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§0 Introduction

Let X = C2/(Z2 + τZ2) be a principally polarized abelian surface, where C2 denotes the

additive group of complex column vectors t(z1, z2) (z1, z2 ∈ C, C being the set of complex

numbers), Z2 the subgroup of C2 consisting of integral column vectors t(n1, n2) (n1, n2 ∈ Z, Z

being the set of integers), and τ a complex symmetric square matrix of degree 2 of which the

imaginary part is positive definite. We assume thatX is not a direct product of two elliptic curves

(with canonical polarization). Then it is well-known (e.g., [2]) that X is the Jacobian variety

of a Riemann surface of genus 2. Let N and N ′ be natural numbers satisfying the condition

2 ≤ N ≤ N ′. Let a1, . . . , a2N ′ , b1, . . . , b2N ′ be 4N ′ real numbers. We assume that the N ′ theta

divisors defined by the equations θ

[
a2k−1 a2k

b2k−1 b2k

]
(z1, z2; τ) = 0 (k = 1, . . . , N ′) are different from

each other, where θ

[
a a′

b b′

]
(z1, z2; τ) denotes a theta function (§1). For each k (1 ≤ k ≤ N), let

Dk be the theta divisor corresponding to the theta function θ

[
a2k−1 a2k

b2k−1 b2k

]
(z1, z2; τ). Throughout

this paper we assume that the divisor D =
∑N
k=1Dk has normal crossings. We set M = X −D.

Let c1, . . . , cN be N complex numbers but not integers such that
∑N
k=1 ck = 0. Let cN+1, . . . , cN ′

be non-zero integers such that
∑N ′

k=N+1 ck = 0. We define a multiplicative function T (z1, z2)

by T (z1, z2) =
∏N ′

k=1 θ

[
a2k−1 a2k

b2k−1 b2k

]
(z1, z2; τ)

ck . Let L be a locally constant sheaf of rank one

on M defined by a complex one-dimensional representation of the fundamental group π1(M, ∗)
by the multivalued meromorphic function T (z1, z2)

−1 on M . The purpose of this paper is to

study the twisted cohomology of the open dense subset M of X, i.e., the cohomology groups

Hk(M,L) of M with coefficients in L. The twisted cohomology (and homology) of complement

of hyperplanes in a complex projective space is already studied in detail, and it gives us the

foundation of the theory of hypergeometric integrals of several variables (e.g., see [1]). Our

study in this paper is an analogue of the study for complement of hyperplanes in a complex

projective space. In a previous paper [11] (see also [17]), we studied twisted cohomology of

a one-dimensional punctured complex torus in connection with an integral representation on a

complex torus of hypergeometric function. So it seems very natural to us to proceed to the study

for the two-dimensional space M .

The starting point of our study is an isomorphism Hp(M,L) ∼= Hp(X,Ω•
X⟨D⟩(P ),∇) be-
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tween cohomology and hypercohomology (Corollary 3.2), where ∇ denotes a covariant differ-

entiation given by ∇ψ = dψ + d(log T1) ∧ ψ with T1(z1, z2) =
∏N
k=1 θ

[
a2k−1 a2k

b2k−1 b2k

]
(z1, z2; τ)

ck ,

P a holomorphic line bundle on X associated to the multivalued function T2(z1, z2)
−1 with

T2(z1, z2) =
∏N ′

k=N+1 θ

[
a2k−1 a2k

b2k−1 b2k

]
(z1, z2; τ)

ck , and (Ω•
X⟨D⟩(P ),∇) a complex of sheaves of log-

arithmic forms over X with logarithmic pole along D with coefficients in P . Note that P belongs

to the Picard variety of X. The isomorphism above follows from the fact that the two complexes

of sheaves over X, (Ω•
X⟨D⟩(P ),∇) and (j∗E•

M (P |M),∇), where j denotes the inclusionM ↪→ X,

and EpM (P |M) the sheaf of smooth p-forms over M with coefficients in P |M the restriction of P

to M , are quasi-isomorphic to each other (Proposition 3.1). This fact is obtained as a corollary

of a proposition proved by Deligne ([3], II, Cor. 3.14), while we will give an elementary, direct

proof of this fact in Appendix to §3. The vanishing of the cohomology groups Hp(M,L) (p ̸= 2)

is an immediate consequence of the vanishing of the corresponding hypercohomology groups ([5],

§2, Cor. 2.13). In Appendix to §3 we will also give an elementary proof of the vanishing of

hypercohomology groups by exploiting the logarithmic Dolbeault complex (Proposition 3.3).

The main task of this paper is to study the structure of the non-vanishing cohomology group

H2(M,L) at length. To this end we consider a spectral sequence with Epq1 = Hq(X,ΩpX⟨D⟩(P ))
abutting to the hypercohomology groups Hk(X,Ω•

X⟨D⟩(P ),∇): Epq1 = Hq(X,ΩpX⟨D⟩(P )) =⇒
Hp+q(X,Ω•

X⟨D⟩(P ),∇). Degeneration of this spectral sequence depends on whether the line

bundle P is holomorphically trivial (i.e., P = C), or it is topologically trivial (i.e., c1(P ) = 0)

but not holomorphically. Namely, if P is not holomorphically trivial, the spectral sequence de-

generates at E1 (Proposition 3.5); if P = C, it degenerates at E2 (Proposition 3.6). Moreover, in

either case, we can determine explicitly the values of all the terms Epq∞ , which give us information

on the structures of Hk(M,L) including H2(M,L). These facts are proved based on knowledge

about the structures of homology groups of M , which we study in detail in §2 (see Propositions

2.4 and 2.8). To obtain information on how to select meromorphic 2-forms realizing a basis of

H2(M,L), we consider two resolutions (4.1) and (4.2) of the sheaves Ω1
X⟨D⟩(P ) and OX(P )

(= Ω0
X⟨D⟩(P )) of logarithmic differential forms introduced by Deligne [3], II, §3, Prop. 3.13.

Applying Mumford’s vanishing theorem (Mumford [12], III, §16) to the long exact sequences of

cohomology groups associated with those two resolutions, we have “analytical expressions” of

the three groups H1(X,Ω1
X⟨D⟩(P )) and Hp(X,OX(P )) (p = 1, 2) generated by meromorphic

2-forms with poles of lower order (Propositions 4.1 and 4.2). Combining these results, we have,

according as P is holomorphically trivial or not, two direct sum decompositions of the group

H2(M,L), each component of which is generated by meromorphic 2-forms of which the divisors

are less than or equal to a prescribed effective divisor D′ with support supp(D′) contained in D.

This is the main result of this paper (Theorems 4.5 and 4.6).

As we have already mentioned, we need to know the structures of homology groups of M in

the process of investigating the degeneration of the spectral sequence (Lemma 3.4). To this end

we determine in §2 the structures of homology groups ofM with coefficients both in the constant

sheaf Z (therefore in C) and in the locally constant sheaf P̌|M , where P̌ denotes the dual of

the locally constant sheaf P over X associated to the holomorphic line bundle P , and P̌|M its

restriction toM (Propositions 2.4 and 2.8). An exact homology sequence obtained by combining
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a usual exact homology sequence of a pair with the Thom isomorphism is useful in studying

our homology groups (Proposition 2.1). The construction of homology classes generating our

homology groups is based on Pontryagin product, some fundamental properties of which we

review in §1.

§1 Preliminaries

Let X be a complex torus of dimension g(≥ 1). Following [2], we first review the definition

and some properties of the Pontryagin product of X. Let σ : ∆p → X and τ : ∆q → X be

singular p− and q−simplices of X, respectively, where ∆p denotes a standard p−simplex. We

define a singular (p+ q)−chain σ ∗ τ : ∆p ×∆q → X by the equation (σ ∗ τ)(s, t) = σ(s) + τ(t)

for s ∈ ∆p and t ∈ ∆q, where the addition in the right hand side is the one coming from the

group structure of X. By extending the operation ∗ by bilinearity, we define a bilinear mapping

∗ : Sp(X,Z)× Sq(X,Z) → Sp+q(X,Z) where Sp(X,Z) denotes the group of singular p−chains

of X, i.e., the abelian group generated over Z by all the singular p−simplices of X. We call

the operation ∗ the Pontryagin product of singular chains of X. Then we have the following

fundamental properties:

Lemma 1.1. Let σ, σ′ be singular p−chains of X, and τ, υ be singular q− and r−chains of X,

respectively. Let m,m′ be integers. Then the following formulas hold:

(i) (σ ∗ τ) ∗ υ = σ ∗ (τ ∗ υ),
(ii) (mσ +m′σ′) ∗ τ = m(σ ∗ τ) +m′(σ′ ∗ τ),
(iii) ∂(σ ∗ τ) = (∂σ) ∗ τ + (−1)pσ ∗ (∂τ),
(iv) σ ∗ τ = (−1)pqτ ∗ σ,
(v) 0 ∗ σ = σ ∗ 0 = σ, where 0 denotes the unit element of the abelian group X regarded as a

0−simplex.

Let σ and τ be p− and q−cycles respectively. We denote their homology classes by [σ] ∈
Hp(X,Z) and [τ ] ∈ Hq(X,Z). We define a new homology class [σ] ∗ [τ ] ∈ Hp+q(X,Z) by

the well-defined equation [σ] ∗ [τ ] = [σ ∗ τ ]. This definition induces a bilinear operation ∗ :

Hp(X,Z)×Hq(X,Z) → Hp+q(X,Z), which we call the Pontryagin product of homology classes

of X. As is well-known, the Pontryagin product coincides with the composition Hp(X,Z) ×
Hq(X,Z) → Hp+q(X×X,Z) → Hp+q(X,Z), where the first arrow represents the cross product

and the second represents the operation induced from the addition of the abelian group X. The

following formulas are fundamental:

Lemma 1.2. Let σ, σ′ be p−cycles of X, and τ, υ be q− and r−cycles of X, respectively. Let

m,m′ be integers. Then we have:

(i) ([σ] ∗ [τ ]) ∗ [υ] = [σ] ∗ ([τ ] ∗ [υ]),
(ii) (m[σ] +m′[σ′]) ∗ [τ ] = m([σ] ∗ [τ ]) +m′([σ′] ∗ [τ ]),
(iii) [σ] ∗ [τ ] = (−1)pq[τ ] ∗ [σ],
(iv) 0 ∗ [σ] = [σ] ∗ 0 = [σ], where 0 denotes the unit element of X.

LetX be a principally polarized abelian variety of dimension g(≥ 1). Without loss of generality
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we may set X = Cg/(Zg+ τZg), where τ denotes a complex symmetric square matrix of degree

g of which the imaginary part is positive definite and we regard Cg as the set of column vectors
t(z1, . . . , zg) with standard complex coordinates z1, . . . , zg. If we set τ = (τij), i, j = 1, . . . , g, then

we have 2g vectors λ1 = t(1, 0, . . . , 0), . . . , λg = t(0, . . . , 0, 1), λg+1 = t(τ11, . . . , τg1), . . . , λ2g =
t(τ1g, . . . , τgg) as a symplectic basis of the lattice Zg + τZg for the principal polarization.

By abuse of notation we regard λ1, . . . , λ2g as a basis of the homology group H1(X,Z). Let

x1, . . . , x2g be (not necessarily standard) real coordinates on Cg, which is regarded as a real vec-

tor space of dimension 2g, corresponding to the basis λ1, . . . , λ2g. Then the 1-forms dx1, . . . , dx2g

form a basis of the cohomology group H1(X,Z), and satisfy the conditions
∫
λi
dxj = δij .

For an ordered subset I = {i1, . . . , ip} (where i1 < · · · < ip) of the set {1, . . . , 2g}, we set

λI = λi1 ∗ · · · ∗ λip and dxI = dxi1 ∧ · · · ∧ dxip . If I = ∅, we set λI = • (a point) and dxI = 1.

The following result is well-known:

Lemma 1.3. The set {dxI | #I = p} forms a basis of the cohomology group Hp(X,Z); the set

{λI | #I = p} forms a basis of the homology group Hp(X,Z). They are dual bases each other.

Moreover, the union ∪4
p=0{λI | #I = p} gives a cellular decomposition of X.

For an ordered subset I ⊂ {1, . . . , 2g} let I◦ be the complementary ordered subset of {1, . . . , 2g}
such that I ∩ I◦ = ∅ and I ∪ I◦ = {1, . . . , 2g}. We define the sign ε(I) of an ordered subset I by

the equation ε(I)dxI ∧ dxI◦ = dx1 ∧ dxg+1 ∧ · · · ∧ dxg ∧ dx2g. We have ε(I) = ±1. Let P be the

isomorphism of Hp(X,Z) onto H2g−p(X,Z) induced by Poincaré duality.

Lemma 1.4. ([2]) For an ordered subset I such that #I = p, then P (λI) = (−1)g+pε(I)dxI◦ .

For u ∈ Hp(X,Z) and v ∈ Hq(X,Z), we define the intersection product u ·v ∈ Hp+q−2g(X,Z)

by u ·v = P−1(Pu∧Pv). If in particular p+q = 2g, then u ·v represents the intersection number

(∈ Z).

In the rest of this section let us restrict ourselves to the case where g = 2. Namely, let X be a

principally polarized abelian surface. Then, as is well-known ([2]), X is either a two-dimensional

Jacobian variety or the direct product of two complex tori of dimension one. In what follows we

assume that X be a two-dimensional Jacobian variety. Let a1, a2, b1, b2 be real numbers. We set

τ =

(
τ11 τ12

τ21 τ22

)
. The theta function with characteristics ([9,13]) is given by

θ

[
a1 a2

b1 b2

]
(z1, z2; τ) =

∑
n∈Z2

exp

[
πi t

(
n+

a

2

)
τ
(
n+

a

2

)
+ 2πi t

(
n+

a

2

)(
z +

b

2

)]
,

where n, z,a, b denote column vectors: n =

(
n1

n2

)
, z =

(
z1

z2

)
, a =

(
a1

a2

)
, b =

(
b1

b2

)
. Then the
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following formulas hold:

θ

[
a1 a2

b1 b2

]
(z1 + 1, z2; τ) = eπia1θ

[
a1 a2

b1 b2

]
(z1, z2; τ),

θ

[
a1 a2

b1 b2

]
(z1, z2 + 1; τ) = eπia2θ

[
a1 a2

b1 b2

]
(z1, z2; τ),

θ

[
a1 a2

b1 b2

]
(z1 + τ11, z2 + τ21; τ) = e−2πiz1−πiτ11−πib1θ

[
a1 a2

b1 b2

]
(z1, z2; τ),

θ

[
a1 a2

b1 b2

]
(z1 + τ12, z2 + τ22; τ) = e−2πiz2−πiτ22−πib2θ

[
a1 a2

b1 b2

]
(z1, z2; τ),

θ

[
a1 a2

b1 b2

]
(−z1,−z2; τ) = eπi(a1b1+a2b2)θ

[
a1 a2

b1 b2

]
(z1, z2; τ),

θ

[
a1 + 2m1 a2 + 2m2

b1 + 2m′
1 b2 + 2m′

2

]
(z1, z2; τ) = eπi(a1m

′
1+a2m

′
2)θ

[
a1 a2

b1 b2

]
(z1, z2; τ),

where m1,m2,m
′
1,m

′
2 denote integers. A theta divisor D is by definition the subset of X defined

by an equation θ

[
a1 a2

b1 b2

]
(z1, z2; τ) = 0. By the general theory of theta divisors on X, D is a

closed algebraic curve in X with no singularity, and therefore it is a compact Riemann surface.

Lemma 1.5. A theta divisor D, regarded as a compact Riemann surface, is of genus 2. The

self intersection number D2 of D is equal to 2. If D′ is another theta divisor, the intersection

number D ·D′ = 2.

Proof. Let [D] be the line bundle onX corresponding to a theta divisorD. Then [D] is a principal

polarization on X, and the Euler number χ([D]) equals one by the general theory of cohomology

of line bundles on X. By the Riemann-Roch theorem (e.g., [2,12]), we have D2 = 2χ([D]) = 2.

Since the canonical class KX of the abelian surface X is equal to zero, we have the genus of

D, g(D) = 1
2 (KX · D + D2) + 1 = 2 by the genus formula. Since the product of line bundles

[D] · [D′]−1 belongs to the Picard variety of X, the Chern classes c1([D]) and c1([D
′]) coincide

with each other. By the formula of intersection number, we have D ·D′ =
∫
X
c1([D])∧c1([D′]) =∫

X
c1([D]) ∧ c1([D]) = D2 = 2.

It is easy to see that any two of theta divisors are related to each other by parallel translation

with respect to the real parameters a1, a2, b1, b2 of the theta function. Therefore any theta divisor

defines an identical homology class in H2(X,Z). By abuse of notation, we denote the homology

class in H2(X,Z) corresponding to a theta divisor D by the same symbol D. The next lemma

is a corollary of a general theorem in [2].

Lemma 1.6. We have D = −λ1 ∗ λ3 − λ2 ∗ λ4 as the equality in H2(X,Z).

After simple calculation we have the following formulas:

Lemma 1.7. (i) D · (λ1 ∗ λ2 ∗ λ3) = λ2,

(ii) D · (λ1 ∗ λ2 ∗ λ4) = −λ1,
(iii) D · (λ1 ∗ λ3 ∗ λ4) = −λ4,
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(iv) D · (λ2 ∗ λ3 ∗ λ4) = λ3,

(v) D · (λ1 ∗ λ2) = D · (λ2 ∗ λ3) = D · (λ3 ∗ λ4) = D · (λ4 ∗ λ1) = 0,

(vi) D · (λ1 ∗ λ3) = D · (λ2 ∗ λ4) = 1.

§2 Homology of the complement of theta divisors

Let X be a connected complex manifold of dimension g(≥ 2) which is an open dense subset

of a connected compact complex manifold X̄ with inclusion ι : X ↪→ X̄. Let Y be a connected

complex hypersurface of X of which the closure Ȳ in X̄ is a connected compact complex hyper-

surface of X̄. We have Ȳ ∩X = Y . We assume that for every point y ∈ Ȳ − Y there exist an

open neighborhood O of y in X̄ and a complex local coordinate system (z1, . . . , zg) of y on O

such that the point y is expressed by (z1, . . . , zg) = (0, . . . , 0), O ∩ Ȳ = {p ∈ O | zg(p) = 0},
and O ∩ (X̄ − X) = {p ∈ O | z1(p) = · · · = zg−1(p) = 0}. Let S be a locally constant sheaf

over X̄ with stalk G, where G denotes an abelian group containing the group of integers Z as a

subgroup. We denote the restriction of S to the submanifold X of X̄ by the same symbol. Let

us consider the exact homology sequence of the pair (X,X − Y ) with coefficients in S:

· · · ∂−→ Hp(X−Y ;S|X−Y )
φ−→ Hp(X;S) ψ−→ Hp(X,X−Y ;S) ∂−→ Hp−1(X−Y ;S|X−Y )

φ−→ · · · ,

where S|X−Y denotes the restriction of S to X−Y . Let T̄ be a tubular neighborhood of Ȳ in X̄.

By definition T̄ is a closed subset of X̄ containing Ȳ , and is identified topologically with the total

space of a subbundle of the normal bundle of Ȳ in X̄ having as fibers real two-dimensional closed

disks with a common small radius with respect to a Riemannian metric in the normal bundle.

We denote by π the projection of T̄ onto Ȳ . We set π−1(Y ) = T . Obviously the closure of T in

X̄ coincides with T̄ . By deforming fibers of T̄ diffeomorphically with Ȳ fixed, we may assume

without loss of generality that T̄ ∩ X = T . By excision (e.g., [7,15]), we have an isomorphism

Hp(X,X−Y ;S) ∼= Hp(T, T−Y ;S|T ), where every fiber of the fiber-bundle pair π : (T, T−Y ) →
Y is identified with (D2, S1) topologically, where D2 denotes a closed disk and S1 = ∂D2. Note

that the complex manifold X̄ and its submanifolds (with boundary) are orientable, and that

orientations of submanifolds of X̄ are induced from restrictions of an orientation of X̄. Since

Ȳ is a retract of T̄ , we have H2g−2(Ȳ ;Z) ∼= H2g−2(T̄ ;Z). By the Poincaré-Lefschetz duality

([7,15]), we have H2g−2(T̄ ;Z) ∼= H2(T̄ , ∂T̄ ;Z) ∼= H2(T̄ , T̄ − Ȳ ;Z). From these isomorphisms it

follows that H2g−2(Ȳ ;Z) ∼= H2(T̄ , T̄ − Ȳ ;Z). Let U be the cohomology class in H2(T̄ , T̄ − Ȳ ;Z)

corresponding to the fundamental class Ȳ ∈ H2g−2(Ȳ ;Z) ∼= Z (by abuse of notation). U is

called a Thom class of the fiber-bundle pair π : (T̄ , T̄ − Ȳ ) → Ȳ . Then we have the Thom

isomorphism Φ : Hp(T, T − Y ;S|T ) → Hp−2(Y ;S|Y ), which is given by Φ(z) = π∗(z ⌢ ι∗U) for

z ∈ Hp(T, T−Y ;S|T ), where ι∗U ∈ H2(T, T−Y ;Z), π∗ is an isomorphism of Hp−2(T ;S|T ) onto
Hp−2(Y ;S|Y ), and ⌢ denotes the cap product, i.e., ⌢: Hp(T, T −Y ;S|T )×H2(T, T −Y ;Z) →
Hp−2(T ;S|T ). Then we have

Proposition 2.1. The following exact sequence holds:

· · · ρ−→ Hp(X−Y ;S|X−Y )
φ−→ Hp(X;S) Ψ−→ Hp−2(Y ;S|Y )

ρ−→ Hp−1(X−Y ;S|X−Y )
φ−→ · · · ,

where Ψ and ρ are given by Ψ = Φ ◦ ψ and ρ = ∂ ◦ Φ−1, respectively.
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The exact sequence with S = C was already introduced by Hodge-Atiyah [8] and Leray [10].

Remark 2.1. By the definition of cap product we see that the following diagrams are commutative:

Hp(X,X − Y ;S)
∼=−−−−→ Hp(T, T − Y ;S|T ) ⌢ι∗U−−−−→ Hp−2(T ;S|T )

ι∗

y yι∗
Hp(X̄, X̄ − Ȳ ;S)

∼=−−−−→ Hp(T̄ , T̄ − Ȳ ;S|T̄ ) ⌢U−−−−→ Hp−2(T̄ ;S|T̄ )

z 7−→ z ⌢ ι∗U

↓ ↓
ι∗z 7−→ ι∗z ⌢ U = ι∗(z ⌢ ι∗U)

Moreover we have ι∗z ⌢ U = ι∗z·Y by a fundamental property of the intersection product, where

the product ι∗z ·Y is regarded as the image of the pair (ι∗z, Y ) in Hp(T̄ , ∂T̄ ;S|T̄ )×H2g−2(T̄ ;Z)

by the composition Hp(T̄ , ∂T̄ ;S|T̄ ) × H2g−2(T̄ ;Z)
PD−→ H2g−p(T̄ ;S|T̄ ) × H2(T̄ , ∂T̄ ;Z)

⌣−→
H2g−p+2(T̄ , ∂T̄ ;S|T̄ ) PD−→ Hp−2(T̄ ;S|T̄ ), PD denoting the Poincaré duality, and ⌣ the cup

product (for the detail, see [7]). For this reason, when X = X̄, we write by abuse of notation

Ψ(z) = z · Y for z ∈ Hp(X;S).

In the rest of this paper we denote by X a Jacobian variety of dimension two: X = C2/(Z2+

τZ2). Let P be a holomorphic line bundle on X with c1(P ) = 0. Let f(z1, z2) be an arbitrary

global meromorphic section over X of the line bundle P . By the Appell-Humbert theorem,

we may assume without loss of generality that f(z1, z2) satisfies the following transformation

formulas:

f(z1 + 1, z2) = e−2πiαf(z1, z2),

f(z1, z2 + 1) = e−2πiβf(z1, z2),

f(z1 + τ11, z2 + τ21) = e2πiγf(z1, z2),

f(z1 + τ12, z2 + τ22) = e2πiδf(z1, z2),

where α, β, γ, δ denote real numbers depending only on the line bundle P , not on global mero-

morphic sections. Let OX(P ) denote the sheaf of local sections of P .

Lemma 2.2. Let Γ (X,OX(P )) be the vector space of sections of the sheaf OX(P ) over X. A

necessary and sufficient condition for Γ (X,OX(P )) ̸= 0 is that the constants α, β, γ, δ are all

integers. Moreover, in this case we have Γ (X,OX(P )) = C.

Proof. Let f(z1, z2) be a section in Γ (X,OX(P )). We set g(z1, z2) = e2πiαz1+2πiβz2f(z1, z2).

Then we have

g(z1 + 1, z2) = g(z1, z2 + 1) = g(z1, z2),(2.1)

g(z1 + τ11, z2 + τ21) = e2πiατ11+2πiβτ21+2πiγg(z1, z2),(2.2)

g(z1 + τ12, z2 + τ22) = e2πiατ12+2πiβτ22+2πiδg(z1, z2).(2.3)

The periodicity (2.1) allows us to expand g(z1, z2) into a Fourier expansion of the form

(2.4) g(z1, z2) =
∑

(µ,ν)∈Z2

cµνe
2µπiz1+2νπiz2

where cµν ’s denote constants. Combining (2.2) with (2.4) we have the relation

(2.5) cµνe
2µπiτ11+2νπiτ21 = cµνe

2πiατ11+2πiβτ21+2πiγ
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for each (µ, ν) ∈ Z2. Similarly, combining (2.3) with (2.4), we have

(2.6) cµνe
2µπiτ12+2νπiτ22 = cµνe

2πiατ12+2πiβτ22+2πiδ

for each (µ, ν) ∈ Z2. Then we see that g(z1, z2) ̸= 0 if and only if there exists a pair (µ0, ν0) ∈ Z2

such that

(2.7) (µ0 − α)τ11 + (ν0 − β)τ21 − γ ∈ Z

and

(2.8) (µ0 − α)τ12 + (ν0 − β)τ22 − δ ∈ Z.

Since the imaginary part of the matrix τ is positive definite, it follows from (2.7) and (2.8) that

µ0 − α = ν0 − β = 0 and γ, δ ∈ Z. Therefore we have by (2.4) g(z1, z2) = cµ0ν0e
2µ0πiz1+2ν0πiz2

with an arbitrary constant cµ0ν0 . This completes the proof of Lemma 2.2.

Let N be an integer such that N ≥ 1. Let a1 . . . , a2N , b1, . . . , b2N be real numbers. We denote

by Dk the theta divisor corresponding to the theta function θ

[
a2k−1 a2k

b2k−1 b2k

]
(z1, z2; τ), k = 1, . . . N .

We assume that the N theta divisors Dk’s are different from each other, and that the divisor

D =
∑N
k=1Dk has normal crossings. We set M = X −D, which is an open dense subset of X.

Lemma 2.3. χ(M) = N(N + 1).

Proof. Since X is homeomorphic to the direct product S1 × S1 × S1 × S1, it follows from

χ(S1) = 0 that χ(X) = 0, and therefore χ(M) = χ(X) − χ(D) = −χ(D). We set
◦
D1= D1.

For k ≥ 2 let
◦
Dk be the open subset of Dk obtained by removing from Dk 2k − 2 intersection

points with D1 ∪ · · · ∪ Dk−1. Since D coincides with the disjoint union ∪Nk=1

◦
Dk, we have

χ(D) =
∑N
k=1 χ(

◦
Dk). Since χ(

◦
Dk) = −2k, we have χ(M) = −

∑N
k=1 χ(

◦
Dk) = N(N + 1).

Let P be the locally constant sheaf over X associated to the holomorphic line bundle P with

c1(P ) = 0 introduced above. P has the one-dimensional complex vector space C as stalk. Let P̌
be the dual of P: P̌ = Hom(P,C). P̌ is also a locally constant sheaf. Let P̌|M be the restriction

of P̌ to M . Our study of the homology groups Hp(M, P̌|M) consists of two cases. In the first

case we study the homology with coefficients in the constant sheaf P̌ = C. To this end it suffices

to consider the case where the coefficients are in Z.

Proposition 2.4. H4(M,Z) = H3(M,Z) = 0, H2(M,Z) ∼= ZN2+2N+2, H1(M,Z) ∼= ZN+3,

H0(M,Z) ∼= Z.

Proof. We proceed by induction on N . Assume that N = 1. We have D = D1 andM = X−D1.

By Proposition 2.1 we have the following exact sequence:

0 → H4(M,Z) → H4(X,Z) → H2(D,Z) → H3(M,Z) → H3(X,Z) → H1(D,Z)

→ H2(M,Z) → H2(X,Z) → H0(D,Z) → H1(M,Z) → H1(X,Z) → 0.

Since H4(X,Z) ∼= H2(D,Z) ∼= Z, it follows immediately that H4(M,Z) = 0. The mapping

H3(X,Z) → H1(D,Z) is given by u → u · D for u ∈ H3(X,Z), and it is, by Lemma 1.7, an

8



isomorphism. Namely we have H3(X,Z) ∼= H1(D,Z) ∼= Z4, and it follows that H3(M,Z) = 0.

Similarly the mapping H2(X,Z) → H0(D,Z) is given by u → u · D for u ∈ H2(X,Z), and

it is, by Lemma 1.7, a surjection. So we have the short exact sequence 0 → H2(M,Z) →
H2(X,Z) → H0(D,Z) → 0. By Lemma 1.3 we can choose as a basis of H2(X,Z) λ1 ∗ λ2, λ1 ∗
λ3, λ1 ∗ λ4, λ2 ∗ λ3, λ2 ∗ λ4, λ3 ∗ λ4. It follows that H2(M,Z) is of rank 5 and is generated by

λ1 ∗λ2, λ2 ∗λ3, λ3 ∗λ4, λ4 ∗λ1, λ1 ∗λ3−λ2 ∗λ4. In fact we can construct a 2-cycle defining the

homology class λ1 ∗ λ3 − λ2 ∗ λ4 (cf. Remark 2.2). Finally we have H1(M,Z) ∼= H1(X,Z) ∼= Z4

and H0(M,Z) ∼= Z. The generators λ1, λ2, λ3, λ4 of H1(X,Z) also generate H1(M,Z). The

proposition in the case where N = 1 is thus proved.

Remark 2.2. Let us construct a 2-cycle defining the homology class λ1 ∗λ3−λ2 ∗λ4 ∈ H2(M,Z).

By abuse of notation we regard λ1 ∗ λ3, λ2 ∗ λ4 ∈ Z2(X,Z). By homologously translating

them appropriately, we may assume that there exists a unique point p ∈ X such that λ1 ∗ λ3 ∩
λ2 ∗ λ4 ∩ D = {p} where D = D1 is also regarded as a 2-cycle in X. Then we can regard

λ1 ∗ λ3 − λ2 ∗ λ4 = (λ1 ∗ λ3 − {p}) − (λ2 ∗ λ4 − {p}) set-theoretically. Let D13 be a small

open disk centered at p in the torus λ1 ∗ λ3, and D24 a small open disk centered at p in the

torus λ2 ∗ λ4. Obviously, D13 and D24 intersect transversely at p. We set λ13 = ∂D13 and

λ24 = ∂D24. Then there exists a cylinder Z such that ∂Z = λ13 − λ24. In fact we identify the

point p with the origin of C2, and λ13, λ24 with the circles (eiφ, 0), (0, eiφ) (0 ≤ φ ≤ 2π) in

C2, respectively. As a cylinder Z with the desired property we can take the 2-dimensional real

surface with boundary defined by

(
cos θ − sin θ

sin θ cos θ

)(
eiφ

0

)
, 0 ≤ θ ≤ π

2 , 0 ≤ φ ≤ 2π. Then the

2-cycle λ1 ∗λ3−λ2 ∗λ4 = (λ1 ∗λ3−{p})−(λ2 ∗λ4−{p}) in Z2(M,Z) is homotopically equivalent

to the closed surface (λ1 ∗ λ3 −D13)−Z − (λ2 ∗ λ4 −D24) of genus 2 in M . In what follows, we

denote this surface by S.

Let us complete the proof of Proposition 2.4. Assume that N ≥ 2. Inductively we set Xk =

Xk−1−
◦
Dk for every k such that 1 ≤ k ≤ N , where X0 = X. Assume that the proposition holds

for M = Xk where 1 ≤ k ≤ N − 1. By Proposition 2.1 we have the following exact sequence:

0 → H4(XN ,Z) → H4(XN−1,Z) → H2(
◦
DN ,Z) → H3(XN ,Z)

→ H3(XN−1,Z) → H1(
◦
DN ,Z) → H2(XN ,Z) → H2(XN−1,Z)

→ H0(
◦
DN ,Z) → H1(XN ,Z) → H1(XN−1,Z) → 0.

Since H4(XN−1,Z) = H2(
◦
DN ,Z) = H3(XN−1,Z) = 0, we have H4(XN ,Z) = H3(XN ,Z) = 0.

Since any 2-cycle in XN−1 does not intersect with DN , the mapping H2(XN−1,Z) → H0(
◦
DN ,Z)

is the zero mapping, and so we have the short exact sequence 0 → H1(
◦
DN ,Z) → H2(XN ,Z) →

H2(XN−1,Z) → 0. Since we can regard elements of H2(XN−1,Z) as those of H2(XN ,Z), we

have an inclusion H2(XN−1,Z) ↪→ H2(XN ,Z), and therefore the short exact sequence above is

split. Then we have H2(XN ,Z) ∼= H1(
◦
DN ,Z)⊕H2(XN−1,Z) ∼= Z2N+1⊕ZN2+1 ∼= ZN2+2N+2.

Finally we have the short exact sequence 0 → H0(
◦
DN ,Z) → H1(XN ,Z) → H1(XN−1,Z) → 0.

Since this sequense is also split, we haveH1(XN ,Z) ∼= H0(
◦
DN ,Z)⊕H1(XN−1,Z) ∼= Z⊕ZN+2 ∼=

ZN+3. Thus, Proposition 2.4 is proved completely.
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Remark 2.3. It follows from the short exact sequence 0 → H1(
◦
DN ,Z) → H2(XN ,Z) →

H2(XN−1,Z) → 0 that the union of a basis of H2(XN−1,Z) with the image of a basis of

H1(
◦
DN ,Z) by the injection H1(

◦
DN ,Z) → H2(XN ,Z) forms a basis of H2(XN ,Z). We set

◦
DN= DN −{qN1, q

′
N1, qN2, q

′
N2, . . . , qN,N−1, q

′
N,N−1}, where DN ∩Di = {qNi, q′Ni}. Let γNi and

γ′Ni be 1-cycles on
◦
DN turning once around qNi and q

′
Ni, respectively, in the counterclockwise

direction. Then we have γN1 + γ′N1 + γN2 + γ′N2 + · · · + γN,N−1 + γ′N,N−1 = 0. The homology

classes of H1(
◦
DN ,Z) defined by the four global cycles λ1, λ2, λ3, λ4 and 2N − 3 cycles among

γN1, γ
′
N1, γN2, γ

′
N2, . . . , γN,N−1, γ

′
N,N−1 form a basis of H1(

◦
DN ,Z). We denote by λ

(N)
i the im-

age of λi by the injection H1(
◦
DN ,Z) → H2(XN ,Z), and by TNi and T ′

Ni the images of γNi

and γ′Ni respectively. Since (λ1 ∗ λ2 ∗ λ4) ·D = λ1 by Lemma 1.7, we may set λ
(N)
1 = λ1 ∗ λ(N)

24 ,

where λ
(N)
24 denotes a small circle on λ2 ∗ λ4 centered at p ∈ λ2 ∗ λ4 ∩ DN . Similarly we have

λ
(N)
2 = λ2 ∗ λ(N)

13 , λ
(N)
3 = λ3 ∗ λ(N)

24 , λ
(N)
4 = λ4 ∗ λ(N)

13 . Note that λ
(N)
i is a torus, i.e., a real

2-dimensional surface of genus one. Let γiN and γ′iN be 1-cycles on Di turning once around

qNi and q
′
Ni, respectively, in the counterclockwise direction. Then we may set TNi = γNi ∗ γiN ,

T ′
Ni = γ′Ni ∗ γ′iN , which are also tori.

Remark 2.4. Similarly, we may take as a basis of H1(XN ,Z) the union of a basis of H1(XN−1,Z)

with the image of a single generator of H0(
◦
DN ,Z) by the injection H0(

◦
DN ,Z) → H1(XN ,Z).

This image is realized by, for an arbitrary fixed point p ∈
◦
DN (which determines a homology class

generating H0(
◦
DN ,Z)), the homology class of H1(XN ,Z) which is defined by the boundary of

a small disk centered at p and transverse to
◦
DN .

The proof above of Proposition 2.4 depends on ordering of the theta divisors D1, . . . , DN . If

we adopt new ordering to prove the proposition, then we obtain another new basis of H2(XN ,Z).

Let us study the relations between bases of H2(XN ,Z). For i ̸= j we set Di ∩Dj = {qij , q′ij},
where we understand that qij = qji and q

′
ij = q′ji. Moreover we set

D′
i = Di − {qi1, q′i1, qi2, q′i2, . . . , qi,i−1, q

′
i,i−1, qi,i+1, q

′
i,i+1, . . . , qiN , q

′
iN}. Let γij and γ′ij be 1-

cycles on D′
i turning once around qij and q′ij , respectively, in the counterclockwise direction.

Then we have γi1 + γ′i1 + γi2 + γ′i2 + · · ·+ γi,i−1 + γ′i,i−1 + γi,i+1 + γ′i,i+1 + · · ·+ γiN + γ′iN = 0.

The homology classes of H1(D
′
i,Z) defined by the four global cycles λ1, λ2, λ3, λ4 and 2N − 3

cycles among γi1, γ
′
i1, . . . , γi,i−1, γ

′
i,i−1, γi,i+1, γ

′
i,i+1, . . . , γiN , γ

′
iN form a basis of H1(D

′
i,Z). We

denote by λ
(i)
k the image of λk by the injection H1(D

′
i,Z) → H2(XN ,Z), and by Tij and T ′

ij

(i ̸= j) the images of γij and γ
′
ij respectively. As is easily seen, the 2-cycles λ

(i)
k , Tij , T

′
ij are tori,

and we have by construction Tij = −Tji and T ′
ij = −T ′

ji. Consequently, the group H2(M,Z) is

generated by λ1 ∗ λ2, λ2 ∗ λ3, λ3 ∗ λ4, λ4 ∗ λ1, S(= λ1 ∗ λ3 − λ2 ∗ λ4), λ(i)k , Tij , T
′
ij .

Proposition 2.5. The relations in H2(M,Z) satisfied by the generators above are as follows:

N∑
i=1

λ
(i)
k = 0 for k = 1, 2, 3, 4;(2.9) ∑

1≤j≤N, j ̸=i

(Tij + T ′
ij) = 0 for i = 1, . . . , N.(2.10)
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Proof. For each i, formula (2.10) follows from the relation
∑

1≤j≤N, j ̸=i(γij + γ′ij) = 0 on D′
i. In

order to prove formula (2.9), it suffices to consider the case where k = 1. In this case we may set

λ
(i)
1 = λ1 ∗λ(i)24 , where λ

(i)
24 denotes a small circle on λ2 ∗λ4 centered at the point pi ∈ λ2 ∗λ4∩Di.

Formula (2.9) follows from the relation
∑N
i=1 λ

(i)
24 = 0 on the torus λ2 ∗ λ4.

Let us now proceed to the second case where we study the homology with coefficients in a

locally constant sheaf P̌ different from constant sheaves. Let f(z1, z2) be a global meromorphic

section over X of the line bundle associated to P̌. By Lemma 2.2 we may assume that there

exist four real numbers α, β, γ, δ, not all of which are integers, depending only on the line bundle

of P̌, not on global meromorphic sections, such that f(z1, z2) satisfies the following formulas:

f(z1 + 1, z2) = e2πiαf(z1, z2),

f(z1, z2 + 1) = e2πiβf(z1, z2),

f(z1 + τ11, z2 + τ21) = e−2πiγf(z1, z2),

f(z1 + τ12, z2 + τ22) = e−2πiδf(z1, z2).

We regard the complex torus X as a cell complex with respect to the cellular decomposition given

in Lemma 1.3. Let Ck(X, P̌) be the group of cellular k-chains of the cell complex X with coeffi-

cients in the locally constant sheaf P̌. By the definition of cell-chain, we have an identification

Ck(X, P̌) ∼=
∑
λ∈Λk

Hk(D
k
λ, S

k−1
λ ;Z) ⊗ P̌λ, where Λk denotes the set of indices parametrizing

all the k-cells in X, Dk
λ and Sk−1

λ for each λ ∈ Λk denote copies of the k-dimensional disk Dk

and the (k − 1)-dimensional sphere Sk−1, respectively, and P̌λ the restriction of P̌ to the k-cell

in X indexed by λ ∈ Λk ([7]). As usual we set Zk(X, P̌) = Ker
[
Ck(X, P̌)

∂−→ Ck−1(X, P̌)
]
and

Bk(X, P̌) = Im
[
Ck+1(X, P̌)

∂−→ Ck(X, P̌)
]
. If, by abuse of notation, we regard λ1, λ2, λ3, λ4 as

elements of C1(X, P̌), we have the following formulas: ∂λ1 = (e2πiα − 1)•, ∂λ2 = (e2πiβ − 1)•,
∂λ3 = (e−2πiγ−1)•, ∂λ4 = (e−2πiδ−1)•, where • denotes a unique element generating C0(X, P̌).

Lemma 2.6. For all p ≥ 0, Hp(X, P̌) = 0.

Proof. Regarding X = λ1 ∗ λ2 ∗ λ3 ∗ λ4 as a generator of C4(X, P̌), we have ∂X ̸= 0, from which

it follows that H4(X, P̌) = 0. The group C3(X, P̌) is generated by the four elements λ1 ∗λ2 ∗λ3,
λ1 ∗ λ2 ∗ λ4, λ1 ∗ λ3 ∗ λ4, λ2 ∗ λ3 ∗ λ4. By simple calculation we see that a linear combination

x(λ1 ∗λ2 ∗λ3)+y(λ1 ∗λ2 ∗λ4)+z(λ1 ∗λ3 ∗λ4)+w(λ2 ∗λ3 ∗λ4) with constants x, y, z, w belongs to

Z3(X, P̌) if and only if x = A(−e−2πiδ+1), y = A(e−2πiγ−1), z = A(−e2πiβ+1), w = A(e2πiα−1)

with an arbitrary constant A. Since (−e−2πiδ + 1)(λ1 ∗ λ2 ∗ λ3) + (e−2πiγ − 1)(λ1 ∗ λ2 ∗ λ4) +
(−e2πiβ +1)(λ1 ∗λ3 ∗λ4)+ (e2πiα− 1)(λ2 ∗λ3 ∗λ4) = ∂(λ1 ∗λ2 ∗λ3 ∗λ4), we have H3(X, P̌) = 0.

The group C2(X, P̌) is generated by the six elements λ1 ∗ λ2, λ1 ∗ λ3, λ1 ∗ λ4, λ2 ∗ λ3, λ2 ∗ λ4,
λ3∗λ4. A linear combination u(λ1∗λ2)+v(λ1∗λ3)+w(λ1∗λ4)+x(λ2∗λ3)+y(λ2∗λ4)+z(λ3∗λ4)
with constants u, v, w, x, y, z belongs to Z2(X, P̌) if and only if u, v, w, x, y, z satisfy the following
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linear equations

(e2πiβ − 1)u+ (e−2πiγ − 1)v + (e−2πiδ − 1)w = 0,

(e2πiα − 1)u− (e−2πiγ − 1)x− (e−2πiδ − 1)y = 0,

(e2πiα − 1)v + (e2πiβ − 1)x− (e−2πiδ − 1)z = 0,

(e2πiα − 1)w + (e2πiβ − 1)y + (e−2πiγ − 1)z = 0.

Since not all of α, β, γ, δ are integers, we have by easy calculation u(λ1 ∗λ2)+v(λ1 ∗λ3)+w(λ1 ∗
λ4) + x(λ2 ∗ λ3) + y(λ2 ∗ λ4) + z(λ3 ∗ λ4) ∈ B2(X, P̌) for an arbitrary solution (u, v, w, x, y, z)

of the linear equations above. Therefore H2(X, P̌) = 0. The group C1(X, P̌) is generated by

λ1, λ2, λ3, λ4. A linear combination xλ1 + yλ2 + zλ3 + wλ4 with constants x, y, z, w belongs

to Z1(X, P̌) if and only if x, y, z, w satisfy a single linear equation (e2πiα − 1)x+ (e2πiβ − 1)y +

(e−2πiγ −1)z+(e−2πiδ−1)w = 0. For an arbitrary solution (x, y, z, w) of this linear equation we

have xλ1 + yλ2 + zλ3 +wλ4 ∈ B1(X, P̌), and therefore H1(X, P̌) = 0. Obviously H0(X, P̌) = 0.

We regard the theta divisor D1 as a cellular subcomplex of X. Then we have

Lemma 2.7. Hp(D1, P̌|D1) = 0 if p ̸= 1; H1(D1, P̌|D1) ∼= C2.

Proof. The theta divisor D1 = −λ1∗λ3−λ2∗λ4 generates the group C2(D1, P̌|D1). Since ∂D1 ̸=
0, we have H2(D1, P̌|D1) = 0. The group C1(D1, P̌|D1) is generated by λ1, λ2, λ3, λ4. A linear

combination xλ1+yλ2+zλ3+wλ4 with constants x, y, z, w belongs to Z1(D1, P̌|D1) if and only

if x, y, z, w satisfy a linear equation (e2πiα−1)x+(e2πiβ−1)y+(e−2πiγ−1)z+(e−2πiδ−1)w = 0.

Suppose that two of α, β, γ, δ, for examle γ and δ, are not integers. Then, by using the preceding

linear equation, we have

xλ1 + yλ2 + zλ3 + wλ4 =
x

e−2πiδ − 1

{
(e−2πiδ − 1)λ1 − (e2πiα − 1)λ4

}
+

y

e−2πiδ − 1

{
(e−2πiδ − 1)λ2 − (e2πiβ − 1)λ4

}
+

z

e−2πiδ − 1

{
(e−2πiδ − 1)λ3 − (e−2πiγ − 1)λ4

}
.

Since (e−2πiδ − 1)λ2 − (e2πiβ − 1)λ4 = (e2πiα − 1)λ3 − (e−2πiγ − 1)λ1 + ∂D1, we have

xλ1 + yλ2 + zλ3 + wλ4 ≡ x

e−2πiδ − 1

{
(e−2πiδ − 1)λ1 − (e2πiα − 1)λ4

}
+

y

e−2πiδ − 1

{
(e2πiα − 1)λ3 − (e−2πiγ − 1)λ1

}
+

z

e−2πiδ − 1

{
(e−2πiδ − 1)λ3 − (e−2πiγ − 1)λ4

}
mod B1(D1, P̌|D1).

Noting that

(e−2πiδ − 1)λ1 − (e2πiα − 1)λ4 =
e−2πiδ − 1

e−2πiγ − 1
{(e−2πiγ − 1)λ1 − (e2πiα − 1)λ3}

+
e2πiα − 1

e−2πiγ − 1
{(e−2πiδ − 1)λ3 − (e−2πiγ − 1)λ4},

we see that the 1-cycle xλ1 + yλ2 + zλ3 +wλ4 is congruent modulo B1(D1, P̌|D1) with a linear

combination of the two 1-cycles (e−2πiγ−1)λ1−(e2πiα−1)λ3 and (e−2πiδ−1)λ3−(e−2πiγ−1)λ4
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which are not homologous to each other. Therefore we have H1(D1, P̌|D1) ∼= C2 in this case.

Next, suppose that only δ is not an integer and the others are integers. By the linear combination

above satisfied by α, β, γ, δ, we have w = 0. Since ∂D1 = (e−2πiδ − 1)λ2, we see that the 1-cycle

xλ1 + yλ2 + zλ3 is congruent modulo B1(D1, P̌|D1) with xλ1 + zλ3, where λ1 and λ3 are not

homologous to each other. Therefore we have H1(D1, P̌|D1) ∼= C2 in this case, too. Obviously

we have H0(D1, P̌|D1) = 0.

Using the preceding two lemmas, we shall prove the following

Proposition 2.8. Hp(M, P̌|M) = 0 if p ̸= 2; H2(M, P̌|M) ∼= CN(N+1).

Proof. Induction on N . Assume that N = 1. We have D = D1 andM = X−D1. By Proposition

2.1 we have the following exact sequence:

0 → H4(M, P̌|M) → H4(X, P̌) → H2(D, P̌|D) → H3(M, P̌|M) → H3(X, P̌)

→ H1(D, P̌|D) → H2(M, P̌|M) → H2(X, P̌) → H0(D, P̌|D) → H1(M, P̌|M)

→ H1(X, P̌) → 0.

By Lemmas 2.6 and 2.7 we haveH4(M, P̌|M) = H3(M, P̌|M) = H1(M, P̌|M) = 0 andH2(M, P̌|M) ∼=
H1(D, P̌|D) ∼= C2. In addition obviously we have H0(M, P̌|M) = 0.

Remark 2.5. Suppose that γ and δ are not integers. As is seen in the proof of Lemma 2.7, the

homology classes defined by (e−2πiγ − 1)λ1 − (e2πiα − 1)λ3 and (e−2πiδ − 1)λ3 − (e−2πiγ − 1)λ4

form a basis of H1(D, P̌|D). The image of (e−2πiγ − 1)λ1 − (e2πiα − 1)λ3 by the isomorphism

H1(D, P̌|D) → H2(M, P̌|M) is obviously given by (e−2πiγ − 1)λ
(1)
1 − (e2πiα − 1)λ

(1)
3 , where

λ
(1)
1 = λ1 ∗ λ(1)24 and λ

(1)
3 = λ3 ∗ λ(1)24 . To construct the image of (e−2πiδ − 1)λ3 − (e−2πiγ − 1)λ4,

let us recall the cylinder Z defined in Remark 2.2 satisfying ∂Z = λ
(1)
13 − λ

(1)
24 . Then the image

of (e−2πiδ − 1)λ3 − (e−2πiγ − 1)λ4 by the isomorphism H1(D, P̌|D) → H2(M, P̌|M) is given by

(e−2πiδ − 1)λ
(1)
3 − (e−2πiγ − 1)λ

(1)
4 + (e−2πiγ − 1)(e−2πiδ − 1)Z. We can also deal with the other

cases for α, β, γ, δ similarly.

In order to continue proving Proposition 2.8 we need one more lemma:

Lemma 2.9. For N ≥ 2, we have H2(
◦
DN , P̌|

◦
DN ) = H0(

◦
DN , P̌|

◦
DN ) = 0 and H1(

◦
DN , P̌|

◦
DN

) ∼= C2N .

Proof. The equality H2(
◦
DN , P̌|

◦
DN ) = H0(

◦
DN , P̌|

◦
DN ) = 0 is obvious. Let ∆ be the closed

subset of DN which is obtained by deleting from DN mutually disjoint 2N − 2 small open disks

centered at the points of {q1, q′1, · · · , qN−1, q
′
N−1}. Then we haveH1(

◦
DN , P̌|

◦
DN ) = H1(∆, P̌|∆).

Let U be a connected and simply connected open subset of DN with a smooth boundary which

contains the closure of the union of those 2N − 2 open disks above, and V be the subset of U

which is obtained by deleting from U those 2N−2 open disks above. Moreover we set ∆1 = ∆−V
and ∆2 = V̄ (the closure of V ). Then we have ∆ = ∆1 ∪∆2, and ∆1 ∩∆2 is homeomorphic to

the one-dimensional circle S1. Let us consider the Mayer-Vietoris exact sequence:

0 → H1(∆1 ∩∆2, P̌|∆1 ∩∆2) → H1(∆1, P̌|∆1)⊕H1(∆2, P̌|∆2) → H1(∆, P̌|∆)

→ H0(∆1 ∩∆2, P̌|∆1 ∩∆2) → H0(∆1, P̌|∆1)⊕H0(∆2, P̌|∆2) → 0.
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Obviously we have H1(∆1∩∆2, P̌|∆1∩∆2) ∼= C. Since we may regard DN = −λ1 ∗λ3−λ2 ∗λ4,
we have ∂DN = (e−2πiγ − 1)λ1 − (e2πiα − 1)λ3 + (e−2πiδ − 1)λ2 − (e2πiβ − 1)λ4. It follows that

∂∆1 = ∂DN − (∆1 ∩∆2) = (e−2πiγ − 1)λ1 − (e2πiα − 1)λ3 + (e−2πiδ − 1)λ2 − (e2πiβ − 1)λ4 −
(∆1 ∩∆2), where by abuse of notation ∆1 ∩∆2 denotes a 1-cycle which defines a generator of

H1(∆1∩∆2, P̌|∆1∩∆2) with a suitable orientation. Then we see that the group C1(∆1, P̌|∆1) is

generated by λ1, λ2, λ3, λ4. A linear combination xλ1+ yλ2+ zλ3+wλ4 with constants x, y, z, w

belongs to Z1(∆1, P̌|∆1) if and only if x, y, z, w satisfy a linear equation (e2πiα − 1)x+ (e2πiβ −
1)y + (e−2πiγ − 1)z + (e−2πiδ − 1)w = 0. Suppose that δ is not an integer. Then, by using the

preceding linear relation, we have

xλ1 + yλ2 + zλ3 + wλ4 =
x

e−2πiδ − 1

{
(e−2πiδ − 1)λ1 − (e2πiα − 1)λ4

}
+

y

e−2πiδ − 1

{
(e−2πiδ − 1)λ2 − (e2πiβ − 1)λ4

}
+

z

e−2πiδ − 1

{
(e−2πiδ − 1)λ3 − (e−2πiγ − 1)λ4

}
,

from which it follows thatH1(∆1, P̌|∆1) ∼= C3. We can deal with the other cases for α, β, γ, δ sim-

ilarly. Since the 2N−2 1-cycles γN1, γ
′
N1, . . . , γN,N−1, γ

′
N,N−1 generate the group H1(∆2, P̌|∆2),

we haveH1(∆2, P̌|∆2) ∼= C2N−2. Obviously we haveH0(∆1∩∆2, P̌|∆1∩∆2) ∼= C,H0(∆1, P̌|∆1) =

0, H0(∆2, P̌|∆2) ∼= C. Then we have an isomorphismH0(∆1∩∆2, P̌|∆1∩∆2) ∼= H0(∆1, P̌|∆1)⊕
H0(∆2, P̌|∆2), and by Mayer-Vietoris sequence the short exact sequence 0 → H1(∆1∩∆2, P̌|∆1∩
∆2) → H1(∆1, P̌|∆1) ⊕ H1(∆2, P̌|∆2) → H1(∆, P̌|∆) → 0, from which it follows immediately

that H1(
◦
DN , P̌|

◦
DN ) ∼= H1(∆, P̌|∆) ∼= C2N . Lemma 2.9 is proved.

Let us complete the proof of Proposition 2.8. Assume that N ≥ 2 and the proposition holds

for M = Xk where 1 ≤ k ≤ N − 1. By Proposition 2.1 we have the following exact sequence:

0 → H4(XN , P̌|XN ) → H4(XN−1, P̌|XN−1) → H2(
◦
DN , P̌|

◦
DN )

→ H3(XN , P̌|XN ) → H3(XN−1, P̌|XN−1) → H1(
◦
DN , P̌|

◦
DN )

→ H2(XN , P̌|XN ) → H2(XN−1, P̌|XN−1) → H0(
◦
DN , P̌|

◦
DN )

→ H1(XN , P̌|XN ) → H1(XN−1, P̌|XN−1) → 0.

By hypothesis we have H4(XN−1, P̌|XN−1) = H3(XN−1, P̌|XN−1) = H1(XN−1, P̌|XN−1) =

0. By Lemma 2.9 we have H2(
◦
DN , P̌|

◦
DN ) = H0(

◦
DN , P̌|

◦
DN ) = 0. Then it follows from

the exact sequence that H4(XN , P̌|XN ) = H3(XN , P̌|XN ) = H1(XN , P̌|XN ) = 0, and the

short exact sequence 0 → H1(
◦
DN , P̌|

◦
DN ) → H2(XN , P̌|XN ) → H2(XN−1, P̌|XN−1) → 0

holds. By Lemma 2.9 we have H1(
◦
DN , P̌|

◦
DN ) ∼= C2N . Moreover we may regard the group

H2(XN−1, P̌|XN−1) ∼= C(N−1)N as a subgroup of H2(XN , P̌|XN ). Therefore it follows by the

exact sequence that H2(XN , P̌|XN ) ∼= H1(
◦
DN , P̌|

◦
DN )⊕H2(XN−1, P̌|XN−1) ∼= CN(N+1). Ob-

viously we have H0(XN , P̌|XN ) = 0, and Proposition 2.8 is proved completely.

Remark 2.6. It follows from the short exact sequence 0 → H1(
◦
DN , P̌|

◦
DN ) → H2(XN , P̌|XN ) →

H2(XN−1, P̌|XN−1) → 0 that the union of a basis of H2(XN−1, P̌|XN−1) with the image of

a basis of H1(
◦
DN , P̌|

◦
DN ) by the injection H1(

◦
DN , P̌|

◦
DN ) → H2(XN , P̌|XN ) forms a basis

of H2(XN , P̌|XN ). For simplicity we assume that δ is not an integer. The other cases would
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be also treated similarly. Let Λ14,Λ24,Λ34 be the homology classes of H1(
◦
DN , P̌|

◦
DN ) defined

respectively by the three 1-cycles (e−2πiδ − 1)λ1 − (e2πiα − 1)λ4, (e−2πiδ − 1)λ2 − (e2πiβ −
1)λ4, (e−2πiδ − 1)λ3 − (e−2πiγ − 1)λ4. By abuse of notation we denote the homology classes

of H1(
◦
DN , P̌|

◦
DN ) defined by γN1, γ

′
N1, . . . , γN,N−1, γ

′
N,N−1 by the same symbols. Then the

2N + 1 homology classes Λ14,Λ24,Λ34, γN1, γ
′
N1, . . . , γN,N−1, γ

′
N,N−1 generate H1(

◦
DN , P̌|

◦
DN ),

and satisfy a single equality

e−2πiγ − 1

e−2πiδ − 1
Λ14 −

e2πiα − 1

e−2πiδ − 1
Λ34 + Λ24 +

N−1∑
i=1

(γNi + γ′Ni) = 0.

Therefore 2N homology classes among those 2N + 1 homology classes form a basis of H1(
◦
DN

, P̌|
◦
DN ). The images of Λ14,Λ24,Λ34 by the injection H1(

◦
DN , P̌|

◦
DN ) → H2(XN , P̌|XN ) are

constructed in the same way as in Remark 2.5. The images of γNi and γ
′
Ni coincide respectively

with TNi and T
′
Ni given in Remark 2.3.

The proof above of Proposition 2.8 depends on ordering of the theta divisors D1, . . . , DN . If we

adopt new ordering to prove the proposition, then we obtain another new basis ofH2(XN , P̌|XN ).

Let us study the relations between bases of H2(XN , P̌|XN ). For simplicity we assume that δ

is not an integer. For i such that 1 ≤ i ≤ N , the group H1(D
′
i, P̌|D′

i) is generated by 2N + 1

homology classes Λ14, Λ24, Λ34, γi1, γ
′
i1, . . . , γi,i−1, γ

′
i,i−1, γi,i+1, γ

′
i,i+1, . . . , γi,N , γ′i,N , which

satisfy a single equation

e−2πiγ − 1

e−2πiδ − 1
Λ14 −

e2πiα − 1

e−2πiδ − 1
Λ34 + Λ24 +

∑
1≤j≤N,j ̸=i

(γij + γ′ij) = 0.

We denote by Λ
(i)
14 ,Λ

(i)
24 ,Λ

(i)
34 the images of Λ14,Λ24,Λ34, respectively, by the injectionH1(D

′
i, P̌|D′

i) →
H2(XN , P̌|XN ). We denote by Tij and T

′
ij (i ̸= j) the images of γij and γ

′
ij , respectively, by the

injection H1(D
′
i, P̌|D′

i) → H2(XN , P̌|XN ). Then the group H2(XN , P̌|XN ) is generated by the

2N2 +N homology classes Λ
(i)
14 ,Λ

(i)
24 ,Λ

(i)
34 (i = 1, . . . , N), Tij , T

′
ij (i ̸= j). Obviously we have the

following

Proposition 2.10. Assume that δ is not an integer. Then the preceding 2N2 + N generators

satisfy the following N2 equalities:

Tij = −Tji, T ′
ij = −T ′

ji (i ̸= j);

e−2πiγ − 1

e−2πiδ − 1
Λ
(i)
14 − e2πiα − 1

e−2πiδ − 1
Λ
(i)
34 + Λ

(i)
24 +

∑
1≤j≤N,j ̸=i

(Tij + T ′
ij) = 0 (i = 1, . . . , N).

§3 Twisted cohomology of the complement of theta divisors

Let N,N ′ be integers such that 2 ≤ N ≤ N ′. Let a1, . . . , a2N ′ , b1, . . . , b2N ′ be real numbers.

We assume that the N ′ theta divisors defined by the equations θ

[
a2k−1 a2k

b2k−1 b2k

]
(z1, z2; τ) = 0,
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k = 1, . . . , N ′, are different from each other. For each k such that 1 ≤ k ≤ N , let Dk be the

theta divisor corresponding to the theta function θ

[
a2k−1 a2k

b2k−1 b2k

]
(z1, z2; τ). We assume that the

divisor D =
∑N
k=1Dk has normal crossings. Let c1, . . . , cN be complex numbers but not integers

such that

(3.1)
N∑
k=1

ck = 0.

Let cN+1, . . . , cN ′ be non-zero integers such that

(3.2)
N ′∑

k=N+1

ck = 0.

We set T1(z1, z2) =
∏N
k=1 θ

[
a2k−1 a2k

b2k−1 b2k

]
(z1, z2; τ)

ck , T2(z1, z2) =
∏N ′

k=N+1 θ

[
a2k−1 a2k

b2k−1 b2k

]
(z1, z2; τ)

ck ,

and T (z1, z2) = T1(z1, z2)T2(z1, z2). Then we have

T (z1 + 1, z2) = eπi
∑N′

k=1 a2k−1ckT (z1, z2),

T (z1, z2 + 1) = eπi
∑N′

k=1 a2kckT (z1, z2),

T (z1 + τ11, z2 + τ21) = e−πi
∑N′

k=1 b2k−1ckT (z1, z2),

T (z1 + τ12, z2 + τ22) = e−πi
∑N′

k=1 b2kckT (z1, z2).

Analogous formulas hold also for T1(z1, z2) and T2(z1, z2). Let L be the locally constant sheaf

of rank one on M = X −D defined by the one-dimensional representation of the fundamental

group π1(M, ∗) by the multivalued function T (z1, z2)
−1. Namely, for a sufficiently small open

subset U ⊂ M we have Γ (U,L) = C(T |U)−1, where T |U denotes a branch of T (z1, z2) over U .

Let UM = {Uµ} be an open covering of M . For every µ let hµ be a fixed branch of T (z1, z2)
−1

over Uµ. Obviously, there is a constant gµν such that hν = gνµhµ on Uµ∩Uν , and we see that the

family {gνµ} satisfies the cocycle condition. For (p, ξµ) ∈ Uµ×C and (q, ξν) ∈ Uν ×C we define

an equivalence relation (p, ξµ) ∼ (q, ξν) by the equations p = q and ξνgνµ = ξµ. Thus we have a

line bundle L on M associated to the multivalued function T (z1, z2)
−1. By similar construction

we have a line bundle L1 on M associated to T1(z1, z2)
−1, and a line bundle P on X associated

to T2(z1, z2)
−1. Note that P belongs to Pic0(X), i.e., P is a line bundle with c1(P ) = 0. If

N = N ′, we regard P as the trivial line bundle C. If N < N ′, a global meromorphic section

f(z1, z2) over X of the line bundle P satisfies

f(z1 + 1, z2) = eπi
∑N′

k=N+1 a2k−1ckf(z1, z2),

f(z1, z2 + 1) = eπi
∑N′

k=N+1 a2kckf(z1, z2),

f(z1 + τ11, z2 + τ21) = e−πi
∑N′

k=N+1 b2k−1ckf(z1, z2),

f(z1 + τ12, z2 + τ22) = e−πi
∑N′

k=N+1 b2kckf(z1, z2).

We denote by P |M the restriction of the line bundle P to M . Then we have L = L1 ⊗ P |M .

Let OM (L) be the sheaf of modules over the structure sheaf OM generated by local sections
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of L. By definition, a local section φ ∈ Γ (U,OM (L)) is identified with a family (φν)ν where

φν ∈ Γ (U ∩Uν ,OM ) with φνgνµ = φµ. We define a sheaf homomorphism of OM (L) to OM ⊗C L
by the correspondence Γ (Uν ,OM ) ∋ φν → φνξ

−1
ν ⊗ ξνhν ∈ Γ (Uν ,OM ⊗ L) where φ = (φν) is a

section of L. Then the homomorphism thus defined gives an isomorphism OM (L) ∼= OM ⊗C L.
Let us consider the exact sequence of sheaves on M :

0 −→ C −→ Ω0
M

d−→ Ω1
M

d−→ Ω2
M

d−→ 0,

where ΩpM denotes the sheaf of holomorphic p-forms on M and Ω0
M = OM . Tensoring L from

the right on this sequence keeps the exactness, and so we have

(3.3) 0 −→ L −→ Ω0
M ⊗C L d⊗1−→ Ω1

M ⊗C L d⊗1−→ Ω2
M ⊗C L d⊗1−→ 0.

Here the operator d ⊗ 1 is a canonical connection in the sense of [3], I, Prop. 2.16. We set

ΩpM (L) = ΩpM ⊗OM OM (L). Then the following diagrams are commutative:

ΩpM ⊗C L d⊗1−−−−→ Ωp+1
M ⊗C L

≃
y y≃

ΩpM (L) −−−−→
d

Ωp+1
M (L)

φξ−1 ⊗ ξh
d⊗17−→ d(φξ−1)⊗ ξh

↕ ↕
φ 7−→

d
dφ = d(φξ−1)ξ

Therefore (3.3) is equivalent to the following exact sequence:

(3.4) 0 −→ L −→ Ω0
M (L)

d−→ Ω1
M (L)

d−→ Ω2
M (L)

d−→ 0.

For an open set U ⊂M and a section φ ∈ Γ (U,ΩpM (L)), there is a section ψ ∈ Γ (U,ΩpM (P |M))

such that φ = (T1|U) · ψ, where T1|U is a branch of T1 defined on U . Then we have a sheaf

isomorphism

ΩpM (P |M)
∼−→ ΩpM (L) ψ 7−→ φ = T1 · ψ

such that the following diagram is commutative:

ΩpM (P |M)
∇−−−−→ Ωp+1

M (P |M)

≃
y y≃

ΩpM (L) −−−−→
d

Ωp+1
M (L)

where ∇ψ = dψ+d(log T1)∧ψ and ∇2 = 0. Note that ∇h1 = 0 for any branch h1 of T−1
1 . Then

the exact sequence (3.4) is equivalent to the following one:

0 −→ L −→ Ω0
M (P |M)

∇−→ Ω1
M (P |M)

∇−→ Ω2
M (P |M)

∇−→ 0.

Since ΩpM (P |M) is a locally free and therefore coherent sheaf on an affine algebraic manifold M ,

we have by Serre’s theorem Hq(M,ΩpM (P |M)) = 0 for p ≥ 0 and q > 0. Therefore it follows

by the standard argument of the de Rham theory ([18]) that Hp(M,L) ∼= Hp
DR(Ω

•
M (P |M),∇).

Obviously Hp(M,L) = 0 if p > 2. We denote the sheaf of complex-valued C∞ differential

forms of type (p, q) on M by EpqM . We set EkM =
∑
p+q=k E

pq
M , the sheaf of complex-valued C∞

differential forms of total degree k on M . Then replacement of the sheaf ΩpM by EpM in the

argument above is valid, and gives us the following exact sequence of sheaves:

0 −→ L −→ E0
M (P |M)

∇−→ E1
M (P |M)

∇−→ E2
M (P |M)

∇−→ 0,
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where EpM (P |M) = EpM ⊗E0
M

E0
M (P |M), and E0

M (P |M) denotes the sheaf of modules over the

sheaf of complex-valued C∞ functions E0
M generated by local sections of the line bundle P |M

over M . Since EpM (P |M) is a soft sheaf over M , we have Hq(M, EpM (P |M)) = 0 for p ≥ 0

and q > 0 ([18], Chap. II). Therefore we have Hp(M,L) ∼= Hp
DR(E•

M (P |M),∇). Let ΩpX⟨D⟩
be the sheaf of p-forms over X with logarithmic pole along D. We have inclusion of sheaves

over X: ΩpX⟨D⟩ ⊂ j∗Ω
p
M ⊂ j∗EpM , where j denotes a natural inclusion mapping of M into

X. We set ΩpX⟨D⟩(P ) = ΩpX⟨D⟩ ⊗OX OX(P ). Since j∗Ω
p
M ⊗OX OX(P ) ∼= j∗Ω

p
M (P |M) and

j∗EpM ⊗E0
X
E0
X(P ) ∼= j∗EpM (P |M), we have ΩpX⟨D⟩(P ) ⊂ j∗Ω

p
M (P |M) ⊂ j∗EpM (P |M). Let us

consider a complex of sheaves of logarithmic forms:

(Ω•
X⟨D⟩(P ),∇) : Ω0

X⟨D⟩(P ) ∇−→ Ω1
X⟨D⟩(P ) ∇−→ Ω2

X⟨D⟩(P ) −→ 0.

The following proposition is an immediate consequence of a result proved by Deligne ([3], II,

Cor. 3.14).

Proposition 3.1. Two complexes of sheaves over X, (Ω•
X⟨D⟩(P ),∇) and (j∗E•

M (P |M),∇), are

quasi-isomorphic to each other.

In Appendix to §3, we will give an elementary, direct proof of this proposition.

Corollary 3.2. Hp(M,L) ∼= Hp(X,Ω•
X⟨D⟩(P ),∇) for all p ≥ 0.

Proof. Since the complexes of sheaves (Ω•
X⟨D⟩(P ),∇) and (j∗E•

M (P |M),∇) are quasi-isomorphic

to each other, their p-th derived objects for a left-exact functor F for each p are isomorphic to

each other ([16]). Especially, if F is the functor of global sections (i.e., F (•) = Γ (X, •)), then
derived objects are turned into hypercohomologies. Namely we have

Hp(X, j∗E•
M (P |M),∇) ∼= Hp(X,Ω•

X⟨D⟩(P ),∇).

Since Hq(X, j∗EpM (P |M)) = Hq(M, EpM (P |M)) = 0 for p ≥ 0 and q > 0, we have

Hp(X, j∗E•
M (P |M),∇) ∼= Hp

DR(X, j∗E
•
M (P |M),∇) = Hp

DR(M, E•
M (P |M),∇) ∼= Hp(M,L),

which proves Corollary 3.2.

Remark 3.1. This corollary is slightly different from Deligne’s Corollary 6.10 in [3], II, §6 because

our locally constant sheaf is not a restriction to M of the locally constant sheaf associated to

the line bundle P .

Proposition 3.3. Hp(M,L) = 0 if p ̸= 2.

This is an immediate consequence of a vanishing theorem of hypercohomology ([5], §2, Cor.
2.13). In Appendix to §3, we will give another elementary proof of this proposition by using the

logarithmic Dolbeault complex.

To study the structure of the non-vanishing cohomology group H2(M,L), let us consider the
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following logarithmic Čech-de Rham complex:

...
...

...xδ xδ xδ
C2(U ,Ω0

X⟨D⟩(P )) ∇−−−−→ C2(U ,Ω1
X⟨D⟩(P )) ∇−−−−→ C2(U ,Ω2

X⟨D⟩(P )) −−−−→ 0xδ xδ xδ
C1(U ,Ω0

X⟨D⟩(P )) ∇−−−−→ C1(U ,Ω1
X⟨D⟩(P )) ∇−−−−→ C1(U ,Ω2

X⟨D⟩(P )) −−−−→ 0xδ xδ xδ
C0(U ,Ω0

X⟨D⟩(P )) ∇−−−−→ C0(U ,Ω1
X⟨D⟩(P )) ∇−−−−→ C0(U ,Ω2

X⟨D⟩(P )) −−−−→ 0,

where U = {Ui} denotes an open covering of X, and δ the coboundary operator satisfying

δ∇ +∇δ = 0. The total differentiation operator ∆ is defined to be ∆ = δ + ∇. We set K0 =

C0(U ,Ω0
X⟨D⟩(P )), K1 = C1(U ,Ω0

X⟨D⟩(P ))⊕C0(U ,Ω1
X⟨D⟩(P )), and Kn = Cn(U ,Ω0

X⟨D⟩(P ))⊕
Cn−1(U ,Ω1

X⟨D⟩(P ))⊕ Cn−2(U ,Ω2
X⟨D⟩(P )) for n ≥ 2. Then we see that ∆2 = 0 and ∆(Kn) ⊂

Kn+1. Therefore the pair (K(U),∆), where K(U) = ⊕∞
n=0K

n, is a complex. By the definition

of hypercohomology we have

Hp = Hp(X,Ω•
X⟨D⟩(P ),∇) = lim−→

U
Hp(K(U),∆),

where Hp(K(U),∆) = Ker[Kp ∆−→ Kp+1]/Im[Kp−1 ∆−→ Kp] and lim−→
U

means the inductive limit

taken with respect to refinements of open coverings of X ([6]). By setting K0 = K(U) and

K1 = ⊕∞
n=0C

n(U ,Ω1
X⟨D⟩(P ))⊕ Cn(U ,Ω2

X⟨D⟩(P )), K2 = ⊕∞
n=0C

n(U ,Ω2
X⟨D⟩(P )), we introduce

a filtration of K(U): K(U) = K0 ⊃ K1 ⊃ K2 ⊃ 0. The spectral sequence Er(U) associated to the

filtered modul K(U) is given as follows: Ep1 (U) = H(Kp/Kp+1) = Hδ(⊕∞
q=0C

q(U ,ΩpX⟨D⟩(P )) =
⊕∞
q=0H

q(U ,ΩpX⟨D⟩(P )) and the other Epr (U) (r ≥ 2) are given inductively. The limit Er =

lim−→
U
Er(U) is also a spectral sequence and abuts to the hypercohomology Hp. We have Ep1 =

⊕∞
q=0H

q(X,ΩpX⟨D⟩(P )) and Epq1 = Hq(X,ΩpX⟨D⟩(P )).

Lemma 3.4. (i) Suppose that either N = N ′, or N < N ′ and all of the four quantities
1
2

∑N ′

k=N+1 a2k−1ck,
1
2

∑N ′

k=N+1 a2kck,
1
2

∑N ′

k=N+1 b2k−1ck,
1
2

∑N ′

k=N+1 b2kck are integers. Then

Epq1 = 0 if p+ q > 2.

(ii) Suppose that N < N ′ and not all of the four quantities 1
2

∑N ′

k=N+1 a2k−1ck,
1
2

∑N ′

k=N+1 a2kck,
1
2

∑N ′

k=N+1 b2k−1ck,
1
2

∑N ′

k=N+1 b2kck are integers. Then Epq1 = 0 if p+ q ̸= 2.

Proof. It is well-known that the complexes of sheaves (Ω•
X⟨D⟩(P ), d) and (j∗E•

M (P |M), d) are

quasi-isomorphic to each other. By the same argument as in the proof of Corollary 3.2, we

have Hk(M,P|M) ∼= Hk(X,Ω•
X⟨D⟩(P ), d), where P denotes the locally constant sheaf over X

defined by the line bundle P , and P|M the restriction of P to M . By Deligne’s theorem [4], we

have the decomposition of hypercohomology Hk(X,Ω•
X⟨D⟩(P ), d) ∼= ⊕p+q=kHq(X,ΩpX⟨D⟩(P )).

Since Hk(M,P|M) is the dual space of the vector space Hk(M, P̌|M) introduced in §2, Lemma

3.4 follows immediately from Propositions 2.4 and 2.8.

The first result about the degeneration of the spectral sequence is as follows:
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Proposition 3.5. Assume that N < N ′ and not all of the four quantities 1
2

∑N ′

k=N+1 a2k−1ck,
1
2

∑N ′

k=N+1 a2kck,
1
2

∑N ′

k=N+1 b2k−1ck,
1
2

∑N ′

k=N+1 b2kck are integers. Then the spectral sequence

Er, r ≥ 1 degenerates at E1 (i.e., E1 = E∞). Namely we have E20
∞ = H0(X,Ω2

X(D)(P )),

E11
∞ = H1(X,Ω1

X⟨D⟩(P )), and Epq∞ = 0 if (p, q) ̸= (2, 0), (1, 1). Moreover we have dimE20
∞ = N2

and dimE11
∞ = N .

Proof. From Lemma 3.4, (ii), it follows immediately that E20
∞ = H0(X,Ω2

X(D)(P )), E11
∞ =

H1(X,Ω1
X⟨D⟩(P )), E02

∞ = H2(X,OX(P )), and Epq∞ = 0 if p + q ̸= 2. By Lemma 2.1 we have

H0(X,OX(P )) = 0, and it follows by [2], Lemma 3.5.1 that E02
∞ = 0. Therefore we have

H2(M,L) ∼= E20
∞ ⊕ E11

∞ . Proposition 3.3 and Lemma 2.2 imply that dimH2(M,L) = χ(M) =

N(N + 1). Since dimE20
∞ = N2 by the general theory of cohomology of line bundles on X, we

have dimE11
∞ = N .

Next, let us consider the spectral sequence for the case where either N = N ′, or N < N ′ and

all of 1
2

∑N ′

k=N+1 a2k−1ck,
1
2

∑N ′

k=N+1 a2kck,
1
2

∑N ′

k=N+1 b2k−1ck,
1
2

∑N ′

k=N+1 b2kck are integers. In

this case we may regard the line bundle P as the holomorphically trivial one, and so we may set

P = C. For each q let us consider the complex E0q
1

∇−→ E1q
1

∇−→ E2q
1 −→ 0. By definition we

have Epq2 = Hp(E∗q
1 ,∇). In the rest of this section we prove the following

Proposition 3.6. Assume that either N = N ′, or N < N ′ and all of 1
2

∑N ′

k=N+1 a2k−1ck,
1
2

∑N ′

k=N+1 a2kck,
1
2

∑N ′

k=N+1 b2k−1ck,
1
2

∑N ′

k=N+1 b2kck are integers. Then the spectral sequence

Er, r ≥ 1 degenerates at E2 (i.e., E2 = E∞). Namely we haveE20
∞ = H0(X,Ω2

X(D))/∇H0(X,Ω1
X⟨D⟩),

E11
∞ = H1(X,Ω1

X⟨D⟩)/∇H1(X,OX), E02
∞ = H2(X,OX), and Epq∞ = 0 if p+ q ̸= 2. Moreover we

have dimE20
∞ = N2 −N , dimE11

∞ = 2N − 1, dimE02
∞ = 1.

Since Epq1 = 0 for p + q > 2 by Lemma 3.4, (i), it follows immediately that Epq2 = 0 for

p+ q > 2. Therefore, to prove Proposition 3.6, it suffices to prove the following

Lemma 3.7. E01
2 = 0.

If this lemma is established, then the degeneration of Er, r ≥ 1 at E2 follows immediately, the

vanishing of E00
∞ , E10

∞ , E01
∞ follows from Proposition 3.3, and by the definition of Epq2 we can easily

determine the values of E20
∞ , E11

∞ , E02
∞ . Since dimH0(X,Ω1

X⟨D⟩) = N + 1 and d log T1 = ∇(1),

we have dim∇H0(X,Ω1
X⟨D⟩) = N . Moreover we have dimH0(X,Ω2

X(D)) = N2. So we have

dimE20
∞ = N2 −N . Since H2(M,L) ∼= E20

∞ ⊕E11
∞ ⊕E02

∞ and dimH2(M,L) = N2 +N , we have

dimE11
∞ = 2N − 1 (dimE02

∞ = dimH2(X,OX) = 1 is obvious).

To prove Lemma 3.7 let us introduce the logarithmic Dolbeault complex. We denote by EpqX
the sheaf of C∞ differential forms of type (p, q) on X. Let us consider the following resolution

of the sheaf OX :

0 −→ OX −→ E00
X

∂̄−→ E01
X

∂̄−→ E02
X

∂̄−→ 0.

Since ΩpX⟨D⟩ is a locally free OX -module ([14]), tensoring ΩpX⟨D⟩ from the right on this sequence

keeps the exactness. Setting E0q
X ⊗OX ΩpX⟨D⟩ = EpqX ⟨D⟩, we have the following resolution of

ΩpX⟨D⟩:
0 −→ ΩpX⟨D⟩ −→ Ep0X ⟨D⟩ ∂̄−→ Ep1X ⟨D⟩ ∂̄−→ Ep2X ⟨D⟩ ∂̄−→ 0,

which we call the logarithmic Dolbeault complex. Since EpqX ⟨D⟩ is a locally free EpqX -module,
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we have Hr(X, EpqX ⟨D⟩) = 0 for r > 0, p ≥ 0, q ≥ 0. By the standard argument we have

Hq(X,ΩpX⟨D⟩) ∼= Hq

∂̄
(X, Ep∗X ⟨D⟩). If we set ∇0 = ∂ + d log T1∧, then we have ∇ = ∇0 + ∂̄ and

∂̄∇0 +∇0∂̄ = 0. Recall the complex E01
1

∇−→ E11
1

∇−→ 0, which is equivalent to H1(X,OX)
∇−→

H1(X,Ω1
X⟨D⟩) ∇−→ 0. Then we have E01

2 = Ker
[
H1(X,OX)

∇−→ H1(X,Ω1
X⟨D⟩)

]
. Here the

operator ∇ is given as follows. Note that

H1(X,OX) ∼= Ker

[
Γ (X, E01

X )
∂̄−→ Γ (X, E02

X )

]
/Im

[
Γ (X, E00

X )
∂̄−→ Γ (X, E01

X )

]
and

H1(X,Ω1
X⟨D⟩) ∼= Ker

[
Γ (X, E11

X ⟨D⟩) ∂̄−→ Γ (X, E12
X ⟨D⟩)

]
/Im

[
Γ (X, E10

X ⟨D⟩) ∂̄−→ Γ (X, E11
X ⟨D⟩)

]
.

Let α be an element in Γ (X, E01
X ) such that ∂̄α = 0. Then we have ∇α = ∇0α ∈ Γ (X, E11

X ⟨D⟩).
For [α] ∈ H1(X,OX) we set ∇[α] = [∇α]. Then the operator ∇ : H1(X,OX) → H1(X,Ω1

X⟨D⟩)
thus defined is well-defined. We are now in a position to prove Lemma 3.7.

Proof of Lemma 3.7. It suffices to prove that the operator ∇ : H1(X,OX) → H1(X,Ω1
X⟨D⟩)

is injective. Let α be an element in Γ (X, E01
X ) such that ∂̄α = ∇0α + ∂̄β = 0 for some β ∈

Γ (X, E10
X ⟨D⟩). Since Γ (X, E10

X ⟨D⟩) is generated by dz1, dz2, d log θ

[
a2k−1 a2k

b2k−1 b2k

]
−d log θ

[
a2k+1 a2k+2

b2k+1 b2k+2

]
,

k = 1, . . . , N − 1, we can set

β = β1 +

N−1∑
k=1

β0k

(
d log θ

[
a2k−1 a2k

b2k−1 b2k

]
− d log θ

[
a2k+1 a2k+2

b2k+1 b2k+2

])
,

where β1 ∈ Γ (X, E10
X ) and β0k ∈ Γ (X, E00

X ). We have

∂̄β = ∂̄β1 +

N−1∑
k=1

∂̄β0k ∧

(
d log θ

[
a2k−1 a2k

b2k−1 b2k

]
− d log θ

[
a2k+1 a2k+2

b2k+1 b2k+2

])
.

Then the equation ∇0α+ ∂̄β = 0 is decomposed into the following two equations:

∂α+ ∂̄β1 = 0,

d log T1 ∧ α+

N−1∑
k=1

∂̄β0k ∧

(
d log θ

[
a2k−1 a2k

b2k−1 b2k

]
− d log θ

[
a2k+1 a2k+2

b2k+1 b2k+2

])
= 0.

Since

α ∧ d log T1 =
N−1∑
k=1

(c1 + · · ·+ ck)α ∧

(
d log θ

[
a2k−1 a2k

b2k−1 b2k

]
− d log θ

[
a2k+1 a2k+2

b2k+1 b2k+2

])
,

the second equation is turned to

N−1∑
k=1

(
∂̄β0k − (c1 + · · ·+ ck)α

)
∧

(
d log θ

[
a2k−1 a2k

b2k−1 b2k

]
− d log θ

[
a2k+1 a2k+2

b2k+1 b2k+2

])
= 0,

from which it follows that ∂̄β0k = (c1 + · · · + ck)α, k = 1, . . . , N − 1. Since c1 ̸= 0, we have

α = ∂̄β01/c1, which means that Ker
[
∇ : H1(X,OX) → H1(X,Ω1

X⟨D⟩)
]
= 0. Lemma 3.7 is

proved.
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Appendix to §3: Proofs of Propositions 3.1 and 3.3

Let us first prove Proposition 3.1.

Proof of Proposition 3.1. By definition it suffices to prove that their cohomology sheaves are

isomorphic: Hp(Ω•
X⟨D⟩(P ),∇) ∼= Hp(j∗EpM (P |M),∇) for each p. First of all let x be a point

of M , and U be an open set of M containing the point x which is biholomorphic to a polydisk

{(z1, z2) ∈ C2 | |z1| < ε, |z2| < ε} (ε > 0) with the origin (z1, z2) = (0, 0) corresponding to the

point x. Since Ω•
X⟨D⟩(P )|U ∼= Ω•

U (P |U) and j∗E•
M (P |M)|U ∼= E•

U (P |U), it suffices to prove that

Hp
DR(Ω

•
U (P |U),∇) ∼= Hp

DR(E•
U (P |U),∇). Note that Hq(U, EpU (P |U)) = Hq(U,ΩpU (P |U)) = 0 for

p ≥ 0 and q > 0. According to the standard argument in the de Rham theory, the following two

resolutions of L over U

0 −→ L −→ E0
U (P |U)

∇−→ E1
U (P |U)

∇−→ E2
U (P |U)

∇−→ 0

and

0 −→ L −→ Ω0
U (P |U)

∇−→ Ω1
U (P |U)

∇−→ Ω2
U (P |U)

∇−→ 0

gives us the isomorphisms Hp
DR(E•

U (P |U),∇) ∼= Hp(U,L) ∼= Hp
DR(Ω

•
U (P |U),∇).

Next, let x be a point of Di for some i such that x ̸∈ Dj for any j(̸= i). Let (z1, z2) be a local

coordinate system around the point x such that the origin (0, 0) corresponds to the point x and

the local equation of Di around x is written as z1 = 0. Let U and Ū be open sets of X which are

biholomorphic to {(z1, z2) ∈ C2 | 0 < |z1| < ε, |z2| < ε} and {(z1, z2) ∈ C2 | |z1| < ε, |z2| < ε}
respectively with the origin (z1, z2) = (0, 0) corresponding to the point x. Since Ω•

X⟨D⟩(P )|Ū ∼=
Ω•
Ū
⟨D⟩(P |Ū) and j∗E•

M (P |M)|Ū ∼= E•
U (P |U), it suffices to prove that Hp

DR(Ω
•
Ū
⟨D⟩(P |Ū),∇) ∼=

Hp
DR(E•

U (P |U),∇). Obviously we have Hp
DR(E•

U (P |U),∇) ∼= Hp(U,L) = 0. So it suffices to

prove that Hp
DR(Ω

•
Ū
⟨D⟩(P |Ū),∇) = 0 for all p. It is obvious that H3

DR(Ω
•
Ū
⟨D⟩(P |Ū),∇) =

H4
DR(Ω

•
Ū
⟨D⟩(P |Ū),∇) = 0. Let f be an element of Γ (Ū ,Ω0

Ū
⟨D⟩(P |Ū)) = Γ (Ū ,OŪ (P |Ū)) such

that ∇f = 0. Then we have locally f = cT−1
1 with some constant c. Since f is holomorphic

along z1 = 0, we have f = 0, which proves H0
DR(Ω

•
Ū
⟨D⟩(P |Ū),∇) = 0. Let ω be an element of

Γ (Ū ,Ω1
Ū
⟨D⟩(P |Ū)) such that ∇ω = 0. We set ω = adz1 + bdz2, where a denotes a meromorphic

P -valued section with pole along z1 = 0, and b a holomorphic P -valued section. If we set Ω = T1ω,

then we have dΩ = T1∇ω. So ∇ω = 0 if and only if dΩ = 0. Moreover dΩ = 0 is equivalent to

an integrability condition
∂(aT1)

∂z2
=
∂(bT1)

∂z1
. Let us consider the equation dF = Ω for a L-valued

unknown F . This is equivalent to a system of partial differential equations
∂F

∂z1
= aT1,

∂F

∂z2
= bT1.

Locally around the point (z1, z2) = (0, 0) we can write T1 = zc1G(z1, z2) with a constant c and

a holomorphic function G. So we have aT1 = zc−1
1 G1(z1, z2) and bT1 = zc1G2(z1, z2) with

holomorphic functions G1 and G2. Then we see by an elementary theory of partial differential

equations that there exists a unique solution F of the form zc1H(z1, z2) with a holomorphic

function H which satisfies the preceding system of partial differential equations. Therefore F is

decomposed locally as F = γT1 with a holomorphic P -valued section γ defined on Ū . So we have

∇γ = ω, which proves H1
DR(Ω

•
Ū
⟨D⟩(P |Ū),∇) = 0. Let ω be an element of Γ (Ū ,Ω2

Ū
⟨D⟩(P |Ū)).

Automatically we have ∇ω = 0. We set ω = fdz1∧dz2 where f denotes a meromorphic P -valued

section with pole along z1 = 0. We set Ω = T1ω. Let us consider the equation dφ = Ω for a
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L-valued unknown 1-form φ. We set φ = Adz1+Bdz2 where A and B are holomorphic L-valued
sections on U . Then the equation dφ = Ω is equivalent to a differential relation

∂B

∂z1
− ∂A

∂z2
= T1f .

Locally around the point (z1, z2) = (0, 0) we can write T1f = zc−1
1 G(z1, z2) with a constant c

and a holomorphic function G. Let G̃ be a holomorphic function such that
∂G̃

∂z2
= G. Setting

A = −zc−1
1 G̃ and B = 0, we see that the 1-form φ = Adz1 satisfies the equation dφ = Ω.

Therefore A is decomposed locally as A = γT1 with a P -valued section γ with pole along z1 = 0.

So we have ∇(γdz1) = ω, which proves H2
DR(Ω

•
Ū
⟨D⟩(P |Ū),∇) = 0.

Finally let x be a point of Di ∩ Dj for some i and j. Let (z1, z2) be a local coordinate

system around the point x such that the origin (0, 0) corresponds to the point x and the local

equations of Di and Dj around x are written as z1 = 0 and z2 = 0 respectively. Let U and Ū

be open sets of X which are biholomorphic to {(z1, z2) ∈ C2 | 0 < |z1| < ε, 0 < |z2| < ε} and

{(z1, z2) ∈ C2 | |z1| < ε, |z2| < ε} respectively with the origin (z1, z2) = (0, 0) corresponding

to the point x. Since Ω•
X⟨D⟩(P )|Ū ∼= Ω•

Ū
⟨D⟩(P |Ū) and j∗E•

M (P |M)|Ū ∼= E•
U (P |U), it suffices to

prove that Hp
DR(Ω

•
Ū
⟨D⟩(P |Ū),∇) ∼= Hp

DR(E•
U (P |U),∇). Obviously we have Hp

DR(E•
U (P |U),∇) ∼=

Hp(U,L) = 0 for any p. So it suffices to prove that Hp
DR(Ω

•
Ū
⟨D⟩(P |Ū),∇) = 0 for all p. It is

obvious that H3
DR(Ω

•
Ū
⟨D⟩(P |Ū),∇) = H4

DR(Ω
•
Ū
⟨D⟩(P |Ū),∇) = 0. Let f be an element of

Γ (Ū ,Ω0
Ū
⟨D⟩(P |Ū)) = Γ (Ū ,OŪ (P |Ū)) such that ∇f = 0. Then we have locally f = cT−1

1 with

some constant c. Since f is holomorphic along z1 = 0 and z2 = 0, we have f = 0, which proves

H0
DR(Ω

•
Ū
⟨D⟩(P |Ū),∇) = 0. Let ω be an element of Γ (Ū ,Ω1

Ū
⟨D⟩(P |Ū)) such that ∇ω = 0. We

set ω = adz1 + bdz2, where a denotes a meromorphic P -valued section with pole along z1 = 0,

and b a meromorphic P -valued section with pole along z2 = 0. If we set Ω = T1ω, then we have

dΩ = T1∇ω. So ∇ω = 0 if and only if dΩ = 0. Moreover dΩ = 0 is equivalent to an integrability

condition
∂(aT1)

∂z2
=
∂(bT1)

∂z1
. Let us consider the equation dF = Ω for a L-valued unknown F .

This is equivalent to a system of partial differential equations
∂F

∂z1
= aT1,

∂F

∂z2
= bT1. Locally

around the point (z1, z2) = (0, 0) we can write T1 = zc11 z
c2
2 G(z1, z2) with constants c1, c2 and a

holomorphic function G. So we have aT1 = zc−1
1 zc22 G1(z1, z2) and bT1 = zc11 z

c2−1
2 G2(z1, z2) with

holomorphic functions G1 and G2. Then we see by an elementary theory of partial differential

equations that there exists a unique solution F of the form zc11 z
c2
2 H(z1, z2) with a holomorphic

function H which satisfies the preceding system of partial differential equations. Therefore F is

decomposed locally as F = γT1 with a holomorphic P -valued section γ defined on Ū . So we have

∇γ = ω, which proves H1
DR(Ω

•
Ū
⟨D⟩(P |Ū),∇) = 0. Let ω be an element of Γ (Ū ,Ω2

Ū
⟨D⟩(P |Ū)).

Automatically we have ∇ω = 0. We set ω = fdz1 ∧ dz2 where f denotes a meromorphic

P -valued section with pole along z1 = 0 and z2 = 0. We set Ω = T1ω. Let us consider

the equation dφ = Ω for a L-valued unknown 1-form φ. We set φ = Adz1 + Bdz2 where A

and B are holomorphic L-valued sections on U . Then the equation dφ = Ω is equivalent to

a differential relation
∂B

∂z1
− ∂A

∂z2
= T1f . Locally around the point (z1, z2) = (0, 0) we can

write T1f = zc−1
1 zc2−1

2 G(z1, z2) with constants c1, c2 and a holomorphic function G. If we set

A = zc−1
1 zc2−1

2 A′ and B = zc−1
1 zc2−1

2 B′ and substitute them into the preceding equation, then

we have
c1 − 1

z1
B′+

∂B′

∂z1
− c2 − 1

z2
A′− ∂A′

∂z2
= G. Obviously, we can find holomorphic functions A′

and B′ around the point (z1, z2) = (0, 0) satisfying the preceding differential relation. Therefore
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A is decomposed locally as A = γT1 with a P -valued section γ with pole along z1 = 0, and B is

decomposed locally as B = δT1 with a P -valued section δ with pole along z2 = 0. So we have

∇(γdz1 + δdz2) = ω, which proves H2
DR(Ω

•
Ū
⟨D⟩(P |Ū),∇) = 0. Proposition 3.1 is proved.

Next, we give a proof of Proposition 3.3 by exploiting the logarithmic Dolbeault complex. As

will be seen below, our proof contains that of Lemma 3.7.

Let us again consider the logarthmic Dolbeault complex:

0 −→ ΩpX⟨D⟩ −→ Ep0X ⟨D⟩ ∂̄−→ Ep1X ⟨D⟩ ∂̄−→ Ep2X ⟨D⟩ ∂̄−→ 0.

Since OX(P ) is a locally free OX -module, setting EpqX ⟨D⟩(P ) = EpqX ⟨D⟩ ⊗OX OX(P ), we have

0 −→ ΩpX⟨D⟩(P ) −→ Ep0X ⟨D⟩(P ) ∂̄−→ Ep1X ⟨D⟩(P ) ∂̄−→ Ep2X ⟨D⟩(P ) ∂̄−→ 0.

Since EpqX ⟨D⟩(P ) is a locally free EpqX -module, we have Hr(X, EpqX ⟨D⟩(P )) = 0 for r > 0, p ≥
0, q ≥ 0. By the standard argument we have Hq(X,ΩpX⟨D⟩(P )) ∼= Hq

∂̄
(X, Ep∗X ⟨D⟩(P )). Consider

the following double complex:

Γ (X, E00
X (P ))

∂̄−−−−→ Γ (X, E01
X (P ))

∂̄−−−−→ Γ (X, E02
X (P ))

∂̄−−−−→ 0y∇0

y∇0

y∇0

Γ (X, E10
X ⟨D⟩(P )) ∂̄−−−−→ Γ (X, E11

X ⟨D⟩(P )) ∂̄−−−−→ Γ (X, E12
X ⟨D⟩(P )) ∂̄−−−−→ 0y∇0

y∇0

y∇0

Γ (X, E20
X (D)(P ))

∂̄−−−−→ Γ (X, E21
X (D)(P ))

∂̄−−−−→ Γ (X, E22
X (D)(P ))

∂̄−−−−→ 0y∇0

y∇0

y∇0

0 0 0

where ∇0 = ∂ + d log T1∧. We set L0 = Γ (X, E00
X (P )), L1 = Γ (X, E10

X ⟨D⟩(P )) ⊕ Γ (X, E01
X (P )),

L2 = Γ (X, E20
X (D)(P ))⊕Γ (X, E11

X ⟨D⟩(P ))⊕Γ (X, E02
X (P )), L3 = Γ (X, E21

X (D)(P ))⊕Γ (X, E12
X ⟨D⟩(P )),

L4 = Γ (X, E22
X (D)(P )). The operator ∇ maps Lk into Lk+1, and the pair (L,∇), where

L = ⊕4
k=0L

k, is a complex. Let us introduce a filtration of L. Namely, if we set L0 = L, L1 =

⊕2
q=0Γ (X, E

1q
X ⟨D⟩(P ))⊕Γ (X, E2q

X (D)(P )), L2 = ⊕2
q=0Γ (X, E

2q
X (D)(P )), then we have L = L0 ⊃

L1 ⊃ L2 ⊃ 0. The spectral sequence E′
r associated to the filtered module L is given as follows:

E′
1
p
= H(Lp/Lp+1) = H(⊕2

q=0Γ (X, E
pq
X ⟨D⟩(P )) = H0

∂̄
(X, Ep∗X ⟨D⟩(P )) ⊕ H1

∂̄
(X, Ep∗X ⟨D⟩(P )) ⊕

H2
∂̄
(X, Ep∗X ⟨D⟩(P )) ∼= H0(X,ΩpX⟨D⟩(P )) ⊕H1(X,ΩpX⟨D⟩(P )) ⊕H2(X,ΩpX⟨D⟩(P )) and E′

1
pq

=

Hq(X,ΩpX⟨D⟩(P )). So we have E′
r = Er for every r ≥ 1, where the latter sequence Er is the one

introduced in §3. Therefore it follows from Corollary 3.2 that

Hp(M,L) ∼= Hp(X,Ω•
X⟨D⟩(P ),∇) ∼= Hp(L,∇).

To prove Proposition 3.3 it suffices to prove the following

Lemma 3.8. Hp(L,∇) = 0 for p ̸= 2.

Proof. It suffices to prove that H0(L,∇) = H1(L,∇) = 0. Let f be an element in Γ (X, E00
X ) such

that ∂̄f = ∇0f = 0. This is equivalent to the condition that f ∈ Γ (X,OX(P )) and ∇f = 0. If
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N < N ′ and not all of the quantities 1
2

∑N ′

k=N+1 a2k−1ck,
1
2

∑N ′

k=N+1 a2kck,
1
2

∑N ′

k=N+1 b2k−1ck,
1
2

∑N ′

k=N+1 b2kck are integers, then it follows immediately that Γ (X,OX(P )) = 0 andH0(L,∇) =

0. If not, it follows that Γ (X,OX(P )) = C and f is a constant. Therefore the equation ∇f = 0

implies f = 0, and so H0(L,∇) = 0. Next, let (β, α) be an element in Γ (X, E10
X ⟨D⟩(P )) ⊕

Γ (X, E01
X (P )) such that ∇0β = ∇0α + ∂̄β = ∂̄α = 0. Since Γ (X, E10

X ⟨D⟩) is generated by dz1,

dz2, d log θ

[
a2k−1 a2k

b2k−1 b2k

]
− d log θ

[
a2k+1 a2k+2

b2k+1 b2k+2

]
, k = 1, . . . , N − 1, we can set

β = β1 +
N−1∑
k=1

β0k

(
d log θ

[
a2k−1 a2k

b2k−1 b2k

]
− d log θ

[
a2k+1 a2k+2

b2k+1 b2k+2

])
,

where β1 ∈ Γ (X, E10
X (P )) and β0k ∈ Γ (X, E00

X (P )). We have

∂̄β = ∂̄β1 +
N−1∑
k=1

∂̄β0k ∧

(
d log θ

[
a2k−1 a2k

b2k−1 b2k

]
− d log θ

[
a2k+1 a2k+2

b2k+1 b2k+2

])
.

Then the equation ∇0α+ ∂̄β = 0 is decomposed into the following two equations:

∂α+ ∂̄β1 = 0,(3.5)

d log T1 ∧ α+
N−1∑
k=1

∂̄β0k ∧

(
d log θ

[
a2k−1 a2k

b2k−1 b2k

]
− d log θ

[
a2k+1 a2k+2

b2k+1 b2k+2

])
= 0.(3.6)

Since

α ∧ d log T1 =
N−1∑
k=1

(c1 + · · ·+ ck)α ∧

(
d log θ

[
a2k−1 a2k

b2k−1 b2k

]
− d log θ

[
a2k+1 a2k+2

b2k+1 b2k+2

])
,

the equation (3.6) is turned to

N−1∑
k=1

(
∂̄β0k − (c1 + · · ·+ ck)α

)
∧

(
d log θ

[
a2k−1 a2k

b2k−1 b2k

]
− d log θ

[
a2k+1 a2k+2

b2k+1 b2k+2

])
= 0,

from which it follows that ∂̄β0k = (c1 + · · · + ck)α, k = 1, . . . , N − 1. Suppose now that there

exists a sequence of integers k1, . . . , kl satisfying the following four conditions : (i) 1 < k1 <

· · · < kl < N − 1; (ii) kν+1 − kν > 1 (ν = 1, . . . , l − 1); (iii) c1 + · · ·+ ck = 0 if k ∈ {k1, . . . , kl};
(iv) c1 + · · ·+ ck ̸= 0 if k ̸∈ {k1, . . . , kl, N}. We set I = {k1, . . . , kl} and J = {1, . . . , N − 1} − I.

Then we have

(3.7) α =
∂̄β0k

c1 + · · ·+ ck
if k ∈ J,

and ∂̄β0k = 0, that is, β0k is a constant if k ∈ I. Note that the differences ωij =
β0i

c1 + · · ·+ ci
−
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β0j
c1 + · · ·+ cj

, i, j ∈ J belong to Γ (X,OX(P )). Now we have

β −∇0
β01
c1

=β1 +
∑
k∈J

β0k
c1 + · · ·+ ck

(c1 + · · ·+ ck)

(
d log θ

[
a2k−1 a2k

b2k−1 b2k

]
− d log θ

[
a2k+1 a2k+2

b2k+1 b2k+2

])

+
∑
k∈I

β0k

(
d log θ

[
a2k−1 a2k

b2k−1 b2k

]
− d log θ

[
a2k+1 a2k+2

b2k+1 b2k+2

])
− ∂β01

c1
− β01

c1
d log T1

=β1 +
∑
k∈J

(
β01
c1

+ ωk1

)
(c1 + · · ·+ ck)

(
d log θ

[
a2k−1 a2k

b2k−1 b2k

]
− d log θ

[
a2k+1 a2k+2

b2k+1 b2k+2

])

+
∑
k∈I

β0k

(
d log θ

[
a2k−1 a2k

b2k−1 b2k

]
− d log θ

[
a2k+1 a2k+2

b2k+1 b2k+2

])
− ∂β01

c1
− β01

c1
d log T1.

(3.8)

Since d log T1 =
∑
k∈J(c1+· · ·+ck)

(
d log θ

[
a2k−1 a2k

b2k−1 b2k

]
− d log θ

[
a2k+1 a2k+2

b2k+1 b2k+2

])
, (3.8) is turned

to

β −∇0
β01
c1

=β1 −
∂β01
c1

+
∑
k∈J

ωk1(c1 + · · ·+ ck)

(
d log θ

[
a2k−1 a2k

b2k−1 b2k

]
− d log θ

[
a2k+1 a2k+2

b2k+1 b2k+2

])

+
∑
k∈I

β0k

(
d log θ

[
a2k−1 a2k

b2k−1 b2k

]
− d log θ

[
a2k+1 a2k+2

b2k+1 b2k+2

])
.

(3.9)

Note that β1−
∂β01
c1

∈ Γ (X,Ω1
X(P )) by (3.5) and (3.7). IfN < N ′ and not all of 1

2

∑N ′

k=N+1 a2k−1ck,

1
2

∑N ′

k=N+1 a2kck,
1
2

∑N ′

k=N+1 b2k−1ck,
1
2

∑N ′

k=N+1 b2kck are integers, then we have Γ (X,OX(P )) =

0, which implies β1−
∂β01
c1

= 0, ωk1 = 0 (k ∈ J), β0k = 0 (k ∈ I). Therefore we have β = ∇0
∂β01
c1

.

Since (∇0+ ∂̄)

(
β01
c1

)
= (β, α), it follows that H1(L,∇) = 0. Next, suppose that either N = N ′,

or N < N ′ and all of 1
2

∑N ′

k=N+1 a2k−1ck,
1
2

∑N ′

k=N+1 a2kck,
1
2

∑N ′

k=N+1 b2k−1ck,
1
2

∑N ′

k=N+1 b2kck

are integers. Then we have P = C and Γ (X,OX) = C. Therefore ωk1’s (k ∈ J) and β0k’s

(k ∈ I) are constants. Moreover we can set β1 − ∂β01
c1

= Adz1 + Bdz2 with constants A,B.

Namely, (3.9) is turned to

β −∇0
β01
c1

=Adz1 +Bdz2 +
∑
k∈J

ωk1(c1 + · · ·+ ck)

(
d log θ

[
a2k−1 a2k

b2k−1 b2k

]
− d log θ

[
a2k+1 a2k+2

b2k+1 b2k+2

])

+
∑
k∈I

β0k

(
d log θ

[
a2k−1 a2k

b2k−1 b2k

]
− d log θ

[
a2k+1 a2k+2

b2k+1 b2k+2

])
.

(3.10)

Applying ∇ on this equation, we have

∇
(
β −∇0

β01
c1

)
=d log T1 ∧

[
Adz1 +Bdz2 +

∑
k∈J

ωk1(c1 + · · ·+ ck)

(
d log θ

[
a2k−1 a2k

b2k−1 b2k

]
− d log θ

[
a2k+1 a2k+2

b2k+1 b2k+2

])

+
∑
k∈I

β0k

(
d log θ

[
a2k−1 a2k

b2k−1 b2k

]
− d log θ

[
a2k+1 a2k+2

b2k+1 b2k+2

])]
.
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The equations ∇0β = ∂̄

(
β −∇0

β01
c1

)
= 0 imply ∇

(
β −∇0

β01
c1

)
= 0. So we have A = B =

β0k = 0 (k ∈ I) and ωk1 = ωk′1 (k, k′ ∈ J). We set ωk1 = C (k ∈ J). It follows from (3.10) that

β −∇0
β01
c1

=C
∑
k∈J

(c1 + · · ·+ ck)

(
d log θ

[
a2k−1 a2k

b2k−1 b2k

]
− d log θ

[
a2k+1 a2k+2

b2k+1 b2k+2

])
=∇0(C).

Consequently, we have β = ∇0

(
β01
c1

+ C

)
and α = ∂̄

(
β01
c1

+ C

)
, and therefore H1(L,∇) = 0

also in this case. The above argument is effective also when I = ∅. Lemma 3.8 is proved.

§4 Structure of the non-vanishing cohomology group

Propositions 3.5 and 3.6 give us information on the structure of the non-vanishing coho-

mology group H2(M,L) ∼= H2(X,Ω•
X⟨D⟩(P ),∇). Namely, there exists a filtration of H2 =

H2(X,Ω•
X⟨D⟩(P ),∇): H2 = H2

0 ⊃ H2
1 ⊃ H2

2 ⊃ 0 such that H2
2
∼= E20

∞，H2
1/H

2
2
∼= E11

∞ ,

H2
0/H

2
1
∼= E02

∞ . To obtain information on how to select meromorphic 2-forms realizing a basis of

H2(M,L), we need to study the analytical structures of Epq∞ with p+ q = 2 further. To this end

let us consider the following sequences of sheaves over X:

(4.1) 0 −→ Ω1
X⟨D⟩(P ) −→ Ω1

X(D)(P )
∇′

−→

∑∑
kν=1 Ω

2
X

(∑N
ν=1(kν + 1)Dν

)
(P )

Ω2
X(D)(P )

∇′

−→ 0,

and

0 −→ OX(P ) −→ OX(D)(P )
∇′

−→

∑∑
kν=1 Ω

1
X

(∑N
ν=1(kν + 1)Dν

)
(P )

Ω1
X(D)(P )

∇′

−→

∑∑
kν=2 Ω

2
X

(∑N
ν=1(kν + 1)Dν

)
(P )∑∑

kν=1 Ω
2
X

(∑N
ν=1(kν + 1)Dν

)
(P )

∇′

−→ 0,

(4.2)

where ∇′ denotes the operator induced from ∇, and for l = 1, 2 the symbol
∑∑

kν=l
represents

the abbreviation for the symbol
∑
k1≥0,...,kN≥0,k1+···+kN=l. As is well-known (Deligne [3], II, §3,

Prop.3.13), since D has normal crossings, the sequences (4.1) and (4.2) are exact, i.e., they give

resolutions of the sheaves of logarithmic differential forms Ω1
X⟨D⟩(P ) and OX(P )(= Ω0

X⟨D⟩(P )).
In what follows, for a sheaf F over X let the symbol Hp(F) represent the cohomology group

Hp(X,F).

Proposition 4.1. H1(Ω1
X⟨D⟩(P )) ∼=

H0
(∑∑

kν=1 Ω
2
X

(∑N
ν=1(kν + 1)Dν

)
(P )
)

∇H0(Ω1
X(D)(P )) +H0(Ω2

X(D)(P ))
.

Proof. From the short exact sequence of sheaves (4.1), we have the following long exact sequence

of cohomology groups:

0 −→ H0(Ω1
X⟨D⟩(P )) −→ H0(Ω1

X(D)(P ))
∇′

−→ H0

∑∑
kν=1 Ω

2
X

(∑N
ν=1(kν + 1)Dν

)
(P )

Ω2
X(D)(P )


−→ H1(Ω1

X⟨D⟩(P )) −→ H1(Ω1
X(D)(P )) −→ · · · .

(4.3)
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Note that the sheaf of modules Ω1
X(D)(P ) is isomorphic to a direct sum of two copies of

OX(D)(P ). There exists a positive definite line bundle L onX of type (1, 1) such thatH1(OX(D)(P )) ∼=
H1(OX(LN )), where OX(LN ) denotes the sheaf of local sections of the line bundle LN over X.

LN is a positive definite line bundle on X of type (N,N), and has no negative eigenvalues.

Then Mumford’s vanishing theorem (Mumford [12], III, §16) implies that H1(OX(LN )) = 0, and

therefore H1(Ω1
X(D)(P )) = 0. Then (4.3) is turned to the following exact sequence:

0 −→ H0(Ω1
X⟨D⟩(P )) −→ H0(Ω1

X(D)(P ))
∇′

−→ H0

∑∑
kν=1 Ω

2
X

(∑N
ν=1(kν + 1)Dν

)
(P )

Ω2
X(D)(P )


−→ H1(Ω1

X⟨D⟩(P )) −→ 0,

from which it follows that

(4.4) H1(Ω1
X⟨D⟩(P )) ∼=

H0

∑∑
kν=1 Ω

2
X

(∑N
ν=1(kν + 1)Dν

)
(P )

Ω2
X(D)(P )


∇′H0(Ω1

X(D)(P ))
.

Since H1(Ω2
X(D)(P )) = 0, we have

(4.5)

H0

∑∑
kν=1 Ω

2
X

(∑N
ν=1(kν + 1)Dν

)
(P )

Ω2
X(D)(P )

 ∼=
H0
(∑∑

kν=1 Ω
2
X

(∑N
ν=1(kν + 1)Dν

)
(P )
)

H0(Ω2
X(D)(P ))

.

Moreover, by this isomorphism, we may identify the mapping

∇′ : H0(Ω1
X(D)(P )) −→ H0

∑∑
kν=1 Ω

2
X

(∑N
ν=1(kν + 1)Dν

)
(P )

Ω2
X(D)(P )


with the composition

H0(Ω1
X(D)(P ))

∇−→H0

 ∑
∑
kν=1

Ω2
X

(
N∑
ν=1

(kν + 1)Dν

)
(P )


−→

H0
(∑∑

kν=1 Ω
2
X

(∑N
ν=1(kν + 1)Dν

)
(P )
)

H0(Ω2
X(D)(P ))

.

Then we have

∇′H0(Ω1
X(D)(P )) ∼=

∇H0(Ω1
X(D)(P ))

∇H0(Ω1
X(D)(P )) ∩H0(Ω2

X(D)(P ))

∼=
∇H0(Ω1

X(D)(P )) +H0(Ω2
X(D)(P ))

H0(Ω2
X(D)(P ))

.

(4.6)

Substitution of (4.5) and (4.6) into (4.4) gives us the desired formula of Proposition 4.1.

Proposition 4.2.

H2(OX(P )) ∼=

H0

 ∑
∑
kν=2

Ω2
X

(
N∑
ν=1

(kν + 1)Dν

)
(P )


∇H0

 ∑
∑
kν=1

Ω1
X

(
N∑
ν=1

(kν + 1)Dν

)
(P )

+H0

 ∑
∑
kν=1

Ω2
X

(
N∑
ν=1

(kν + 1)Dν

)
(P )

 ,
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H1(OX(P ))

∼=

∇−1

∇H0

 ∑
∑
kν=1

Ω1
X

(
N∑
ν=1

(kν + 1)Dν

)
(P )

 ∩H0

 ∑
∑
kν=1

Ω2
X

(
N∑
ν=1

(kν + 1)Dν

)
(P )


∇H0(OX(D)(P )) +H0(Ω1

X(D)(P ))
.

To prove Proposition 4.2 we need the following

Lemma 4.3. H1

 ∑
∑
kν=1

ΩpX

( N∑
ν=1

(kν + 1)Dν

)
(P )

 = 0, p = 1, 2.

Proof. Let us consider the following short exact sequence of sheaves over X:

(4.7) 0 −→
∑

∑
kν=1

ΩpX

( N∑
ν=1

(kν + 1)Dν

)
(P ) −→ ΩpX(2D)(P ) −→ Sp −→ 0,

where Sp =
ΩpX(2D)(P )∑∑

kν=1 Ω
p
X

(∑N
ν=1(kν + 1)Dν

)
(P )

. Let Spx denote the stalk of the sheaf Sp at

a point x ∈ X. Then we see that Spx ∼= C3−p if x ∈ Di∩Dj (i ̸= j); otherwise Spx = 0. In fact, for

x ∈ Di∩Dj (i ̸= j) the stalk Spx is identified with the vector space
{ c1
z2w2

dz +
c2
z2w2

dw | c1, c2 ∈ C
}

if p = 1, and with the vector space
{ c

z2w2
dz ∧ dw | c ∈ C

}
if p = 2, where z, w denote local

coordinates around x such that the local equations of Di and Dj around x are given by z = 0

and w = 0 respectively. From (4.7) we have the long exact sequence

0 −→ H0

 ∑
∑
kν=1

ΩpX

( N∑
ν=1

(kν + 1)Dν

)
(P )

 −→ H0(ΩpX(2D)(P )) −→ H0(Sp)

−→ H1

 ∑
∑
kν=1

ΩpX

( N∑
ν=1

(kν + 1)Dν

)
(P )

 −→ H1(ΩpX(2D)(P )) −→ · · · .

(4.8)

Since the sheaf ΩpX(2D)(P ) is isomorphic to a direct sum of copies of OX(2D)(P ), Mumford’s

vanishing theorem implies that H1(ΩpX(2D)(P )) = 0. Therefore from (4.8) we have

0 −→ H0

 ∑
∑
kν=1

ΩpX

( N∑
ν=1

(kν + 1)Dν

)
(P )

 −→ H0(ΩpX(2D)(P )) −→ H0(Sp)

−→ H1

 ∑
∑
kν=1

ΩpX

( N∑
ν=1

(kν + 1)Dν

)
(P )

 −→ 0.

(4.9)

Note that H0(Sp) is isomorphic to the direct sum of N(N −1) copies of the abelian group C3−p.

Moreover we have Ω1
X(2D)(P ) ∼= OX(2D)(P )⊕OX(2D)(P ) and Ω2

X(2D)(P ) ∼= OX(2D)(P ). We

denote by [2D] the line bundle over X defined by the divisor 2D. Then we have OX(2D)(P ) ∼=
OX([2D] ⊗ P ), where the right hand side denotes the sheaf of local sections of the line bundle

[2D]⊗P . Since c1([2D]⊗P ) = c1([2D]), we have dimH0(OX(2D)(P )) = 4N2. Let ω1, . . . , ω4N2

be a basis of the vector space H0(OX(2D)(P )), and p1, . . . , pN(N−1) be the points on X, each

of which is an intersection of two theta divisors Di, Dj (i ̸= j), i.e., for any k there exist i
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and j, i ̸= j, such that pk ∈ Di ∩ Dj . For (cp1 , . . . , cpN(N−1)
) ∈ H0(S2) ∼= CN(N−1), let us

consider the following system of N(N − 1) linear equations with 4N2 unknowns A1, . . . , A4N2 :

for k = 1, . . . , N(N − 1)

(4.10) A1(ω1)pk + · · ·+A4N2(ω4N2)pk ≡ cpk
z2w2

dz ∧ dw mod

(
dz ∧ dw
zw2

,
dz ∧ dw
z2w

)
,

where (ωl)pk denotes the localization of ωl at the point pk, and z, w denote local coordinates

around pk such that the local equations of Di and Dj around pk are given by z = 0 and w = 0

respectively. Obviously the system (4.10) has a non-trivial solution (A1, . . . , A4N2) ∈ C4N2

,

which implies that the mappingH0(Ω2
X(2D)(P )) −→ H0(S2) is surjective. Also in the case where

p = 1, by the same argument as above, we see that the mapping H0(Ω1
X(2D)(P )) −→ H0(S1)

is surjective. Lemma 4.3 is thus proved.

Corollary 4.4. H1

∑∑
kν=1 Ω

1
X

(∑N
ν=1(kν + 1)Dν

)
(P )

Ω1
X(D)(P )

 = 0.

Proof. Let us consider the following short exact sequence:

0 −→ Ω1
X(D)(P ) −→

∑
∑
kν=1

Ω1
X

(
N∑
ν=1

(kν + 1)Dν

)
(P )

−→

∑∑
kν=1 Ω

1
X

(∑N
ν=1(kν + 1)Dν

)
(P )

Ω1
X(D)(P )

−→ 0.

Then the corollary follows immediately from the long exact sequence of cohomology groups with

the vanishing of cohomology groups: H1

 ∑
∑
kν=1

Ω1
X

( N∑
ν=1

(kν + 1)Dν

)
(P )

 = 0 by Lemma 4.3

and H2(X,Ω1
X(D)(P )) = 0 by Mumford’s vanishing theorem.

Proof of Proposition 4.2. Note that the exact sequence (4.2) is decomposed into the following

two short exact sequences:

0 −→ OX(P ) −→ OX(D)(P )
∇′

−→ ∇′OX(D)(P ) −→ 0,(4.11)

0 −→ ∇′OX(D)(P ) −→

∑∑
kν=1 Ω

1
X

(∑N
ν=1(kν + 1)Dν

)
(P )

Ω1
X(D)(P )

∇′

−→

∑∑
kν=2 Ω

2
X

(∑N
ν=1(kν + 1)Dν

)
(P )∑∑

kν=1 Ω
2
X

(∑N
ν=1(kν + 1)Dν

)
(P )

∇′

−→ 0.

(4.12)

From (4.11) we have the following long exact sequence

0 −→ H0(OX(P )) −→ H0(OX(D)(P ))
∇′

−→ H0(∇′OX(D)(P )) −→ H1(OX(P ))

−→ H1(OX(D)(P )) −→ H1(∇′OX(D)(P )) −→ H2(OX(P )) −→ H2(OX(D)(P )) −→ · · · .
(4.13)

Mumford’s vanishing theorem implies that H1(OX(D)(P )) = H2(OX(D)(P )) = 0. So we have

from (4.13)

0 −→ ∇′H0(OX(D)(P )) −→ H0(∇′OX(D)(P )) −→ H1(OX(P )) −→ 0,(4.14)

H1(∇′OX(D)(P )) ∼= H2(OX(P )).(4.15)
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From (4.14) it follows immediately that

(4.16) H1(OX(P )) ∼=
H0(∇′OX(D)(P ))

∇′H0(OX(D)(P ))
.

On the other hand, from (4.12) we have the following long exact sequence

0 −→H0(∇′OX(D)(P )) −→ H0

∑∑
kν=1 Ω

1
X

(∑N
ν=1(kν + 1)Dν

)
(P )

Ω1
X(D)(P )


∇′

−→ H0

∑∑
kν=2 Ω

2
X

(∑N
ν=1(kν + 1)Dν

)
(P )∑∑

kν=1 Ω
2
X

(∑N
ν=1(kν + 1)Dν

)
(P )

 −→ H1(∇′OX(D)(P ))

−→ H1

∑∑
kν=1 Ω

1
X

(∑N
ν=1(kν + 1)Dν

)
(P )

Ω1
X(D)(P )

 −→ · · · .

(4.17)

Since H1
(∑∑

kν=1 Ω
2
X

(∑N
ν=1(kν + 1)Dν

)
(P )
)
= 0 by Lemma 4.3 and H1(Ω1

X(D)(P )) = 0 by

Mumford’s vanishing theorem, the mapping ∇′ in (4.17) is identified with

(4.18)

∇′ :
H0
(∑∑

kν=1 Ω
1
X

(∑N
ν=1(kν + 1)Dν

)
(P )
)

H0 (Ω1
X(D)(P ))

−→
H0
(∑∑

kν=2 Ω
2
X

(∑N
ν=1(kν + 1)Dν

)
(P )
)

H0
(∑∑

kν=1 Ω
2
X

(∑N
ν=1(kν + 1)Dν

)
(P )
) .

So we have

H0(∇′OX(D)(P )) ∼= Ker∇′

∼=

∇−1

∇H0

 ∑
∑
kν=1

Ω1
X

(
N∑
ν=1

(kν + 1)Dν

)
(P )

 ∩H0

 ∑
∑
kν=1

Ω2
X

(
N∑
ν=1

(kν + 1)Dν

)
(P )


H0(Ω1

X(D)(P ))
,

(4.19)

where ∇ is regarded as the mapping of H0

(∑∑
kν=1 Ω

1
X

(∑N
ν=1(kν + 1)Dν

)
(P )

)
into

H0

(∑∑
kν=2 Ω

2
X

(∑N
ν=1(kν + 1)Dν

)
(P )

)
. From the sheaf mapping ∇′ : OX(D)(P ) −→∑∑

kν=1 Ω
1
X

(∑N
ν=1(kν + 1)Dν

)
(P )

Ω1
X(D)(P )

in (4.2), we have the induced mapping∇′ : H0(OX(D)(P )) −→

H0

∑∑
kν=1 Ω

1
X

(∑N
ν=1(kν + 1)Dν

)
(P )

Ω1
X(D)(P )

. Since H1(X,Ω1
X(D)(P )) = 0, we have

H0

∑∑
kν=1 Ω

1
X

(∑N
ν=1(kν + 1)Dν

)
(P )

Ω1
X(D)(P )

 ∼=
H0
(∑∑

kν=1 Ω
1
X

(∑N
ν=1(kν + 1)Dν

)
(P )
)

H0 (Ω1
X(D)(P ))

,

and by this isomorphism we may identify the above induced mapping ∇′ with the composition

H0(OX(D)(P ))
∇−→ H0

 ∑
∑
kν=1

Ω1
X

(
N∑
ν=1

(kν + 1)Dν

)
(P )


−→

H0
(∑∑

kν=1 Ω
1
X

(∑N
ν=1(kν + 1)Dν

)
(P )
)

H0 (Ω1
X(D)(P ))

.
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Then we have

∇′H0(OX(D)(P )) ∼=
∇H0(OX(D)(P ))

∇H0(OX(D)(P )) ∩H0(Ω1
X(D)(P ))

∼=
∇H0(OX(D)(P )) +H0(Ω1

X(D)(P ))

H0(Ω1
X(D)(P ))

.

(4.20)

Substitution of (4.19) and (4.20) into (4.16) gives us the desired formula for H1(X,OX(P )) of

Proposition 4.2.

Next, applying Corollary 4.4 to (4.17) we have

0 −→H0(∇′OX(D)(P )) −→ H0

∑∑
kν=1 Ω

1
X

(∑N
ν=1(kν + 1)Dν

)
(P )

Ω1
X(D)(P )


∇′

−→ H0

∑∑
kν=2 Ω

2
X

(∑N
ν=1(kν + 1)Dν

)
(P )∑∑

kν=1 Ω
2
X

(∑N
ν=1(kν + 1)Dν

)
(P )

 −→ H1(∇′OX(D)(P )) −→ 0.

(4.21)

Since the mapping ∇′ in (4.21) is identified with (4.18), we have

Im∇′ ∼=
∇H0

(∑∑
kν=1 Ω

1
X

(∑N
ν=1(kν + 1)Dν

)
(P )
)

∇H0

 ∑
∑
kν=1

Ω1
X

(
N∑
ν=1

(kν + 1)Dν

)
(P )

 ∩H0

 ∑
∑
kν=1

Ω2
X

(
N∑
ν=1

(kν + 1)Dν

)
(P )



∼=

∇H0

 ∑
∑
kν=1

Ω1
X

(
N∑
ν=1

(kν + 1)Dν

)
(P )

+H0

 ∑
∑
kν=1

Ω2
X

(
N∑
ν=1

(kν + 1)Dν

)
(P )


H0
(∑∑

kν=1 Ω
2
X

(∑N
ν=1(kν + 1)Dν

)
(P )
) .

(4.22)

Combining (4.21) with (4.15), we have

0 −→Im∇′ −→ H0

∑∑
kν=2 Ω

2
X

(∑N
ν=1(kν + 1)Dν

)
(P )∑∑

kν=1 Ω
2
X

(∑N
ν=1(kν + 1)Dν

)
(P )

 −→ H2(OX(P )) −→ 0.(4.23)

Applying (4.22) to (4.23), we have

H2(X,OX(P )) ∼=

H0

∑∑
kν=2 Ω

2
X

(∑N
ν=1(kν + 1)Dν

)
(P )∑∑

kν=1 Ω
2
X

(∑N
ν=1(kν + 1)Dν

)
(P )


Im∇′

∼=

H0

 ∑
∑
kν=2

Ω2
X

(
N∑
ν=1

(kν + 1)Dν

)
(P )


∇H0

 ∑
∑
kν=1

Ω1
X

(
N∑
ν=1

(kν + 1)Dν

)
(P )

+H0

 ∑
∑
kν=1

Ω2
X

(
N∑
ν=1

(kν + 1)Dν

)
(P )

 ,

which is the desired formula for H2(OX(P )), and Proposition 4.2 is proved completely.

Our main theorems in this paper are as follows:
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Theorem 4.5. Assume that N < N ′ and not all of the four quantities 1
2

∑N ′

k=N+1 a2k−1ck,
1
2

∑N ′

k=N+1 a2kck,
1
2

∑N ′

k=N+1 b2k−1ck,
1
2

∑N ′

k=N+1 b2kck are integers. Then we have H2(M,L) ∼=
E20

∞ ⊕ E11
∞ , where

E20
∞

∼= H0(X,Ω2
X(D)(P )),

E11
∞

∼=

H0

X, ∑∑
kν=1

Ω2
X

(
N∑
ν=1

(kν + 1)Dν

)
(P )


∇H0(X,Ω1

X(D)(P )) +H0(X,Ω2
X(D)(P ))

.

Moreover, dimE20
∞ = N2 and dimE11

∞ = N .

Proof. The theorem follows immediately from Propositions 3.5 and 4.1.

Theorem 4.6. Assume that either N = N ′, or N < N ′ and all of the four quantities
1
2

∑N ′

k=N+1 a2k−1ck,
1
2

∑N ′

k=N+1 a2kck,
1
2

∑N ′

k=N+1 b2k−1ck,
1
2

∑N ′

k=N+1 b2kck are integers. Then

we have H2(M,L) ∼= E20
∞ ⊕ E11

∞ ⊕ E02
∞ , where

E20
∞

∼=
H0(X,Ω2

X(D))

∇H0(X,Ω1
X⟨D⟩)

,

E11
∞

∼=

H0

X, ∑∑
kν=1

Ω2
X

(
N∑
ν=1

(kν + 1)Dν

)
∇H0

X, ∑∑
kν=1

Ω1
X

(
N∑
ν=1

(kν + 1)Dν

) ∩H0

X, ∑∑
kν=1

Ω2
X

(
N∑
ν=1

(kν + 1)Dν

)+H0(X,Ω2
X(D))

,

E02
∞

∼=

H0

X, ∑∑
kν=2

Ω2
X

(
N∑
ν=1

(kν + 1)Dν

)
∇H0

X, ∑∑
kν=1

Ω1
X

(
N∑
ν=1

(kν + 1)Dν

)+H0

X, ∑∑
kν=1

Ω2
X

(
N∑
ν=1

(kν + 1)Dν

) .

Moreover, dimE20
∞ = N2 −N , dimE11

∞ = 2N − 1, and dimE02
∞ = 1.

Proof. It suffices to prove the formula for E11
∞ . The others are immediate consequences from

Propositions 3.6 and 4.2. Since E01
2 = 0 by Lemma 3.7, the mapping ∇ : H1(OX) → H1(Ω1

X⟨D⟩)
is injective. Let us consider the composition

∇−1

∇H0

 ∑
∑
kν=1

Ω1
X

(
N∑
ν=1

(kν + 1)Dν

) ∩H0

 ∑
∑
kν=1

Ω2
X

(
N∑
ν=1

(kν + 1)Dν

)

∇−→ H0

 ∑
∑
kν=1

Ω2
X

(
N∑
ν=1

(kν + 1)Dν

) −→

H0

 ∑
∑
kν=1

Ω2
X

(
N∑
ν=1

(kν + 1)Dν

)
∇H0(Ω1

X(D)) +H0(X,Ω2
X(D))

.

(4.24)

Here we need the following
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Lemma 4.7.∇H0

 ∑
∑
kν=1

Ω1
X

(
N∑
ν=1

(kν + 1)Dν

) ∩H0

 ∑
∑
kν=1

Ω2
X

(
N∑
ν=1

(kν + 1)Dν

)
∩ {∇H0(Ω1

X(D)) +H0(X,Ω2
X(D))} = ∇H0(Ω1

X(D)).

Proof. The inclusion⊃ is obvious. Let us show the converse. Let a be an element in∇H0(Ω1
X(D)),

and b be an element inH0(Ω2
X(D)). Then we have a+b ∈ H0

(∑∑
kν=1 Ω

2
X

(∑N
ν=1(kν + 1)Dν

))

automatically. Assume that a + b ∈ ∇H0

(∑∑
kν=1 Ω

1
X

(∑N
ν=1(kν + 1)Dν

))
. Since a ∈

∇H0(Ω1
X(D)), we have b ∈ ∇H0

(∑∑
kν=1 Ω

1
X

(∑N
ν=1(kν + 1)Dν

))
. Then we can set b = ∇c

for some c ∈ H0

(∑∑
kν=1 Ω

1
X

(∑N
ν=1(kν + 1)Dν

))
. By comparing the orders of poles of b

and ∇c, we see that c ∈ H0(Ω1
X(D)), which proves Lemma 4.7.

Let us complete the proof of Theorem 4.6. By (4.24) and Lemma 4.7 we have

∇H1(X,OX)

∼=
∇H0

(∑∑
kν=1 Ω

1
X

(∑N
ν=1(kν + 1)Dν

))
∩H0

(∑∑
kν=1 Ω

2
X

(∑N
ν=1(kν + 1)Dν

))
∇H0(X,Ω1

X(D))

=

∇H0

(∑∑
kν=1 Ω

1
X

(∑N
ν=1(kν + 1)Dν

))
∩H0

(∑∑
kν=1 Ω

2
X

(∑N
ν=1(kν + 1)Dν

))

∇H0

 ∑
∑
kν=1

Ω1
X

(
N∑
ν=1

(kν + 1)Dν

) ∩H0

 ∑
∑
kν=1

Ω2
X

(
N∑
ν=1

(kν + 1)Dν

) ∩ {∇H0(Ω1
X(D)) +H0(Ω2

X(D))}

∼=
∇H0

(∑∑
kν=1 Ω

1
X

(∑N
ν=1(kν + 1)Dν

))
∩H0

(∑∑
kν=1 Ω

2
X

(∑N
ν=1(kν + 1)Dν

))
+H0(Ω2

X(D))

∇H0(Ω1
X(D)) +H0(Ω2

X(D))
.

Combining the preceding formula with Proposition 4.1, we have

E11
∞

∼=
H1(Ω1

X⟨D⟩)
∇H1(OX)

∼=

H0

 ∑
∑
kν=1

Ω2
X

(
N∑
ν=1

(kν + 1)Dν

)
∇H0

 ∑
∑
kν=1

Ω1
X

(
N∑
ν=1

(kν + 1)Dν

) ∩H0

 ∑
∑
kν=1

Ω2
X

(
N∑
ν=1

(kν + 1)Dν

)+H0(Ω2
X(D))

.

Theorem 4.6 is proved completely.
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