padé approximation, the frequency response is represented as the ratio

of two polynomials QN(ω) and DM(ω) as follows:

P (ω) ∼=
QN(ω)

DM(ω)
, (11)

where

QN(ω) =
N∑
i=0

αiω
i, DM(ω) =

M∑
i=0

βiω
i. (12)

Here, αi and βi are unknown coefficients to be determined. We can rewrite Eq. (11) as

P (ωj)DM(ωj) ∼= QN(ωj), (13)
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where P (ωj) denotes the value of the frequency response with the FFT at a sampling

angular frequency ωj (j = 0, 1, . . . , S − 1). Here, S is the number of sampling angular

frequencies within the range of the FFT. We obtain a system of S equations for a total

of N +M +2 unknown coefficients, αi (i = 0, . . . , N) and βi (i = 0, . . . ,M), as follows:

P (ωj)
M∑
i=1

βiω
i
j −

N∑
i=0

αiω
i
j = −P (ωj)β0ω

0
j ,

j = 0, 1, . . . , S − 1. (14)

The unknown coefficients αi (i = 0, . . . , N) and βi (i = 1, . . . ,M) are determined by

solving Eq. (14) and setting β0 to unity. We note that a total of S ≥ M +N + 1 data

samples of the FFT frequency response are necessary to solve Eq. (14).

As mentioned by Dey and Mittra,23,24) the scaled frequency

ωs =
2ω − (ωS−1 − ω0)

ωS−1 + ω0

(15)

is used in the above procedure to avoid a computational problem due to the very

large dynamic range of matrix elements. Here, ω0 and ωS−1 denote the minimum and

maximum sampling angular frequencies of ωj (j = 0, 1, . . . , S − 1), respectively.

5. Numerical results

For the Lamé mode resonator shown in Fig. 1, its Lamé mode must satisfy

L1

m
=

L2

n
, (16)

where m and n are integers. Then its resonant frequency fexact is given as

fexact =
mVs√
2L1

=
Vs√
2L

. (17)

Here, Vs =
√

C ′
66/ρ is the phase velocity of the SV wave, and L ≡ L1/m.25)

To analyze the resonant frequencies of the Lamé modes, the vibration and obser-

vation points are respectively given as pv = (3L1/8−∆/2) x̂1 + (3L2/8−∆/2) x̂2 and

po = (L1/8−∆/2) x̂1+(L2/8−∆/2) x̂2. Since the particle velocity components are lo-

cated at the center of the unit cell of SGCV, pv and po depend on ∆. The x1-component

of the particle velocity, v1, at pv is vibrated as a sine-modulated Gaussian pulse with a

center frequency of fexact given as exp[−γ2(t− t0)
2] sin(2πfexactt), where γ = Vp/(50RL)

and t0 = 150RL/Vp. After the FD-TD calculation, the FFT or FFT/Padé technique is

applied to the time response of vx1 observed at po to extract the resonant frequency,

fFDTD.
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In the following numerical results, the parameters are taken as R = 0.5 and σ = 0.25,

where σ denotes Poisson’s ratio of the solid.

5.1 Fundamental mode analysis

We consider a square Lamé mode resonator with the side length L [m = n = 1]. The

time response of v1 at the observation point in the first 16000 time steps is shown in

Fig. 4. Here, Nl = L/∆ is taken as 26.

Figure 5 shows the percentage error in the extracted normalized resonant frequen-

cies, fFDTD/fexact, as a function of Nl. Here, Nt∆t = 212RL/Vp = 212Nl∆t, where Nt

denotes the total number of time steps. The conventional FFT was applied to extract

the resonant frequencies. The FD-TD calculations were carried out for whole size, and

half and quarter sizes [with the symmetry boundary condition] of the resonator. We

can see that these results are identical and that the results converge for Nl ≥ 26. Figure

6 shows the distributions of particle velocity components, v1 and v2, at the final time

step for Nl = 26. We can see that the fundamental Lamé mode is excited.

Figure 7 shows the normalized computational time as a function of Nl. Our codes

were run on MATLAB in the single-thread mode for more accurate profiling. We can

see that computational time can be effectively reduced for larger values of Nl owing to

the reduction in the size of the computational domain with the symmetry boundary

conditions when we can assume the symmetry of the targeted mode profile. For larger

models with Nl ≥ 28, the normalized computational times are slightly smaller than 0.5

and 0.25 for the analyses with half- and quarter-sized computational domains, respec-

tively. The authors think that the reduction in the size of the computational domains

is improved cache-hit ratio of the codes.

Figure 8 shows the normalized spectrum of the square Lamé mode resonator as a

function of normalized frequency obtained by the conventional FFT and FFT/Padé

technique, which are transformed from the same time response by the FD-TD method

for Nl = 26 and Nt = 214. For the conventional FFT, the resonant frequencies are

extracted as values on the discretized frequency grid points with the peak values of

the frequency response. Here, the number of sampling angular frequencies is taken as

S = Nt/2 for the FFT/Padé technique. We can see that a finer spectrum and a more

accurate resonant frequency are computed by the FFT/Padé technique. Here, the values

of M and N in Eq. (12) are taken as eight.

Figure 9 shows the percentage error in normalized resonant frequencies extracted by
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the conventional FFT and FFT/Padé technique for the fundamental Lamé mode as a

function of the total number of time steps, Nt. We can see that the FFT/Padé technique

can easily extract the correct resonant frequencies. The FFT/Padé technique extracts

more accurate resonant frequencies than the FFT alone in the range of Nt ≤ 215. For

Nt = 211, the error in extracted resonant frequency by the FFT/Padé technique is

less than 1.2%, but the error by conventional FFT is less than 7.2%. To estimate the

resonant frequency with an error less than 0.2%, the FFT/Padé technique and the

conventional FFT require 213 and 216 time steps, respectively.

The percentage error in the normalized resonant frequencies extracted by the con-

ventional FFT oscillates for Nt = 218, 219, and 220 because the fact that the frequency

at the peak in the spectrum and the frequency resolution depend on the total number

of time steps, Nt, as shown in Fig. 10.

5.2 Higher-order mode analysis

We consider higher-order modes of rectangular Lamé mode resonators with m and/or

n ≥ 2, whose resonant frequencies are given by Eq. (17). In the following numerical

results, Nl and Nt are respectively taken as L/∆ = 26 and 212Nl. The quarter regions

of the resonators are calculated by the FD-TD method with the symmetry boundary

condition.

Figures 11–13 show the distributions of the particle velocity components for a square

resonator with the side length 2L [m = n = 2] at the 261747th time step, for a rectan-

gular resonator with the length 2L and width L [m = 1, n = 2] at the 261659th time

step, and for a rectangular resonator with the length L and width 2L [m = 2, n = 1]

at the 261656th time step. We can see that higher-order Lamé modes are excited.

Table III shows the percentage error in normalized resonant frequencies extracted by

the FFT/Padé technique and the conventional FFT for the higher-order Lamé modes

as a function of the total number of time steps, Nt. Here, M = N = 8 and S = Nt/32

for the FFT/Padé technique . We can see that the FFT/Padé technique can easily

extract the resonant frequencies. The FFT/Padé technique requires Nt = 210 time

steps to extract the resonant frequencies with errors less than 2%, but the conventional

FFT requires 212 time steps. For Nt = 29, both methods show deteriorated resonant

frequencies. The time period Nt = 29 corresponds to nearly 1.6 period long of the

targeted Lamé mode, and the vibration is insufficient to launch the targeted modes

because the number of time steps is very small.
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Table I. Parity of elastic field components on a symmetry boundary normal to the x1-axis. The

symbols e and o respectively denote even and odd functions across the boundary.

Components

Mode v1 v2 T1 T2 T6

Symmetric o e e e o

Antisymmetric e o o o e

Table II. Parity of elastic field components on a symmetry boundary normal to the x2-axis. The

symbols e and o respectively denote even and odd functions across the boundary.

Components

Mode v1 v2 T1 T2 T6

Symmetric e o e e o

Antisymmetric o e o o e

However, we observed a field distribution of a non-Lamé mode at larger time steps.

For example, Fig. 14(a) shows the distribution of v1 at the 218th time step in the same

time series as Fig. 13. Figures 14(b) and 14(c) respectively show the distributions of

the Lamé mode and residual components separated from the total field by the overlap

integral. Figure 15 shows the frequency spectrum obtained by the FFT/Padé technique.

We can see that the non-Lamé mode is excited at a frequency of 1.03 MHz. We note that

the field distribution shown in Fig. 14(c) and the frequency agree with the results of

finite-element analysis. Applying a multi-dimensional Fourier transform may separate

the total field into the field of each mode. The non-Lamé components were also observed

for the square resonator with the side length 2L and for the rectangular resonator

with the length 2L and width L. We also note that the amplitudes of the non-Lamé

components in Figs. 11-13 are very small.

6. Conclusions

For efficient resonant frequency analysis, the symmetry boundary condition and the

FFT/Padé technique were applied to the FD-TD method with the SGCV. The proposed

method was applied to analyze the resonant frequencies of the fundamental and higher-

order modes of Lamé mode resonators on a lossless isotropic solid. The numerical results

showed the validity and efficiency of the proposed method. Our future work will address

resonant frequency analysis for resonators on solids with loss.
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Fig. 1. Two-dimensional rectangular Lamé mode resonator on an isotropic solid with length L2

and width L1.
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Fig. 2. Unit cell of the staggered grid using the collocated grid points of velocities (SGCV). We

note that T6s represented by the open circles and open squares denote Tx2x1 and Tx1x2, respectively.
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Fig. 3. Lamé mode resonators discretized with the SGCV. The symmetry boundary conditions are

imposed on the line, x2 = 0, and the lines, x1 = 0 and x2 = 0, for analysis of (a) half and (b) quarter

regions.
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Fig. 4. Time response of a particle velocity component, v1, at the observation point on the square

Lamé mode resonator with side length L in the first 16000 time steps. Here, Nl = L/∆ is taken as 26.
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Fig. 6. (Color online) Distribution of the particle velocity components, (a) v1 and (b) v2, on the

square Lamé mode resonator with the side length L. Here, Nl is taken as 26.
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Fig. 11. (Color online) Distribution of particle velocity components, (a) v1 and (b) v2, of a

higher-order Lamé mode on the resonator with side length 2L [m = n = 2] at the 261747th time step.
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Fig. 12. (Color online) Distribution of particle velocity components, (a) v1 and (b) v2, of a

higher-order Lamé mode on the resonator with length 2L and width L [m = 1, n = 2] at the

261659th time step.

Table III. Percentage error (%) in the resonant frequency of higher-order Lamé modes obtained by

the FFT/Padé and FFT methods as a function of total number of time steps, Nt.

log2(Nt) m = n = 2 m = 1, n = 2 m = 2, n = 1

FFT/Padé FFT FFT/Padé FFT FFT/Padé FFT

9 20 39 16 22 20 22

10 0.088 8.1 0.021 8.1 2.0 8.1

11 0.55 8.1 0.46 7.2 0.76 8.1

12 0.22 0.49 0.16 0.49 0.44 0.49

13 0.65 0.49 0.94 0.49 1.3 0.49

14 1.1 0.49 1.6 0.49 0.51 0.49

15 0.54 0.49 0.054 0.47 0.14 0.49

16 0.39 0.011 0.0042 0.011 0.051 0.011

17 0.47 0.011 0.014 0.011 0.013 0.011

18 0.56 0.011 0.020 0.011 0.0070 0.011
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Fig. 13. (Color online) Distribution of particle velocity components, (a) v1 and (b) v2, of a higher

order Lamé mode on the resonator with length L and width 2L [m = 2, n = 1] at the 261656th time

step.
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Fig. 14. (Color online) Distribution of a particle velocity component, v1, of a higher-order Lamé

mode on the resonator with length L and width 2L at the 218th time step in the same time series as

Fig. 13. Distributions of (a) the total field, (b) the Lamé-mode, and (c) residual components in the

total field.
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Fig. 15. Frequency spectrum of the rectangular Lamé mode resonator with length L and width 2L

obtained by the FFT/Padé technique.
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