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80 Introduction

Let X = C?/(Z? + 7Z?) be a principally polarized abelian surface, where C? denotes the
additive group of complex column vectors ?(21,22) (21,22 € C, C being the set of complex
numbers), Z? the subgroup of C? consisting of integral column vectors *(ny,n2) (n1,ne € Z, Z
being the set of integers), and 7 a complex symmetric square matrix of degree 2 of which the
imaginary part is positive definite. We assume that X is not a direct product of two elliptic curves
(with canonical polarization). Then it is well-known (e.g., [2]) that X is the Jacobian variety
of a Riemann surface of genus 2. Let N and N’ be natural numbers satisfying the condition
2< N <N’ Letay,...,aons,b1,...,bans be 4N’ real numbers. We assume that the N’ theta

A2k —1 A2k

divisors defined by the equations 0 ] (z1,22;7) =0 (k=1,...,N’) are different from

2k—1 b2k

!/
each other, where 6 [Z Z/} (21, 22; 7) denotes a theta function (§1). For each k (1 < k < N), let

a2k —1 A2k

Dy, be the theta divisor corresponding to the theta function 6 [b .
2k—1 02k

1 (21,22; 7). Throughout

this paper we assume that the divisor D = Zgzl Dy, has normal crossings. We set M = X — D.
Let ¢1,...,cny be N complex numbers but not integers such that Z]kvzl c, =0. Let cny1, ... Cn7

be non-zero integers such that Ziv:/ N41 ¢k = 0. We define a multiplicative function T'(z1, 22)

by T'(z1,22) = [, 0 ) ) (21,22;7)%. Let L be a locally constant sheaf of rank one
2k—1 b2k

on M defined by a complex one-dimensional representation of the fundamental group 71 (M, *)

N’ |ﬁ2k—1 a2k

by the multivalued meromorphic function T'(z1,22)~! on M. The purpose of this paper is to
study the twisted cohomology of the open dense subset M of X, i.e., the cohomology groups
HF(M, L) of M with coefficients in £. The twisted cohomology (and homology) of complement
of hyperplanes in a complex projective space is already studied in detail, and it gives us the
foundation of the theory of hypergeometric integrals of several variables (e.g., see [1]). Our
study in this paper is an analogue of the study for complement of hyperplanes in a complex
projective space. In a previous paper [11] (see also [17]), we studied twisted cohomology of
a one-dimensional punctured complex torus in connection with an integral representation on a
complex torus of hypergeometric function. So it seems very natural to us to proceed to the study
for the two-dimensional space M.

The starting point of our study is an isomorphism H?(M, L) = HP(X,Q%(D)(P),V) be-



tween cohomology and hypercohomology (Corollary 3.2), where V denotes a covariant differ-

bag—1 bag
P a holomorphic line bundle on X associated to the multivalued function Tg(zth)_1 with

To(21,22) = Hk:N—H 0
bor—1 bag

arithmic forms over X with logarithmic pole along D with coefficients in P. Note that P belongs

entiation given by Vi = dyp + d(logT1) A ¢ with Ti(z1, 22) = Hivzl 0 la%l a%] (%1, 22;T)%F,

G2h—1 42k (#1,22;7)%%, and (2% (D)(P), V) a complex of sheaves of log-

to the Picard variety of X. The isomorphism above follows from the fact that the two complexes
of sheaves over X, (Q%(D)(P),V) and (5.E4,(P|M), V), where j denotes the inclusion M — X,
and &Y, (P|M) the sheaf of smooth p-forms over M with coefficients in P|M the restriction of P
to M, are quasi-isomorphic to each other (Proposition 3.1). This fact is obtained as a corollary
of a proposition proved by Deligne ([3], II, Cor. 3.14), while we will give an elementary, direct
proof of this fact in Appendix to §3. The vanishing of the cohomology groups H? (M, L) (p # 2)
is an immediate consequence of the vanishing of the corresponding hypercohomology groups ([5],
§2, Cor. 2.13). In Appendix to §3 we will also give an elementary proof of the vanishing of
hypercohomology groups by exploiting the logarithmic Dolbeault complex (Proposition 3.3).

The main task of this paper is to study the structure of the non-vanishing cohomology group
H?(M, L) at length. To this end we consider a spectral sequence with EY? = H4(X, Q% (D)(P))
abutting to the hypercohomology groups H*(X, Q% (D)(P),V): EY? = HI(X, 0% (D)(P)) =
HP (X, Q% (D)(P),V). Degeneration of this spectral sequence depends on whether the line
bundle P is holomorphically trivial (i.e., P = C), or it is topologically trivial (i.e., ¢1(P) = 0)
but not holomorphically. Namely, if P is not holomorphically trivial, the spectral sequence de-
generates at B (Proposition 3.5); if P = C| it degenerates at E5 (Proposition 3.6). Moreover, in
either case, we can determine explicitly the values of all the terms E?J, which give us information
on the structures of H*(M, L) including H%(M, £). These facts are proved based on knowledge
about the structures of homology groups of M, which we study in detail in §2 (see Propositions
2.4 and 2.8). To obtain information on how to select meromorphic 2-forms realizing a basis of
H?(M, L), we consider two resolutions (4.1) and (4.2) of the sheaves Q% (D)(P) and Ox(P)
(= Q%(D)(P)) of logarithmic differential forms introduced by Deligne [3], II, §3, Prop. 3.13.
Applying Mumford’s vanishing theorem (Mumford [12], III, §16) to the long exact sequences of
cohomology groups associated with those two resolutions, we have “analytical expressions” of
the three groups H'(X, Q% (D)(P)) and H?(X,0x(P)) (p = 1,2) generated by meromorphic
2-forms with poles of lower order (Propositions 4.1 and 4.2). Combining these results, we have,
according as P is holomorphically trivial or not, two direct sum decompositions of the group
H?*(M, L), each component of which is generated by meromorphic 2-forms of which the divisors
are less than or equal to a prescribed effective divisor D’ with support supp(D’) contained in D.
This is the main result of this paper (Theorems 4.5 and 4.6).

As we have already mentioned, we need to know the structures of homology groups of M in
the process of investigating the degeneration of the spectral sequence (Lemma 3.4). To this end
we determine in §2 the structures of homology groups of M with coefficients both in the constant
sheaf Z (therefore in C) and in the locally constant sheaf P|M, where P denotes the dual of
the locally constant sheaf P over X associated to the holomorphic line bundle P, and 75|M its

restriction to M (Propositions 2.4 and 2.8). An exact homology sequence obtained by combining



a usual exact homology sequence of a pair with the Thom isomorphism is useful in studying
our homology groups (Proposition 2.1). The construction of homology classes generating our
homology groups is based on Pontryagin product, some fundamental properties of which we

review in §1.

81 Preliminaries

Let X be a complex torus of dimension g(> 1). Following [2], we first review the definition
and some properties of the Pontryagin product of X. Let o : Ay, — X and 7 : A; — X be
singular p— and g—simplices of X, respectively, where A, denotes a standard p—simplex. We
define a singular (p + ¢)—chain o * 7 : Ay x Ay — X by the equation (o * 7)(s,t) = o(s) + 7(t)
for s € A, and t € Ay, where the addition in the right hand side is the one coming from the
group structure of X. By extending the operation * by bilinearity, we define a bilinear mapping
%1 Sp(X,Z) x Sy(X,Z) = Sp+q(X, Z) where S,(X, Z) denotes the group of singular p—chains
of X, i.e., the abelian group generated over Z by all the singular p—simplices of X. We call
the operation * the Pontryagin product of singular chains of X. Then we have the following

fundamental properties:

Lemma 1.1. Let 0,0’ be singular p—chains of X, and 7, v be singular g— and r—chains of X

respectively. Let m,m’ be integers. Then the following formulas hold:

(
(ii) (mo+m/c’)«T=m(ox7)+m/ (¢’ *7),
(iii) O(o * 1) = (00) * 7 + (—1)Po * (O7),

(iv) ox7 = (=1)PIr % 0,

D) (cx7)xv=0%*(T*x0),

(v) 0% 0 = 0 %x0 = o, where 0 denotes the unit element of the abelian group X regarded as a

0—simplex.

Let o and 7 be p— and g—cycles respectively. We denote their homology classes by [o] €
H,(X,Z) and [r] € Hy(X,Z). We define a new homology class [o] * [7] € Hpy4(X, Z) by
the well-defined equation [o] * [7] = [0 * 7]. This definition induces a bilinear operation * :
H,(X,Z)x Hy(X,Z) - H,14(X, Z), which we call the Pontryagin product of homology classes
of X. As is well-known, the Pontryagin product coincides with the composition H,(X, Z) x
Hy(X,Z) = Hp1 (X xX,Z) = Hpy4(X, Z), where the first arrow represents the cross product
and the second represents the operation induced from the addition of the abelian group X. The

following formulas are fundamental:

Lemma 1.2. Let 0,0’ be p—cycles of X, and 7,v be ¢— and r—cycles of X, respectively. Let

m,m’ be integers. Then we have:

(i) (o] * [1]) * [o] = [o] * (7] * o),
*

(i) (mo] +m'[o"]) * [7] = m([o]
(iii) [o]  [7] = (=1)P*[7] * [],
(

iv) 0 [o] = [o] * 0 = [o], where 0 denotes the unit element of X.

[r]) +m/([o"] * [7]),

Let X be a principally polarized abelian variety of dimension g(> 1). Without loss of generality



we may set X = CY9/(Z9+1Z9), where 7 denotes a complex symmetric square matrix of degree

g of which the imaginary part is positive definite and we regard C'9 as the set of column vectors

Y(z1,..., zg) with standard complex coordinates z1, ..., z4. If weset 7 = (73;),4,j = 1,..., g, then
we have 2g vectors Ay = (1,0,...,0),...,0; = “(0,...,0,1), Ag41 = “(T11,---,Tg1)s-- s Aag =
Y(T1g,...,Tgg) as a symplectic basis of the lattice Z9 + 7Z9 for the principal polarization.

By abuse of notation we regard Ai,..., A2, as a basis of the homology group Hi(X,Z). Let
x1,...,T24 be (not necessarily standard) real coordinates on C9, which is regarded as a real vec-
tor space of dimension 2g, corresponding to the basis A1, ..., Agg. Then the 1-forms dx1, ..., dza,
form a basis of the cohomology group H'(X,Z), and satisfy the conditions || \ dx; = 6.
For an ordered subset I = {i1,...,4,} (where i1 < --- < ip) of the set {1,...,’29}, we set
A = Xgy k- x N, and dop = dag, Ao Adxg,. If T = (), we set \; = o (a point) and dz; = 1.

The following result is well-known:

Lemma 1.3. The set {dz; | #I = p} forms a basis of the cohomology group H? (X, Z); the set
{A1 | #I = p} forms a basis of the homology group H,(X, Z). They are dual bases each other.

Moreover, the union Up_o{A; | #I = p} gives a cellular decomposition of X.

For an ordered subset I C {1,...,2g} let I° be the complementary ordered subset of {1,...,2g}
such that INI° =0 and TUI° ={1,...,2g}. We define the sign £(I) of an ordered subset I by
the equation e(I)dxr Adxre = dxy Adxgyi A--- Adxg Adxag. We have e(I) = £1. Let P be the
isomorphism of H,(X, Z) onto H?*97?(X, Z) induced by Poincaré duality.

Lemma 1.4. ([2]) For an ordered subset I such that #I = p, then P(\;) = (=1)9Pe(I)dxro.

Foru € H,(X,Z) and v € Hy(X, Z), we define the intersection product u-v € Hp,q24(X, Z)
by u-v = P~Y(PuA Pv). If in particular p+¢q = 2g, then u-v represents the intersection number
(e Z).

In the rest of this section let us restrict ourselves to the case where g = 2. Namely, let X be a
principally polarized abelian surface. Then, as is well-known ([2]), X is either a two-dimensional
Jacobian variety or the direct product of two complex tori of dimension one. In what follows we

assume that X be a two-dimensional Jacobian variety. Let a1, as, b1, b be real numbers. We set

7= "™ ™2). The theta function with characteristics ([9,13]) is given by
T21 T22
b
6 [2 Zj (21,29;7) = n§2exp [m’ K (n—i— %) T (n—|— g) + 2mi * (n—i— g) (z + 2)] ,

b
where n, z, a, b denote column vectors: n = <n1>, z = <21>, a= <a1)’ b= ( 1). Then the
n2 22 a ba



following formulas hold:

9 a1 ag
b1 by

ay a2
b1 ba

(314—1’22;7):67”.@19 [ ‘| (21722;7—)u
ay ag

b1 b

a1 ag ;
0 21,29+ 1;7) = ™20
lbl 62‘| ( ' ’ T) [

] (21, 22;7),

ay az

b1 b2 bl b2

0 al ag
b1 b2

0 |f11 a9

. _ ,—2mizy—miTi1 —7ib .
(21 + 711,22 +T21;7) =€ ! " 19[ ] (21,225 7),
ap az

(21 4 Ti2, 22 + To2;T) =€
by ba

—2mizo —TWiToe —Wibo 0 [

] (21,22;7'),

ay az ; ai az
0 —21, —29;T) = erilarbitazba)g 21, 29;T),
l%]( 1 —22i7) " (i)

a1 + 2mq az + 2meo
b1 + Qm’l bs + 2m’2

ap az

b1 b2

. ! ’
(21, 290;7) = eTilarmitazma)g l

](21,2’2;7’),

where my, ma, m}, m,, denote integers. A theta divisor D is by definition the subset of X defined

a
by an equation 6 (Zl b2 (21,22;7) = 0. By the general theory of theta divisors on X, D is a
1 b2

closed algebraic curve in X with no singularity, and therefore it is a compact Riemann surface.

Lemma 1.5. A theta divisor D, regarded as a compact Riemann surface, is of genus 2. The
self intersection number D? of D is equal to 2. If D’ is another theta divisor, the intersection
number D - D' = 2.

Proof. Let [D] be the line bundle on X corresponding to a theta divisor D. Then [D] is a principal
polarization on X, and the Euler number x([D]) equals one by the general theory of cohomology
of line bundles on X. By the Riemann-Roch theorem (e.g., [2,12]), we have D? = 2x([D]) = 2.
Since the canonical class Kx of the abelian surface X is equal to zero, we have the genus of
D, g(D) = %(KX -D + D?) + 1 = 2 by the genus formula. Since the product of line bundles
[D] - [D']7! belongs to the Picard variety of X, the Chern classes c;([D]) and c¢;([D’]) coincide
with each other. By the formula of intersection number, we have D-D’ = [, ¢1([D]) Aei([D']) =
Jx er([D)) Aei([D]) = D? =2.

It is easy to see that any two of theta divisors are related to each other by parallel translation
with respect to the real parameters ai, as, by, bs of the theta function. Therefore any theta divisor
defines an identical homology class in Ho(X, Z). By abuse of notation, we denote the homology
class in Ho(X, Z) corresponding to a theta divisor D by the same symbol D. The next lemma

is a corollary of a general theorem in [2].
Lemma 1.6. We have D = —)\; x A3 — Ay * A4 as the equality in Hy(X, Z).
After simple calculation we have the following formulas:

Lemma 1.7. (i) D - (A1 % Ag * A3) = Ag,
(ii) D - (A1 * dg* Ag) = = Ay,
(lll) D- ()\1 * )\3 * )\4) = —>\4,



(iV) D~<)\2*)\3*)\4):)\3,
(V) D-(MxX)=D-(MaxX3) =D -(A3xXAg)) =D -(Agx\) =0,
(Vi)D'()\l*)\g):D'()\Q*)\4):1.

82 Homology of the complement of theta divisors

Let X be a connected complex manifold of dimension g(> 2) which is an open dense subset
of a connected compact complex manifold X with inclusion ¢ : X < X. Let Y be a connected
complex hypersurface of X of which the closure Y in X is a connected compact complex hyper-
surface of X. We have Y N X = Y. We assume that for every point y € Y — Y there exist an

open neighborhood O of y in X and a complex local coordinate system (z1,...,z,) of y on O
such that the point y is expressed by (z1,...,24) = (0,...,0), ONY = {p € O | z,(p) = 0},
and ON(X = X)={pe€ O] z(p) = =z-1(p) = 0}. Let S be a locally constant sheaf

over X with stalk G, where G denotes an abelian group containing the group of integers Z as a
subgroup. We denote the restriction of S to the submanifold X of X by the same symbol. Let
us consider the exact homology sequence of the pair (X, X —Y) with coefficients in S:

o H(X Y SIX-Y) S (X S) -5 Hy(X, X-V38) -5 Hy y(X-V;S|X-Y) 2

where S| X —Y denotes the restriction of S to X =Y. Let T be a tubular neighborhood of ¥ in X.
By definition T is a closed subset of X containing Y, and is identified topologically with the total
space of a subbundle of the normal bundle of Y in X having as fibers real two-dimensional closed
disks with a common small radius with respect to a Riemannian metric in the normal bundle.
We denote by 7 the projection of T onto Y. We set 7=1(Y) = T. Obviously the closure of T in
X coincides with T. By deforming fibers of T diffeomorphically with Y fixed, we may assume
without loss of generality that T N X = T. By excision (e.g., [7,15]), we have an isomorphism
H,(X,X-Y;8) =2 H,(T,T-Y;S|T), where every fiber of the fiber-bundle pair = : (I, T-Y) —
Y is identified with (D2, S') topologically, where D? denotes a closed disk and S' = 9D?. Note
that the complex manifold X and its submanifolds (with boundary) are orientable, and that
orientations of submanifolds of X are induced from restrictions of an orientation of X. Since
Y is a retract of T, we have Hay o(Y;Z) = Hay o(T; Z). By the Poincaré-Lefschetz duality
([7,15]), we have Hoyo(T; Z) = H*(T,0T;Z) = H*(T,T — Y; Z). From these isomorphisms it
follows that Hay 2(Y; Z) =2 H?(T,T—Y; Z). Let U be the cohomology class in H2(T,T—Y; Z)
corresponding to the fundamental class Y € Ha, 2(Y;Z) = Z (by abuse of notation). U is
called a Thom class of the fiber-bundle pair 7 : (T,7 —Y) — Y. Then we have the Thom
isomorphism ® : Hy,(T,T - Y;S|T) — Hp—2(Y;S|Y), which is given by ®(z) = m.(z ~ *U) for
z € Hy(T,T—Y;S8|T), where .*U € H*(T,T—Y; Z), m, is an isomorphism of H,_»(T; S|T') onto
H, »(Y;S8]Y), and ~ denotes the cap product, i.e., ~: Hy(T,T—Y;S|T) x H*(T,T-Y; Z) —
H, >(T;S|T). Then we have

Proposition 2.1. The following exact sequence holds:
L HY (XY S|X-Y) =25 Hy(X:8) — Hy_o(Y;S|Y) -2 Hy (XY 8| X-Y) &5 ..

where ¥ and p are given by ¥ = ® 0 and p = 9 o &1, respectively.



The exact sequence with & = C was already introduced by Hodge-Atiyah [8] and Leray [10].

Remark 2.1. By the definition of cap product we see that the following diagrams are commutative:

Hy(X,X —Y;8) —— H (T, T-Y;8|T) =% H, o(T;8IT) Y T

l l ! !

Hy(X, X — V38) —=s H(T,T—ViS|IT) —Ys H, yTisT) *° 7 Wi U=elzm0l)
Moreover we have t,z —~ U = 1,2-Y by a fundamental property of the intersection product, where

the product .2z -Y is regarded as the image of the pair (t.z,Y) in H,(T,9T;S|T) x Hgg_g(T; Z)

by the composition H,(T,0T;S|T) x Hay—o(T; Z) D, H?9=P(T;S|T) x H¥(T,0T;Z) —
H?9=PT2(T 0T;S|T) L H, »(T;8|T), PD denoting the Poincaré duality, and — the cup

product (for the detail, see [7]). For this reason, when X = X, we write by abuse of notation
U(z)=2-Y for z € Hy(X;S).

In the rest of this paper we denote by X a Jacobian variety of dimension two: X = C?/(Z? +
7Z?%). Let P be a holomorphic line bundle on X with ¢;(P) = 0. Let f(z1,22) be an arbitrary
global meromorphic section over X of the line bundle P. By the Appell-Humbert theorem,
we may assume without loss of generality that f(z1,22) satisfies the following transformation

formulas:

e 2 f (21, 22),
Qﬂiﬁf(zh 22)
™ f (21, 22),

¥ f(z1, 20),

flz1+1,22)
flz1,22 +1)
) =
) =

f(z1 + 711, 22 + T21
f(z1 + Tiz, 22 + To2

where «, 8,7, denote real numbers depending only on the line bundle P, not on global mero-

morphic sections. Let Ox (P) denote the sheaf of local sections of P.

Lemma 2.2. Let I'(X, Ox(P)) be the vector space of sections of the sheaf Ox(P) over X. A
necessary and sufficient condition for I'(X, Ox(P)) # 0 is that the constants «, 3,7, are all

integers. Moreover, in this case we have I'(X,Ox(P)) = C.

Proof. Let f(z1,22) be a section in I'(X,Ox(P)). We set g(z1,22) = e2mi@s1+2mifiz f(5) 2).

Then we have

(2.1) g(z1+ 1, 22) = g(21, 22 + 1) = g(21, 22),
(2.2) 9(2'1 + 711, 29 + 7_21) — 627”'047'11+27riﬁ7’21+27ri’)’g(21,22)7
(23) 9(21 + Tio, 20 + 7_22) 27rza712+27r1l3722+27rz<$g(21’ 22).

The periodicity (2.1) allows us to expand g(z1, z2) into a Fourier expansion of the form

(2.4) g(z1,20) = Z cwe2umz1+2ym'22
(n,v)€Z?

where ¢,,,’s denote constants. Combining (2.2) with (2.4) we have the relation

2umiT11+2UTiTe1 2miaT11+2mi BT +271
(25) e HTiT11 21 e 11 BT21 2



for each (u,v) € Z?2. Similarly, combining (2.3) with (2.4), we have

2UTiTI2+2UT T 2miaTio+2mi BT +2m10
(26) Cuve HTIT12 2 =c,e 12 BT22

for each (u,v) € Z2. Then we see that g(z1, 22) # 0 if and only if there exists a pair (uo, 1) € Z2
such that

(2.7) (o — )1+ (o — B)To1 —v € Z
and
(28) (ILLQ — 04)7'12 + (l/() — 5)7’22 —-6€Z.

Since the imaginary part of the matrix 7 is positive definite, it follows from (2.7) and (2.8) that
po—a=1vy—=0andv,d € Z. Therefore we have by (2.4) g(z1,22) = gy, e2H0™i=1H2r0miz2

with an arbitrary constant c,,,,. This completes the proof of Lemma 2.2.

Let NV be an integer such that N > 1. Let a; ..., aan, b1, - ..,bon be real numbers. We denote

a2k—1 A2k

by Dy, the theta divisor corresponding to the theta function ] (21,29;7), k=1,...N.

bak—1 bag,
We assume that the IV theta divisors Dy’s are different from each other, and that the divisor

D= E,JCVZI Dy has normal crossings. We set M = X — D, which is an open dense subset of X.
Lemma 2.3. x(M) = N(N +1).

Proof. Since X is homeomorphic to the direct product S x S' x S' x S, it follows from
X(S%) = 0 that x(X) = 0, and therefore x(M) = x(X) — x(D) = —x(D). We set 131: D;.
For k > 2 let li be the open subset of Dy obtained by removing from Dy 2k — 2 intersection
points with Dy U --- U Dg_1. Since D coincides with the disjoint union Ufc\;l Dok7 we have
X(D) = SN x(Dy). Since y(Dy) = —2k, we have x(M) = — 2 y(Dy) = N(N +1).

Let P be the locally constant sheaf over X associated to the holomorphic line bundle P with
c1(P) = 0 introduced above. P has the one-dimensional complex vector space C' as stalk. Let P
be the dual of P: P = Hom(P, C). P is also a locally constant sheaf. Let P|M be the restriction
of P to M. Our study of the homology groups Hp(M,75|M) consists of two cases. In the first
case we study the homology with coefficients in the constant sheaf P = C'. To this end it suffices

to consider the case where the coefficients are in Z.

Proposition 2.4. Hy(M,Z) = Hs(M,Z) = 0, Hy(M, Z) = ZN"+¥2N+2 H (M, Z) = ZN+3,
Ho(M,Z) =~ Z.

Proof. We proceed by induction on N. Assume that N = 1. We have D = Dy and M = X — D;.
By Proposition 2.1 we have the following exact sequence:

0— Hy(M,Z)— Hy(X,Z) - Hy(D,Z) — H3(M,Z) — H5(X,Z) — H(D, Z)

— Hy(M,Z) — Hy(X,Z) — Ho(D,Z) - Hi(M,Z) — Hi(X,Z) — 0.

Since H4(X,Z) = Hyo(D,Z) = Z, it follows immediately that H4(M,Z) = 0. The mapping
Hs5(X,Z) — Hi1(D,Z) is given by u — u - D for v € H3(X,Z), and it is, by Lemma 1.7, an



isomorphism. Namely we have H3(X, Z) = H,(D, Z) = Z*, and it follows that H3(M, Z) = 0.
Similarly the mapping Hs(X,Z) — Ho(D,Z) is given by u — w - D for u € Hy(X, Z), and
it is, by Lemma 1.7, a surjection. So we have the short exact sequence 0 — Hy(M,Z) —
Hy(X,Z) — Ho(D,Z) — 0. By Lemma 1.3 we can choose as a basis of Hy(X, Z) Ay % Ag, Ay *
A3, A1k A, Agx A3, Ao x g, Az * Ag. It follows that Ho(M, Z) is of rank 5 and is generated by
A1k A2, Aok Az, AgxkAg, Agx A, ApxA3— Aox Ay, In fact we can construct a 2-cycle defining the
homology class A\; * A3 — Aa * Ay (cf. Remark 2.2). Finally we have H,(M, Z) = H,(X, Z) = Z*
and Ho(M,Z) = Z. The generators A1, A2, A3, Ay of Hy(X,Z) also generate Hy(M,Z). The
proposition in the case where N = 1 is thus proved.

Remark 2.2. Let us construct a 2-cycle defining the homology class A1 x* A3 — Ao x Ay € Ho(M, Z).
By abuse of notation we regard Ay x A3, A2 x \y € Z3(X,Z). By homologously translating
them appropriately, we may assume that there exists a unique point p € X such that A; * A3 N
Ao * Ay N D = {p} where D = D; is also regarded as a 2-cycle in X. Then we can regard
A1 kA3 — A x Ay = (A x A3 — {p}) — (A2 x Ay — {p}) set-theoretically. Let D;3 be a small
open disk centered at p in the torus Ay * Az, and Doy a small open disk centered at p in the
torus Ag * A\y. Obviously, D3 and Doy intersect transversely at p. We set A\;3 = 0Di3 and
Aoy = ODo4. Then there exists a cylinder Z such that 0Z = A3 — Ao4. In fact we identify the
point p with the origin of C?, and A3, Aoy with the circles (e!?,0), (0,e*) (0 < ¢ < 27) in
C?, respectively. As a cylinder Z with the desired property we can take the 2-dimensional real

0 —sind i
surface with boundary defined by C?S st © ,0<0< 3, 0< ¢ <2nm. Then the
sinff  cos@ 0

2-cycle Ay kA3 —Aax Ay = (A x A3 —{p}) — (Aax Ay —{p}) in Z2(M, Z) is homotopically equivalent
to the closed surface (A1 * A3 — D13) — Z — (A2 % Ay — Day4) of genus 2 in M. In what follows, we
denote this surface by S.

Let us complete the proof of Proposition 2.4. Assume that N > 2. Inductively we set X} =
Xk_1— Dy for every k such that 1 < k < N, where Xy = X. Assume that the proposition holds
for M = X where 1 < k < N — 1. By Proposition 2.1 we have the following exact sequence:

0— H4(XN, Z) — ]‘]4()(]\]_17 Z) — HQ(DN, Z) — 1‘13()(]\]7 Z)
— Hg(XN_l,Z) — Hl(DN,Z) — HQ(XN,Z) — HQ(XN_l,Z)

— Ho(DN, Z) — Hl(XN,Z) — Hl(XNfl, Z) — 0.

Since Hy(Xn-1,Z) = HQ(DON7 Z) = H3(Xn-1,Z) =0, we have Hy(Xn,Z) = H5(Xn,Z) = 0.
Since any 2-cycle in X _; does not intersect with Dy, the mapping Ho(Xn_1, Z) — HO(DON, Z)
is the zero mapping, and so we have the short exact sequence 0 — H; (DON, Z) = Hy(Xn,Z) —
Hy(XN-1,Z) — 0. Since we can regard elements of Ho(Xn_1,Z) as those of Ha(Xn, Z), we
have an inclusion Ho(Xy_1,Z) — Ha(Xy, Z), and therefore the short exact sequence above is
split. Then we have Hy(Xy, Z) = Hl(DON, Z)®Hy(Xn_1,Z) = Z2N+1 @ ZN*+1 o0 ZN*42N+2,
Finally we have the short exact sequence 0 — HO(DON7 Z)— Hy(XN,Z) - Hi(XN-1,Z) — 0.
Since this sequense is also split, we have Hy(Xy, Z) = HO(DON7 Z)oH(XN_1,Z) =2 ZGZN+2 =

ZN+3. Thus, Proposition 2.4 is proved completely.



Remark 2.3. It follows from the short exact sequence 0 — H; (DON,Z) — Hoy(Xn,Z) —
Hy(Xn-1,Z) — 0 that the union of a basis of Hy(Xn_1,Z) with the image of a basis of
Hl(DON,Z) by the injection Hl(DON,Z) — Hy(Xn,Z) forms a basis of Hy(Xn,Z). We set
DONZ Dy —{an1:dn1,aN2, Oy - -5 AN, N—1, G n—1 | Where Dn N D; = {qni, @y, }- Let i and
“i; be l-cycles on Do ~ turning once around gqu; and ¢jy;, respectively, in the counterclockwise
direction. Then we have yn1 + Yy + N2 + V2 + - + v N-1 + Yy y_1 = 0. The homology
classes of Hl(DO N, Z) defined by the four global cycles A1, Aa, A3, Ay and 2N — 3 cycles among
VN1 YNTs N2 Vs - - - ,7N7N,1,7§V7N_1 form a basis of Hl(DON7 Z). We denote by )\EN) the im-
age of \; by the injection H (DON, Z) — Hy(Xn,Z), and by Tn; and T}, the images of yn;
and 7}y, respectively. Since (A1 * Ag * A\y) - D = A1 by Lemma 1.7, we may set )\gN) =1 * )\gp,
where )\(2{;/) denotes a small circle on Ay % Ay centered at p € Ao ¥ \y N Dy. Similarly we have
/\éN) = Ay * )\g), AgN) = A3 % /\é{f), /\le) = Mg * )\g). Note that /\EN) is a torus, i.e., a real
2-dimensional surface of genus one. Let ;n and v,y be l-cycles on D; turning once around
gni and ¢fy;, respectively, in the counterclockwise direction. Then we may set Tn; = Yni * Vin,

Ty = YN; * Vin, which are also tori.

Remark 2.4. Similarly, we may take as a basis of Hy (X, Z) the union of a basis of H1(Xy_1,Z)
with the image of a single generator of HO(DON, Z) by the injection HO(DON, Z) — Hi(Xn,2Z).
This image is realized by, for an arbitrary fixed point p EDO ~ (which determines a homology class
generating HO(DON, Z)), the homology class of Hy(Xy, Z) which is defined by the boundary of

a small disk centered at p and transverse to Dy .

The proof above of Proposition 2.4 depends on ordering of the theta divisors Dq,...,Dy. If
we adopt new ordering to prove the proposition, then we obtain another new basis of Hy(Xy, Z).
Let us study the relations between bases of Ha(Xn, Z). For i # j we set D; N D; = {qij,qi;},
where we understand that ¢;; = ¢;; and qgj = q;Z Moreover we set
Di = Di — {41, i1, @i2: Gia> - -+ Gii—15 95 i—1 Tiri+15Giiv15 - - -GN T - Let vij and 75, be 1-
cycles on D} turning once around ¢;; and qgj, respectively, in the counterclockwise direction.
Then we have ;1 + vj; +vi2 + Yo+ +Yii—1 Vo1 + Viit1 T Viip1 T+ N iy = 0.
The homology classes of Hy(D}, Z) defined by the four global cycles A1, A2, Az, Ay and 2N — 3
cycles among i1, i1, - - - Vi1 ’Yz{,z;p Vii+1, fy;’iﬂ, %N, Yy form a basis of Hy (D}, Z). We
denote by )\,(f) the image of Ay by the injection Hi(D;, Z) — H2(Xn, Z), and by Tj; and T};
(i # j) the images of 7;; and ~;; respectively. As is easily seen, the 2-cycles )\,(f), T;, T}; are tori,
and we have by construction T;; = —T}; and Ti/j = —T](i. Consequently, the group Hy(M, Z) is
generated by A1 * Aa, A2 x Az, Az Ag, Agx A1, S(= A1 % Az — Aax Ag), )\,(:), T;;, T!

17"

Proposition 2.5. The relations in Ho(M, Z) satisfied by the generators above are as follows:

N

(2.9) S =0 for k=1,234
=1

(2.10) > (Ty+T;)=0 for i=1,....N.
1<j<N, j#i
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Proof. For each i, formula (2.10) follows from the relation » 7,y ;4 (75 +7;) =0 on D;. In
order to prove formula (2.9), it suffices to consider the case where k = 1. In this case we may set
)\(f) =\ *)\&), where )\&) denotes a small circle on Ao x Ay centered at the point p; € Aox AgND;.
Formula (2.9) follows from the relation Zf\il )\&) = 0 on the torus Ag * 4.

Let us now proceed to the second case where we study the homology with coefficients in a
locally constant sheaf P different from constant sheaves. Let f(z1,22) be a global meromorphic
section over X of the line bundle associated to P. By Lemma 2.2 we may assume that there
exist four real numbers «, (3,7, d, not all of which are integers, depending only on the line bundle

of P, not on global meromorphic sections, such that f (21, 22) satisfies the following formulas:

27rw¢f(zl7 22)

flz1+1,29)

flz1, 20+ 1) = 2™P f(21, 20),
) =
) =

e f(z1, 22),

27ri6jz(zl7 22)'

f(z1 + 11, 22 + ™21

f(z1 + 712, 22 + T2

We regard the complex torus X as a cell complex with respect to the cellular decomposition given
in Lemma 1.3. Let Ci (X, 75) be the group of cellular k-chains of the cell complex X with coeffi-
cients in the locally constant sheaf P. By the definition of cell-chain, we have an identification
Ch(X,P) = D oxeAr Hy (D%, 51 Z) ® Py, where Ay denotes the set of indices parametrizing
all the k-cells in X, D} and Sffl for each A € A denote copies of the k-dimensional disk D*
and the (k — 1)-dimensional sphere S*~1, respectively, and Py the restriction of P to the k-cell
in X indexed by A € Ay, ([7]). As usual we set Z(X,P) = Ker |Cy(X,P) N Cr—1(X, 75)} and

Br(X,P) =Im [C’kH(X, P) 9, Cir(X,P)|. If, by abuse of notation, we regard A1, A2, A3, A4 as
elements of C;(X,P), we have the following formulas: d\; = (€27 — 1)e, Xy = (€27 — 1)e,
O3 = (e72™7 —1)e, ONs = (=27 —1)e, where o denotes a unique element generating Co (X, P).

Lemma 2.6. For all p >0, H,(X,P) = 0.

Proof. Regarding X = A * Ao * A3 * A4 as a generator of C4(X,P), we have X # 0, from which
it follows that Hy(X,P) = 0. The group C3(X, P) is generated by the four elements Ay * Ay * A3,
A1k Ak Agy, A1 * Az x Ay, Ao x A3 x Ay. By simple calculation we see that a linear combination
(A1 kA% Ag) +y( A x Aok Ag) +2( A1 x Az x Ag) +w(Aax A3 x Ay) with constants x, y, z, w belongs to
Z3(X,P)ifand only if x = A(—e 20 41), y = A(e= 2™V —1), 2 = A(—e>™F41), w = A(e?™* 1)
with an arbitrary constant A. Since (—e ™2™ 4 1)(Ay * Ao * A3) 4+ (e72™7 — 1)(Aq # Ao * M\y) +
(=™ L 1) (A % Az Ag) + (€27 — 1) (Mg % A3 % Ag) = O(A1 * Ao % A3 \y), we have Hz(X,P) = 0.
The group C’Q(X,ﬁ) is generated by the six elements A1 * Ag, A1 % A3, A1 % Ag, Ag x A3, Ao % Ay,
Az*Aq. A linear combination u(Ag*Ag) +v(A1xAg) +Fw( A% Ag) +x(A2xAg) +y(AaxAg) +2(Ag*xAg)

with constants u, v, w, x, ¥y, z belongs to Zo (X, P) if and only if u, v, w, ,y, z satisfy the following

11



linear equations

(279 — Lyu+ (2 — 1) + (2™ — 1w = 0,
(€271 — Tyu— (2™ — 1)a — (™27 — 1)y = 0,
(627ria . 1)1) + (627ri5 o 1)$ . (672‘”6 _ 1)2 — 0’
(2™ — Dw + (> — 1)y + (e >™ — 1)z = 0.

Since not all of a, 8,7, § are integers, we have by easy calculation u(A; * Ag) +v(A1 * A3) +w(Ag *
M) + (Ao % A3) + y(Ag x \y) + 2(A3 * A\y) € Bo(X,P) for an arbitrary solution (u,v,w,z,y, z)
of the linear equations above. Therefore Hay(X,P) = 0. The group C;(X,P) is generated by
A1, A2, A3, Ag. A linear combination zA; + yAs + zA3 + w4 with constants x,y, z, w belongs
to Z1(X,P) if and only if 2, y, 2, w satisfy a single linear equation (e>™® — 1)z + (2™# — 1)y +
(e72™7 — 1)z 4 (e~2™° — 1)w = 0. For an arbitrary solution (z,y, z,w) of this linear equation we
have 21 + )Xo + 23 + why € By (X, P), and therefore Hy(X,P) = 0. Obviously Hy(X,P) = 0.

We regard the theta divisor D; as a cellular subcomplex of X. Then we have
Lemma 2.7. H,(Dy,P|Dy) =0 if p # 1; Hy(Dy,P|D,) = C?.

Proof. The theta divisor D1 = —\; % A3 — A2 % A4 generates the group Co (D1, ’P|D1). Since 0D, #
0, we have Ho(Dy,P|D;) = 0. The group C1 (D1, P|D;) is generated by A1, A2, A3, As. A linear
combination zA; +yAa 4 2A3 + w4 with constants x, y, z,w belongs to Z;(Dy, P|D;) if and only
if z,y, z, w satisfy a linear equation (€2™® — 1)z + (e?™# — 1)y + (e=2™7 — 1)z 4 (e~ 2™ —1)w = 0.
Suppose that two of a, 3,7, d, for examle v and ¢, are not integers. Then, by using the preceding

linear equation, we have

1')\1 + Zl/)\z + Z)\S +’LU)\4 :6_27”% {(6_27”.5 _ 1))\1 _ (627'ria _ 1))\4}
% {(6727”25 — DAy — (27 1A}
z —2mi —27i
g €T = DA — (7T = A

Since (67270 — 1)\y — (€2™F — 1)\g = (2™ — 1)A3 — (2™ — 1)\, + 0Dy, we have

x
TA1 + YAs + 2A3 +why Ee

W_l {(6727%6 o 1))\1 . (627rio¢ o 1))\4}

Yy Ti —27e
g (CH VA Bl CREp VA%

Z —2mi —2mi »
m{(e 2 6—1)>\3—(€ 2 ’Y_]-)>\4} mod Bl(D17P|D1)'
Noting that
] ) 6—27ri6 -1 ) i
(e—2m§ o 1))\1 _ (62ma _ 1))\4 _ i 1{(6—2m'y _ 1))\1 _ (e2ma _ 1))\3}
e _
27

T L e 2mis _)ay — (o2 )0y
e—2miy _ ] ’

we see that the 1-cycle z\; + yAo + 23 + w4 is congruent modulo B (D1, ¢|D1) with a linear
combination of the two 1-cycles (e2™ —1)\; — (e?™® —1)A\3 and (e™ 2™ — 1) A3 — (e~ 2™ — 1))\,
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which are not homologous to each other. Therefore we have Hy(Dy,P|D;) = C? in this case.
Next, suppose that only § is not an integer and the others are integers. By the linear combination

(€727 —1)\a, we see that the 1-cycle

above satisfied by «, 8,7, d, we have w = 0. Since 0D =
A1 + yAe + 23 is congruent modulo Bl(D1,75|D1) with A1 4+ zA3, where A\; and A3 are not
homologous to each other. Therefore we have Hi(Dy,P|D;) = C? in this case, too. Obviously

we have Hy(Dy,P|D;) = 0.
Using the preceding two lemmas, we shall prove the following
Proposition 2.8. H,(M,P|M) = 0if p # 2; Hy(M,P|M) = CNN+1),

Proof. Induction on N. Assume that N = 1. We have D = D; and M = X — D;. By Proposition

2.1 we have the following exact sequence:
0 — Hy(M,P|M) — Hy(X,P) — Hy(D,P|D) — Hs(M,P|M) — Hs(X,P)
— Hy(D,P|D) — Ho(M,P|M) — Hy(X,P) — Ho(D,P|D) — H,(M,P|M)
— H{(X,P) = 0.

By Lemmas 2.6 and 2.7 we have Hy(M, P|M) = H3(M,P|M) = H\(M,P|M) = 0 and Ho( M, P|M) =
H,(D,P|D) = C?. In addition obviously we have Ho(M,P|M) = 0.

Remark 2.5. Suppose that v and é are not integers. As is seen in the proof of Lemma 2.7, the
homology classes defined by (e72™7 — 1)A; — (e?™ — 1)A3 and (e ™2™ — 1)\3 — (e72™7 — 1))\,
form a basis of Hy(D,P|D). The image of (e~ 2™ — 1)\; — (2™ — 1)\3 by the isomorphism
H,(D,P|D) — Hy(M,P|M) is obviously given by (e™2™ — 1))\51) — (e?mie — 1))\él), where
)\gl) = Ap % )\;Z) and )\:(31) = A3 % )\éi). To construct the image of (e 727 — 1)A3 — (e 2™ — 1))y,
let us recall the cylinder Z defined in Remark 2.2 satisfying 07 = )\g? — )\(1) Then the image
of (e72™0 — 1)A3 — (e=2™ — 1)\ by the isomorphism H;(D,P|D) — Hy(M,P|M) is given by
(e=2718 — DAY — (e=27i7 — 1)AY 4 (672717 — 1)(e=2™ — 1)Z. We can also deal with the other

cases for «, 3,7, d similarly.
In order to continue proving Proposition 2.8 we need one more lemma:

Lemma 2.9. For N > 2, we have Ho(Dy,P| Dy) = Ho(Dy,P| Dy) = 0 and Hy(Dy,P| Dy
)= C?N.

Proof. The equality H2(5N7¢| DON) = HO(DON,75\ DON) = 0 is obvious. Let A be the closed
subset of Dy which is obtained by deleting from Dy mutually dlSJOlI’lt 2N — 2 small open disks
centered at the points of {q1,¢}," -+ ,qn-1,¢%_1}- Then we have Hl(DN,P| DN) H,(A,P|A).
Let U be a connected and simply connected open subset of Dy with a smooth boundary which
contains the closure of the union of those 2N — 2 open disks above, and V' be the subset of U
which is obtained by deleting from U those 2/N —2 open disks above. Moreover we set A; = A—V
and Ay = V (the closure of V). Then we have A = A; U Ay, and A; N Ay is homeomorphic to

the one-dimensional circle S'. Let us consider the Mayer-Vietoris exact sequence:

0— Hl(Al n A2,75|A1 N AQ) — Hl(Al,tp|A1) D Hl(AQ,’P|A2) — Hl(A,’P|A)
— HO(Al N AQ,’P‘Al n Ag) — Ho(Al,’P‘Al) (&) HO(AQ,’]B|A2) — 0.
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Obviously we have Hy (A1 NAg, ’P|A1 NAs) = C. Since we may regard Dy = —A1 x A3 — Ao * Ay,
we have 0Dy = (e72™ — 1)A\; — (2™ — DAz + (e7 2™ — 1)y — (e?™8 — 1))\, Tt follows that
OA; = DNy — (A1 N Ag) = (7277 — )X — (2™ — D)A3 + (e72™0 — 1)y — (28 — 1)\y —
(A1 N Ag), where by abuse of notation A; N As denotes a 1-cycle which defines a generator of
Hi(A1NA,, 75|A1 NAy) with a suitable orientation. Then we see that the group Cq(Aq, 75\A1) is
generated by A1, Ao, A3, A4 A linear combination xA; + yAs + 23 +wAy with constants x,y, z, w
belongs to Z1 (A1, P|A1) if and only if z, y, z, w satisfy a linear equation (2™ — 1)z + (™ —
Dy + (e72™ — 1)z + (e7?™ — 1)w = 0. Suppose that J is not an integer. Then, by using the

preceding linear relation, we have

TA1 + YA + 2A3 + why :76_2;; — {7 = DA = (€7 = DA
e (T = - )
? —27i —27mi
+ 76_27”‘6 1 {(6 2mio _ 1))\3 — (6 2y 1))\4} ,

from which it follows that H; (A1, P|A;) = C3. We can deal with the other cases for a, 3,7, § sim-
ilarly. Since the 2N —2 1-cycles yn1, 71, - - -, YN, N-1, Vv v generate the group Hi (A, P|Ay),
we have Hy (A, P|Ay) = C*N =2, Obviously we have Hy(A1NA, 75|A1HA2) >~ C, Ho(Aq, 75|A1)
0, HO(A27’P|A2) = C. Then we have an isomorphism Ho(AlﬂAg,ﬂAl NAg) = HO(A17”P|A1)EB
Hy(As, 75\A2), and by Mayer-Vietoris sequence the short exact sequence 0 — Hi(A1NA,, 75\Alﬁ
Ag) — Hi(A1,P|AL) @ Hi(Az, P|As) — Hi(A,P|A) = 0, from which it follows immediately
that Hl(DON,75| DON) >~ M, (A, P|A) =2 C?N. Lemma 2.9 is proved.

Let us complete the proof of Proposition 2.8. Assume that N > 2 and the proposition holds
for M = X}, where 1 <k < N — 1. By Proposition 2.1 we have the following exact sequence:

0 — Hy(Xn,P|Xn) = Hy(Xn_1,P|Xn_1) = Hy(Dn,P| Dn)
— H3(Xy,P|Xy) = H3(Xy_1,P|Xn_1) = Hi(Dn,P| Dy)

— HQ(XN775|XN) — HQ(XN_1,7§|XN_1) — Ho(DN,75| DN)
— Hl(XN,¢|XN) — Hl(XN_1,75|XN_1) — 0.

By hypothesis we have Hy(Xn_1,P|Xn_1) = H3(Xn_1,P|Xn_1) = Hi(Xn_1,P|XNn_1) =
0. By Lemma 2.9 we have HQ(DON,75\ DON) = HO(DON,75\ DON) = 0. Then it follows from
the exact sequence that H4(XN,75|XN) = H3(XN,75|XN) = Hl(XN,’IB\XN) = 0, and the
short exact sequence 0 — Hl(DON,75| DON) — Hy(Xn,P|Xyn) = Hy(Xn_1,P|Xn_1) = O
holds. By Lemma 2.9 we have Hl(DON,75| DON) =~ C?N. Moreover we may regard the group
HQ(XN_1,75|XN_1) =~ C(N=DN a5 a subgroup of Hao(Xx,P|Xx). Therefore it follows by the
exact sequence that Ho (X, P|Xy) = Hl(DON,75\ DON) ® Hy(Xn_1,P|Xn_1) = CNWVHD  Ob-
viously we have Ho(Xn,P|Xyx) = 0, and Proposition 2.8 is proved completely.

Remark 2.6. It follows from the short exact sequence 0 — H; (DON, P| DON) — Hy(Xy,P|XN) —
HQ(XN_1,75|XN_1) — 0 that the union of a basis of HQ(XN_1,75|XN_1) with the image of
a basis of Hl(DON,75| DON) by the injection Hl(DON,75| DON) — Hy(Xn,P|Xy) forms a basis
of Hy(Xn,P|Xn). For simplicity we assume that ¢ is not an integer. The other cases would
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be also treated similarly. Let A14, Aoy, A34 be the homology classes of Hy (DN,75\ Dy) defined
respectively by the three l-cycles (e72™° — 1)A\; — (2™ — 1))y, (e72™0 — 1)Ay — (28 —
DAy, (6729 — 1)A3 — (e72™7 — 1))\4. By abuse of notation we denote the homology classes
of Hl(DN,¢| Dy) defined by vn1,Ynqs--- ,7N7N_1,7§V7N_1 by the same symbols. Then the
2N + 1 homology classes A1, A2, Aza, VN1, V1> -+ s IN.N=1, Yy N1 enerate H,(Dy,P| Dy),

and satisfy a single equality

2T _ 1 e2mia _ N-1 )
WAM - WA?A + Aog + Z (Yvi +Yn) = 0.
i=1

o

Therefore 2N homology classes among those 2N + 1 homology classes form a basis of Hq(Dy
,P| Dy). The images of Aj4, Aoy, Ass by the injection H;(Dy,P| Dy) — Ha(Xy,P|Xy) are
constructed in the same way as in Remark 2.5. The images of yy; and «},; coincide respectively

with T, and T, given in Remark 2.3.

The proof above of Proposition 2.8 depends on ordering of the theta divisors Dy, ..., Dy. If we
adopt new ordering to prove the proposition, then we obtain another new basis of Hy (X, P|Xn).
Let us study the relations between bases of Hy(X N,75|X ~). For simplicity we assume that 0
is not an integer. For i such that 1 < ¢ < N, the group H; (D;,’P|D;) is generated by 2N + 1
homology classes A4, Ao, Azay Vi, Vit -5 Visi—1y Viie1» Visit1s Vijig1s---»Vi,N»> Vi n» Which
satisfy a single equation

e 2 1 e2mia _

e—2mis _ 1A14 T o—2mis _ 1A34 + Aoy + Z (vij + %{j) =0.
1<j<N,j#i

We denote by Aﬁ), A&), Aéi) the images of A14, Aog, Azy, respectively, by the injection Hy (D}, P|D}) —
Hy(Xn,P|Xn). We denote by T;; and T}; (i # j) the images of 7;; and «;;, respectively, by the
injection Hy (D}, P|D}) — Ha(Xn,P|Xn). Then the group Hao(Xy,P|Xy) is generated by the
2N?2 + N homology classes A&), ASZ, ASZ (i=1,...,N), Ty, T}; (i # j). Obviously we have the

following

Proposition 2.10. Assume that § is not an integer. Then the preceding 2N? + N generators
satisfy the following N? equalities:

Ty =T Tj=-T; (i#J)

. e27ria -1 . . R
T M T A A Y (T T =0 (i=1....N).
1<G<N,j#i

67271'2’7 -1

83 Twisted cohomology of the complement of theta divisors

Let N, N’ be integers such that 2 < N < N’. Let ay,...,asn/,b1,...,bans be real numbers.

A2k—1 A2k

We assume that the N’ theta divisors defined by the equations 6 (21,29;7) = 0,

bar—1 bax
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k=1,...,N’, are different from each other. For each k such that 1 < k < N, let D;, be the

a2k—1Q
theta divisor corresponding to the theta function 6 lb% ! b%] (21,22; 7). We assume that the
2k—1 02k

divisor D = Z,Icvzl Dy, has normal crossings. Let ¢y, ..., cy be complex numbers but not integers
such that

N
(3.1) > e =0.

k=1
Let ¢y 41,-..,cn be non-zero integers such that

N/
(3.2) > =0

k=N+1

A2k —1 A2k

4 a2k —1 A2k
(21,205 7)%, To(21, 22) = [[=ny1 0 l ] o

Weset T1 (21, 22) = HN= 0
k=1 b2k—1 bgk b2k—1 b2k

and 11(,217 ZQ) = T1 (2’1, ZQ)TQ(Zl, ZQ). Then we have

T(z1 + 1,29 —e’”Zk 19261k (21 | 29,

-7 Zk:l bak—1Ck T(Z]_, 22>7

)
T(z1,22+1) = i i 2kkT (21, 29),
T(z1 + 711,22 + T21) =

) =

. N’
—Tm Y borc
T(21 + T12, 22 + T22 2okt b2kOR T (5 20).

Analogous formulas hold also for Tj(z1, 22) and To(z1,22). Let £ be the locally constant sheaf
of rank one on M = X — D defined by the one-dimensional representation of the fundamental
group 1 (M, *) by the multivalued function T'(z1, 22)~'. Namely, for a sufficiently small open
subset U C M we have I'(U, £) = C(T|U)~!, where T|U denotes a branch of T(z1, z2) over U.
Let Upnr = {U,} be an open covering of M. For every u let h, be a fixed branch of T'(z, 29)71
over U,. Obviously, there is a constant g, such that h, = g,,h, on U,NU,, and we see that the
family {g,,} satisfies the cocycle condition. For (p,{,) € U, x C and (q,&,) € U, x C we define
an equivalence relation (p,&,) ~ (g,&,) by the equations p = ¢ and £, g,,, = &,. Thus we have a
line bundle L on M associated to the multivalued function T'(z1, ZQ)_l. By similar construction
we have a line bundle L; on M associated to T} (z1, zz)_l7 and a line bundle P on X associated
to Ty(z1,22)"!. Note that P belongs to Pic’(X), i.e., P is a line bundle with ¢;(P) = 0. If
N = N’, we regard P as the trivial line bundle C. If N < N’, a global meromorphic section

f(z1,22) over X of the line bundle P satisfies

flz14+1, 22 *emZk N1 92R=1Ck f (5 20,

flz1 + 711, 22 + ™21 MZ’“:N“b%_lckf(Zla@)

)

)

(2,17224_1)767”2,” N+1a2kaf(Zl7Z2)
) =
) =

. N/
f(21 + Tig, 20 + Tog) = T  Xk=n1 b2k f( 5y 2,

We denote by P|M the restriction of the line bundle P to M. Then we have L = Ly ® P|M.
Let Op (L) be the sheaf of modules over the structure sheaf Oy generated by local sections
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of L. By definition, a local section ¢ € I'(U, Oy (L)) is identified with a family (¢,), where
p, € I(UNU,, O ) with 9., = @,. We define a sheaf homomorphism of Oy (L) to Oy ®@c L
by the correspondence I'(U,,Op) > 0, — 0,6, @&h, € T'(U,,Op ® L) where ¢ = (¢,) is a
section of L. Then the homomorphism thus defined gives an isomorphism Oy (L) = Oy Q¢ L.

Let us consider the exact sequence of sheaves on M:
0—C—0) L al, 502 Lo,
where O denotes the sheaf of holomorphic p-forms on M and QY, = Op. Tensoring £ from

the right on this sequence keeps the exactness, and so we have

(3.3) 0—L£— 0% ec L0l 0cL a2 0o

Here the operator d ® 1 is a canonical connection in the sense of [3], I, Prop. 2.16. We set

Q8 (L) = Q8 ®0,, Onm(L). Then the following diagrams are commutative:

p el p+1
Ty @c L 2 Dy Sc L Pl @en R d(pg) @gh

| B i :

F (L) - y Qﬁ}'l(L) 2 7 dop = d(p€ )¢

Therefore (3.3) is equivalent to the following exact sequence:

(3.4) 0— £ —0%(L) % b, L) -5 02,(L) -5 0.

For an open set U C M and a section ¢ € I'(U, Q4,(L)), there is a section ¢ € I'(U, 4, (P|M))
such that ¢ = (T1|U) - ¢, where T1|U is a branch of T} defined on U. Then we have a sheaf
isomorphism

Q%(P\M)%Qﬁj([/) Yr— =T -9

such that the following diagram is commutative:

b (PIM) —— QFFY(P|M)

=| |=

() —— o)

where Vi) = dip +d(log T1) A and V2 = 0. Note that Vh; = 0 for any branch h; of T, '. Then

the exact sequence (3.4) is equivalent to the following one:
0 — £ — Q% (PIM) L5 Q4 (P|M) 5 Q2 (P|M) 5 0.

Since O, (P|M) is a locally free and therefore coherent sheaf on an affine algebraic manifold M,
we have by Serre’s theorem HY(M, Q%L (P|M)) = 0 for p > 0 and ¢ > 0. Therefore it follows
by the standard argument of the de Rham theory ([18]) that HP (M, £) = Hf, (%, (P|M), V).
Obviously HP(M,L) = 0 if p > 2. We denote the sheaf of complex-valued C'*° differential
forms of type (p,q) on M by EXY. We set 5, = > piq=k Eni» the sheaf of complex-valued C>
differential forms of total degree k on M. Then replacement of the sheaf Qf, by £F, in the

argument above is valid, and gives us the following exact sequence of sheaves:

0 — £ — E%(P|M) -5 EL,(P|M) -5 £2,(P|M) -5 0,
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where EF(P|M) = £ ®go £3,(P|M), and &3, (P|M) denotes the sheaf of modules over the
sheaf of complex-valued C* functions £3, generated by local sections of the line bundle P|M
over M. Since &y, (P|M) is a soft sheaf over M, we have HY(M,EY,(P|M)) = 0 for p > 0
and ¢ > 0 ([18], Chap. II). Therefore we have H?(M, L) = HP,(Er,(P|M),V). Let QX (D)
be the sheaf of p-forms over X with logarithmic pole along D. We have inclusion of sheaves
over X: QK(D) C j.Q%, C j.EY, where j denotes a natural inclusion mapping of M into
X. We set Q5 (D)(P) = Q5 (D) ®o, Ox(P). Since j,. 0%, ®o, Ox(P) = j.Q8,(P|M) and
JxE0 Py EY(P) = j.EY,(P|M), we have Q5 (D)(P) C j.Qk, (P|M) C j.EY,(P|M). Let us
consider a complex of sheaves of logarithmic forms:

Q% (D)(P),V) : QX(D)(P) s Q% (D)(P) 5 Q% (D)(P) — 0.

The following proposition is an immediate consequence of a result proved by Deligne ([3], II,
Cor. 3.14).

Proposition 3.1. Two complexes of sheaves over X, (2% (D)(P), V) and (j.€4,(P|M), V), are

quasi-isomorphic to each other.
In Appendix to §3, we will give an elementary, direct proof of this proposition.
Corollary 3.2. HP(M, L) 2 HP(X,Q%(D)(P),V) for all p > 0.

Proof. Since the complexes of sheaves (2% (D)(P), V) and (j.€x;(P|M), V) are quasi-isomorphic
to each other, their p-th derived objects for a left-exact functor F' for each p are isomorphic to
each other ([16]). Especially, if F' is the functor of global sections (i.e., F(e) = I'(X,e)), then

derived objects are turned into hypercohomologies. Namely we have
H?(X, j.&3 (P|M), V) = HP (X, Q% (D)(P), V).
Since HY(X, j.EY,(P|M)) = HY(M, &Y, (P|M)) = 0 for p > 0 and ¢ > 0, we have
H?(X, j.£3,(PIM), V) = Hpg (X, j. €3, (PIM), V) = Hpp (M, €3, (P|M), V) = H?(M, L),
which proves Corollary 3.2.

Remark 3.1. This corollary is slightly different from Deligne’s Corollary 6.10 in [3], I, §6 because
our locally constant sheaf is not a restriction to M of the locally constant sheaf associated to
the line bundle P.

Proposition 3.3. HP(M,L£) =0if p # 2.

This is an immediate consequence of a vanishing theorem of hypercohomology ([5], §2, Cor.
2.13). In Appendix to §3, we will give another elementary proof of this proposition by using the
logarithmic Dolbeault complex.

To study the structure of the non-vanishing cohomology group H?(M, L), let us consider the
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following logarithmic Cech-de Rham complex:

5 é §
C2(U, Q% (D)(P)) —— C2(U, Q4 (D)(P)) —— C2U, 03 (D)(P)) —— 0
5 é §
CHU, % (D)(P)) —— CLU, Q4 (D)(P)) —— CHU, O3 (D)(P)) —— 0

é 1 1)

COU, Q%(D)(P)) —— COU, Qx(D)(P)) —— COU. Q5(D)(P)) —— 0,
where Y = {U;} denotes an open covering of X, and ¢ the coboundary operator satisfying
8V + V6§ = 0. The total differentiation operator A is defined to be A = § + V. We set K9 =
COU, Q% (DY(P)), K = CH U, 0% (D)(P))&COU, O (D)(P)), and K™ = C"(U, 2% (D)(P))&
C" LU, QY (D) (P)) ® C"2(U, 0% (D)(P)) for n > 2. Then we see that A? = 0 and A(K") C
K"t Therefore the pair (K(U),A), where K(U) = &5 K", is a complex. By the definition

of hypercohomology we have

HP = HP (X, Q% (D)(P), V) = lim H*(K(U), A),
u

where HP (K (U), A) = Ker[KP 2, KPT /Im[KP~! 2, KP] and lim means the inductive limit

taken with respect to refinements of open coverings of X ([6]). %y setting Ky = K(U) and
K1 = &% ,C"(U, Q% (D)(P)) & C™(U, 0% (D)(P)), Kz = &2 ,C™(U, Q% (D)(P)), we introduce
a filtration of K (U): K(U) = Ko D K1 D Kz D 0. The spectral sequence E,(U) associated to the
filtered modul K (U) is given as follows: EY(U) = H(Kp/Kpy1) = Hs(©g2,CU(U, X% (D)(P)) =
Do HY(U, Q% (D)(P)) and the other EP(U) (r > 2) are given inductively. The limit E, =

li_n)1ET(Z/{) is also a spectral sequence and abuts to the hypercohomology HP. We have EY =
u
@2 o HI(X, % (D)(P)) and EV' = H1(X, Q% (D)(P)).

Lemma 3.4. (i) Suppose that either N = N’ or N < N’ and all of the four quantities
% ZQZNH a9k —1Ck, % EkN:lNH askCr, % ZkN:/NH bok—1Ck, % EkN:lNH barck are integers. Then
EP=0ifp+q>2.

(ii) Suppose that N < N’ and not all of the four quantities % ZQ:INH a2k _1Ck, % Z,If:’NH a2kC,

53 N1 D2k—1Cks 3 chv:N-H borcy are integers. Then FY? =0 if p+ ¢ # 2.

Proof. 1t is well-known that the complexes of sheaves (2% (D)(P),d) and (j.Ey(P|M),d) are
quasi-isomorphic to each other. By the same argument as in the proof of Corollary 3.2, we
have H*(M,P|M) = H*(X, Q% (D)(P),d), where P denotes the locally constant sheaf over X
defined by the line bundle P, and P|M the restriction of P to M. By Deligne’s theorem [4], we
have the decomposition of hypercohomology H* (X, Q2% (D)(P),d) & &y =t HY(X, Q% (D) (P)).
Since H*(M,P|M) is the dual space of the vector space Hy(M,P|M) introduced in §2, Lemma

3.4 follows immediately from Propositions 2.4 and 2.8.

The first result about the degeneration of the spectral sequence is as follows:
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Proposition 3.5. Assume that N < N’ and not all of the four quantities %ZkN:lNH a2k—1Ck,
% ZQLNH a21Ch % Z]kV:/NH bak—1Ck, % chv:lNH barck, are integers. Then the spectral sequence
E., r > 1 degenerates at F; (i.e., By = E). Namely we have E2 = H(X, Q% (D)(P)),
Ell = HY(X,Q%(D)(P)), and E?? = 0 if (p,q) # (2,0),(1,1). Moreover we have dim E2 = N?
and dim E1! = N.

Proof. From Lemma 3.4, (ii), it follows immediately that E2° = H°(X, Q% (D)(P)), Bl =
HY(X,Q4(D)(P)), E2? = H*(X,Ox(P)), and E24 = 0 if p+ ¢ # 2. By Lemma 2.1 we have
H(X,0x(P)) = 0, and it follows by [2], Lemma 3.5.1 that E9> = 0. Therefore we have
H?(M,L) = E2° @ E!l. Proposition 3.3 and Lemma 2.2 imply that dim H?(M, L) = x(M) =
N(N +1). Since dim E2° = N? by the general theory of cohomology of line bundles on X, we
have dim El! = N.

Next, let us consider the spectral sequence for the case where either N = N/, or N < N’ and
N’ N’ N’ N’ .
all of 33710 viq G2k—1Cks 5 D p N1 O2kChs 3 Dok N1 D2k—1Cks 5 D p n4q b2kCr are integers. In
this case we may regard the line bundle P as the holomorphically trivial one, and so we may set
P = C. For each g let us consider the complex E% 5 B} Yy £ 0. By definition we
have E5? = HP(E7?,V). In the rest of this section we prove the following

Proposition 3.6. Assume that either N = N’, or N < N’ and all of %ZQ;NH a2k _1Ck,
% Zivzzv_u a2kCr, % Z/Igvzzv_u bak—_1Ck, % ZszNH barck are integers. Then the spectral sequence
E,,r > 1degenerates at Fs (i.e., B> = E,). Namely we have E2 = HO(X, 0% (D))/VH"(X, Q%
El'= HY(X,0%(D))/VH (X, Ox), EY> = H*(X,Ox), and EEY = 0 if p+ q # 2. Moreover we
have dim E20 = N2 — N, dim El! = 2N — 1, dim E?? = 1.

Since EYY = 0 for p + ¢ > 2 by Lemma 3.4, (i), it follows immediately that Ef? = 0 for
p+ q > 2. Therefore, to prove Proposition 3.6, it suffices to prove the following

Lemma 3.7. EJ' =0.

If this lemma is established, then the degeneration of E,., r > 1 at Es follows immediately, the
vanishing of E%, E10. E9 follows from Proposition 3.3, and by the definition of E}? we can easily
determine the values of E2°, El| E%2. Since dim H°(X, Q% (D)) = N + 1 and dlog Ty = V(1),
we have dim VH?(X, Q% (D)) = N. Moreover we have dim H°(X, Q% (D)) = N2. So we have
dim E2 = N2 — N. Since H2(M, £) = E2 & E'' & E% and dim H2(M, £) = N2 + N, we have
dim B! = 2N — 1 (dim E%? = dim H?*(X, Ox) = 1 is obvious).

To prove Lemma 3.7 let us introduce the logarithmic Dolbeault complex. We denote by X!
the sheaf of C* differential forms of type (p,q) on X. Let us consider the following resolution
of the sheaf Ox: ) ) )

0— Ox — W 25 0 95 602 9,
Since Q% (D) is a locally free O x-module ([14]), tensoring Q% (D) from the right on this sequence
keeps the exactness. Setting £% @0, X% (D) = EX(D), we have the following resolution of
O5(D): i i )
0 — Q5 (D) — (D) % eR(D) -2 82(D) %5 0,

which we call the logarithmic Dolbeault complex. Since EX/(D) is a locally free EX/-module,
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we have H"(X,E8(D)) = 0 for r > 0, p > 0, ¢ > 0. By the standard argument we have
HY(X, 05 (D)) = HY(X,EX(D)). If we set Vo = 9 + dlog Ti A, then we have V = Vo 4 0 and
OV + V0 = 0. Recall the complex E* v, E}L N 0, which is equivalent to H!(X, Ox) v,
HY(X, Q4 (D)) ~% 0. Then we have B! = Ker [Hl(X, Ox) s H'(X, Q}(<D>)] Here the

operator V is given as follows. Note that
HY(X,0x) = Ker [F(X, &%) -2 (X, 59{2)} /Im [F(X, £9) %5 (X, 59})}
and
HY(X, QL (D)) = Ker [F(X, 2y % r(x, 5)1<2<D>)} /Im {r(x, 9y % r(x, 5)1<1<D>)} .

Let a be an element in I'(X, EY) such that da = 0. Then we have Va = Voo € I'(X, £3H(D)).
For [a] € H'(X,Ox) we set V]a] = [Va]. Then the operator V : H(X,0x) — H'(X, Q% (D))

thus defined is well-defined. We are now in a position to prove Lemma 3.7.

Proof of Lemma 3.7. Tt suffices to prove that the operator V : H'(X,0x) — H'(X, QL (D))
is injective. Let o be an element in I'(X,EY) such that da = Voo + 9B = 0 for some 3 €

I(X,E2(D)). Since I'(X, £32(D)) is generated by dz1, dzz, dlog

A2k —1 A2k —dlog [a2k+1 02k+2]
)

bak—1 bak bak 41 bary2

k=1,...,N —1, we can set

N—1
a2k—1 @ a a
8= + Z Box [ dlog6 2%—102k | dlog 2k+1 02k+2 ,
Pt bag—1 b2y bok+1 bak+2
where 31 € I'(X,EY?) and Bor € I'(X,EYP). We have
~ - = a a a a
98 =081+ > 0P A dlogd | PR —dlogg | 2R
1 2k—1 bak bak+1 bok+2
Then the equation Voa + 98 = 0 is decomposed into the following two equations:

60&+5ﬁ1 =0,

ask—1 agk‘| ~dlog0 |fl2k+l a2k+2]> -0

N-1
dlogT) Na + Z 0Bor A | dlog8
2k—1 bak bok 1 bogy2

k=1

Since

N-1
aAdlogTi =Y (ci+ - +ep)aA |dlogh 012 | g |02k O2ke2 | )
k=1 bak—1 bak bok1 bakso

the second equation is turned to
R a a a a
Z ([“)ﬁ()k — (1 +-+ ck)a) A | dlog# k=1 T2k dlog kA1 T2k =0,
et 2k—1 b2k bok+1 bak42

from which it follows that 9B, = (c1 + -+ ci)a, k= 1,...,N — 1. Since ¢; # 0, we have
o = 0Bp1/c1, which means that Ker [V : H'(X,0x) - H' (X, Q% (D))] = 0. Lemma 3.7 is

proved.
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Appendix to §3: Proofs of Propositions 3.1 and 3.3

Let us first prove Proposition 3.1.

Proof of Proposition 3.1. By definition it suffices to prove that their cohomology sheaves are
isomorphic: HP(Q% (D)(P), V) = HP(j.EY,(P|M),V) for each p. First of all let 2 be a point
of M, and U be an open set of M containing the point x which is biholomorphic to a polydisk
{(z1,22) € C? | |21] < &, |22] < &} (¢ > 0) with the origin (21, 22) = (0,0) corresponding to the
point z. Since Q% (D)(P)|U = Q¢ (P|U) and j,E3,(P|M)|U = E5(P|U), it suffices to prove that
HE R (Qy(P|U), V) = HRR (E5(P|U), V). Note that H(U, &L (P|U)) = HY(U,Qf,(P|U)) = 0 for
p >0 and g > 0. According to the standard argument in the de Rham theory, the following two

resolutions of £ over U
0 Y 1 \% 2 \%
0— L —E(PIU) — EG(PIU) — EL(PIU) — 0

and
0— £ — Q0(PIU) L QL(PIU) -1 Q2(PIU) -5 0

gives us the isomorphisms HEp (E8(P|U), V) = HP(U, L) = HE R (2, (P|U), V).

Next, let « be a point of D; for some 4 such that « € D; for any j(# ). Let (21, 22) be a local
coordinate system around the point x such that the origin (0,0) corresponds to the point = and
the local equation of D; around =z is written as z; = 0. Let U and U be open sets of X which are
biholomorphic to {(21,22) € C? | 0 < |z1]| < &, |22] < &} and {(21,22) € C? | |21] < &, |22] < €}
respectively with the origin (z1,22) = (0,0) corresponding to the point z. Since Q% (D)(P)|U =
Q2 (D)(P|U) and j,E3,(P|M)|U = £ (P|U), it suffices to prove that HE (Q2(D)(P|U),V) ==
HE L (E5(P|U), V). Obviously we have HE, (E8(P|U), V) = HP(U,L) = 0. So it suffices to
prove that Hpp (Q2(D)(P|U),V) = 0 for all p. It is obvious that HPg(Q2 (D)(P|U),V) =
Hp g (Q2(D)(P|U),V) = 0. Let f be an element of I'(U,Q%(D)(P|U)) = I'(U, Oy (P|U)) such
that Vf = 0. Then we have locally f = (T} 1_1 with some constant ¢. Since f is holomorphic
along z; = 0, we have f = 0, which proves H%R(QZ7<D>(P|U), V) = 0. Let w be an element of
ru, Q%(D)(PW)) such that Vw = 0. We set w = adz; + bdzz, where a denotes a meromorphic
P-valued section with pole along z; = 0, and b a holomorphic P-valued section. If we set 2 = Tiw,

then we have d) = T1Vw. So Vw = 0 if and only if dQ2 = 0. Moreover df) = 0 is equivalent to
8<CLT1) 8(bT1>

an integrability condition 5 = Let us consider the equation dF = 2 for a L-valued
z9 Z1
- . C . . oF oF
unknown F'. This is equivalent to a system of partial differential equations e aTly, o bTy.
Z1 Z9

Locally around the point (z1,22) = (0,0) we can write T} = 2{G(z1, 22) with a constant ¢ and
a holomorphic function G. So we have aT; = ZfilGl(Zl,Zz) and b1} = z{Ga(z1,22) with
holomorphic functions G; and Gs. Then we see by an elementary theory of partial differential
equations that there exists a unique solution F' of the form z$H(z1,22) with a holomorphic
function H which satisfies the preceding system of partial differential equations. Therefore F' is
decomposed locally as F' = 4T} with a holomorphic P-valued section ~ defined on U. So we have
V7 = w, which proves Hpg (Q8(D)(P|U), V) = 0. Let w be an element of I'(U, Q2 (D)(P|U)).
Automatically we have Vw = 0. We set w = fdz; Adzs where f denotes a meromorphic P-valued

section with pole along z; = 0. We set 2 = Thw. Let us consider the equation dp = € for a
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L-valued unknown 1-form ¢. We set ¢ = Adz; + Bdzs where A and B are holomorphic £-valued
0A

sections on U. Then the equation dy = €2 is equivalent to a differential relation 7ot v T f.
Z1 z9
Locally around the point (z1,22) = (0,0) we can write T} f = 257 'G(z1, 22) with a constant ¢
. e
and a holomorphic function G. Let G be a holomorphic function such that o G. Setting
22

A = —2{7'G and B = 0, we see that the 1-form ¢ = Adz; satisfies the equation dp = €.
Therefore A is decomposed locally as A = T} with a P-valued section v with pole along z; = 0.
So we have V(ydz1) = w, which proves Hpg (Q%(D)(P|U),V) = 0.

Finally let x be a point of D; N D; for some ¢ and j. Let (21,22) be a local coordinate
system around the point x such that the origin (0,0) corresponds to the point x and the local
equations of D; and D; around x are written as z; = 0 and 23 = 0 respectively. Let U and U
be open sets of X which are biholomorphic to {(21,22) € C? | 0 < |21] < &, 0 < |22| < €} and
{(z1,22) € C? | |21] < &, |22| < €} respectively with the origin (21,22) = (0,0) corresponding
to the point z. Since Q% (D)(P)|U = Q2 (D)(P|U) and j.Ey,(P|M)|U = £5(P|U), it suffices to
prove that H (Q%(D)(P|U), V) = HY (€5 (P|U), V). Obviously we have HY i (€5 (P|U), V) =
HP(U, L) = 0 for any p. So it suffices to prove that HYp (Q(D)(P|U),V) = 0 for all p. It is
obvious that H g (Q2(D)(P|U),V) = Hpg(Q(D)(P|U),V) = 0. Let f be an element of
I'(U,Q%(D)(P|U)) = I'(U,Op(P|U)) such that Vf = 0. Then we have locally f = eIyt with
some constant c. Since f is holomorphic along z; = 0 and z, = 0, we have f = 0, which proves
HY R (Q2(D)(P|U),V) = 0. Let w be an element of I'(U, Q%5 (D) (P|U)) such that Vw = 0. We
set w = adz; + bdze, where a denotes a meromorphic P-valued section with pole along z; = 0,
and b a meromorphic P-valued section with pole along zo = 0. If we set 2 = Tiw, then we have

dQ) =T1Vw. So Vw = 0 if and only if d©2 = 0. Moreover df2 = 0 is equivalent to an integrability
8<CLT1) 8(bT1)

condition 5 = 0 Let us consider the equation dF = € for a L-valued unknown F'.
z9 Z1
- . . . . . OF OF
This is equivalent to a system of partial differential equations P alty, 9 = bTy. Locally
Z1 V)

around the point (z1,22) = (0,0) we can write Ty = 27" 252G(21, z2) with constants ¢1, ¢ and a
holomorphic function G. So we have a1} = szlzgz G1(z1,22) and b1 = zflzgrng(zl, z9) with
holomorphic functions G; and Gs. Then we see by an elementary theory of partial differential
equations that there exists a unique solution F' of the form z{*z52 H(z1, 22) with a holomorphic
function H which satisfies the preceding system of partial differential equations. Therefore F' is
decomposed locally as F' = 4T, with a holomorphic P-valued section ~ defined on U. So we have
V7 = w, which proves Hpg (Q%(D)(P|U),V) = 0. Let w be an element of I'(U, Q2 (D)(P|U)).
Automatically we have Vw = 0. We set w = fdz; A dzo where f denotes a meromorphic
P-valued section with pole along z; = 0 and z; = 0. We set 2 = Tiw. Let us consider
the equation dp =  for a L-valued unknown 1l-form ¢. We set ¢ = Adz; + Bdzs where A

and B are holomorphic £-valued sections on U. Then the equation dp = (2 is equivalent to

A
a differential relation — — g— = Tif. Locally around the point (z1,22) = (0,0) we can
Z1 Z9

write T1 f = zf_lzgrlG(zl, z9) with constants c¢1,co and a holomorphic function G. If we set

A=27122"1A" and B = {12527 B’ and substitute them into the preceding equation, then
Cc1 — 1B,+BB’ . Cy — 1A,78A/

z1 82:1 z9 822
and B’ around the point (21, 22) = (0,0) satisfying the preceding differential relation. Therefore

we have = G. Obviously, we can find holomorphic functions A’
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A is decomposed locally as A = 4717 with a P-valued section v with pole along z; = 0, and B is
decomposed locally as B = §17 with a P-valued section § with pole along zo = 0. So we have
V(ydz1 4 ddz) = w, which proves Hg (2% (D)(P|U), V) = 0. Proposition 3.1 is proved.

Next, we give a proof of Proposition 3.3 by exploiting the logarithmic Dolbeault complex. As
will be seen below, our proof contains that of Lemma 3.7.

Let us again consider the logarthmic Dolbeault complex:
o

0 — Q2(D) — &2°(D) -2 2Dy -2 22Dy 2 0.

Since Ox (P) is a locally free Ox-module, setting EX/(D)(P) = EX(D) ®p, Ox(P), we have
0 — Q% (D)(P) — E2(D)(P) - 21Dy (P) % 22(D)(P) L5 0.

Since EXY(D)(P) is a locally free EX'-module, we have H"(X,EX(D)(P)) = 0 for r > 0, p >
0, ¢ > 0. By the standard argument we have H?(X, Q% (D)(P)) = H3(X, X" (D)(P)). Consider
the following double complex:

r(X,e9P) —2= X XP) —2= IXeRP) —2—o0

lvo lvo J{VO
r(X,Q0(D)(P)) —2— I'(X,E(D)(P)) —2— I'(X,ER(D)(P)) —2— 0

% & 5

[(X,E2(D)(P)) —2— I'(X,£3(D)(P)) —2— I'(X,€2(D)(P)) —2— 0

I I I

0 0 0
where Vo = 0 + dlogTiA. We set L° = I'(X,EQ(P)), L' = I'(X,EX(D)(P)) & I'(X, EY (P)),
L? = (X, EQ(D)(P))el (X, EX(D)(P))s (X, E2(P)), L = I'(X, EX(D)(P))& (X, E(D)(P)),
L* = I'(X,E2(D)(P)). The operator V maps L* into L**!  and the pair (L, V), where
L= G}iZOLk, is a complex. Let us introduce a filtration of L. Namely, if we set Lo = L, L1 =
2o [(X,E0(D)(P)) @& ['(X,E(D)(P)), Ly = ®2_y['(X, E3(D)(P)), then we have L = Lo >
Ly D Ly D 0. The spectral sequence E!. associated to the filtered module L is given as follows:
BiP = H(Ly/Lys1) = H(@2_,[(X,E8(D)(P)) = HY(X,E¥ (D)(P)) & HY(X, €Y (D)(P)) &
H2(X, €% (D)(P)) = HO(X, 0% (D)(P)) & H'(X, Q% (D)(P)) & H2(X, % (D)(P)) and E{"" =
HI(X, Q% (D)(P)). So we have E/. = E, for every r > 1, where the latter sequence E, is the one
introduced in §3. Therefore it follows from Corollary 3.2 that

HP(M, L) 2 HP(X,Q%(D)(P),V) = HP(L,V).
To prove Proposition 3.3 it suffices to prove the following
Lemma 3.8. H?(L,V) =0 for p # 2.
Proof. Tt suffices to prove that H°(L,V) = H*(L,V) = 0. Let f be an element in I'(X,EY) such

that f = Vof = 0. This is equivalent to the condition that f € I'(X, Ox(P)) and Vf = 0. If
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N < N’ and not all of the quantities %ZkN:lNH A2k—1Ck, %ZkN:,NH Aok Cr, %ZkN:lNH bok—1Ck,
2 ZQLNH bakcy, are integers, then it follows immediately that I'(X, Ox (P)) = 0 and H°(L, V) =
0. If not, it follows that I'(X,Ox(P)) = C and f is a constant. Therefore the equation Vf =0
implies f = 0, and so H°(L,V) = 0. Next, let (3,a) be an element in I'(X,EX(D)(P)) @
I'(X,EY(P)) such that Vo8 = Voa + 9B = da = 0. Since I'(X,EX(D)) is generated by dz1,
a2k—1 a2k‘| _ dlogf la2k+1 A2k +2

dzs, dlog
boky1 bogy2

,k=1,...,N —1, we can set
bak—1 bax

N-1
f=h+ Z Bor. | dlogt G2k—1 G2k _ dlogt G2kt1 A2k42 )
k=1 b b b

2k—1 bak 2k+1 b2k 42

where 31 € I'(X,EP(P)) and Box, € I'(X,EX(P)). We have

N—1
0B = 0B + Z 9Bok A <d10g9 [a%_l azk] — dlog6 [G%—H a2k+21> .

Pt 2k—1 bak bok+1 bog+2
Then the equation Voa + 98 = 0 is decomposed into the following two equations:
(3.5) da+ 0B, =0,

a2k—1 a2k‘| . dlog6 |fmk+1 a2k+2]> -0

N—-1
(3.6)  dlogTy Ao+ > 9o A | dlogd
2k—1 bag bag 1 bogyo

k=1

Since

N-1
aAdlogTi =Y (ci+ - +ep)aA |dlogh 012 | g | 02k41 O2ke2 | )
k=1 bak—1 bag bok+1 bokto

the equation (3.6) is turned to

N-—1
3" (BBok — (e1 4+ er)a) A (d log 0 [“2’“‘1 “2’“] —dlogf l“z’““ “2"’+2D —0,

Pt 2k—1 b 2k+1 bok42

from which it follows that dBgx = (c1 + -+ + cx)a, k = 1,..., N — 1. Suppose now that there
exists a sequence of integers ki, ..., k; satisfying the following four conditions : (i) 1 < k1 <
<k < N=1; (i) kg1 —ky > 1 (v=1,...,0—1); (i) co 4+ +cx =0if k€ {ki,... Kk };
(iv)er+-- e 0k & {ks,..., ki, N}. Weset I ={ky,...., i} and J={1,...,N—-1} —1I.
Then we have

9Bor.

(3.7) a=—"20% it kel
Cl+...+ck

and 0o, = 0, that is, Sox is a constant if & € I. Note that the differences wij = % —

Cl+...+ci
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Po; , 4,7 € J belong to I'(X, Ox (P)). Now we have

B— VO@ =p1 + Z (c1+---+cx) | dlogh I dlog® G2k (2k+2
keJ a+ 2k—1 b2k b2k+1 bgk+2
- 0
n Z Box [ dlog Agk—1 G2k | dlog agk+1G2k+2| | 9P @dlog e
el bag—1 by, bok+1 bak+2 a 1
(3.8)
=P + Z <ﬁ01 + wkl) (14 +ck) | dlogh G2k-1 G2k dlog6 B2k+1 G2k+2
keJ b2k—1 b2k b2k+1 b2k+2

n Zﬁo’f <d10g9 la%—l sz] ~ dlog0 la2k+1 a2k+2]> ~ 0Bo1 @dlong

el bak—1 ok bak+1 bak2 gl

Since dlog Ty = ¢ j(c1++-+cx) (d log 6 [a%_l an] —dlog0 [anH a2k+21 > , (3.8) is turned

bak—1 bog 2k+1 b2kt2
to
7 a2k—1Q a a
B— VO@ =51 — Pos +Zwk1(cl+~~+ck) dlogf | 7P| —dloge | PR TR
15 B 2k—1 bak 2k+1 b2k42
(3.9)
3 Bor [ dloge A2k-102k | _ 1100 g |21 92k42 | )
el bak—1 bk bak+1 bok2

0
Note that 3; — f ol
1

€ I'(X, Q% (P)) by (3.5) and (3.7). If N < N’ and not all of § EkN:/NH a2k—1Ck,

1 N’ 1 N’ 1 N’ .
2 Zk:N—i—l A2kCks 5 Zk:N_H bak—1Ck, 5 Zk:NH bakcr, are integers, then we have I'( X, Ox (P)) =

L —0,wp =0 (k €J), Box =0 (k € I). Therefore we have 8 = V 3ﬂ01
€1

Since (Vo +0) <501> = (B, ), it follows that H*(L,V) = 0. Next, suppose that either N = N,
€l

0, which implies g

N’ N N’ N’
or N < N’ and all of % D b N1 G2k—1Ck) %Zk:NH A2 Ch, % > kN1 b2k—1Ck, % > kN1 D2kC
are integers. Then we have P = C and I'(X,0x) = C. Therefore wi’s (k € J) and Boi’s

L Adz, + Bdzs with constants A, B.

(k € I) are constants. Moreover we can set 8 —

Namely, (3.9) is turned to

&)

B— V()@ =Adz, + Bdzy + Z wri(er + -+ cx) (dlog@ la%l azk] —dlogb [G%H ang])

bar—1 bax bok+1 bag+2
(3.10) keJ
n Z Bo [ d10g0 Qok—1 G2k | dlog 0 A2k+1 G2k42 | |
oyt bok—1 bay, baky1 bopy2

Applying V on this equation, we have

(6 VOBOI> =dlogT) A

Adz| + Bdzs + Zwkl(cl +--+c) | dlogd G2h—1 92k | _ dlog 6
Pyt bak—1 b

A2k —1 A2k A2k 41 A2k4-2
+ Bor. | dlog 6 — dlogf .
Z ( bog—1 bog bogy1 bopyo

kel
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The equations Vo8 = 0 ( 3 — Vo? = 0 imply V (B — Voﬁcm) = 0. So we have A = B =
1 1

Bok =0 (ke I) and wr1 = wiry (kK € J). We set wip = C (k € J). Tt follows from (3.10) that

B — VO% =C Z(Cl + ) (dlogé? [azkl azk] —dlog6 [azkﬂ a2k+2] >
1

Pyt 2k—1 bak 2k+1 bok+2

—Vo(C).

c

Consequently, we have 8 = Vg (6001 + C’) and oo = 0 (601 + C), and therefore H!(L,V) =0
1 1
also in this case. The above argument is effective also when I = ().

Lemma 3.8 is proved.

84 Structure of the non-vanishing cohomology group

Propositions 3.5 and 3.6 give us information on the structure of the non-vanishing coho-
mology group H?(M, L) = H?*(X,Q%(D)(P),V). Namely, there exists a filtration of H? =
H?(X,Q%(D)(P),V): H> = H2 > H? D> H3 D 0 such that H} ~ E2), H?/H3 =~ E!!
H2/H? = E?2. To obtain information on how to select meromorphic 2-forms realizing a basis of
H?(M, L), we need to study the analytical structures of E2? with p+ ¢ = 2 further. To this end
let us consider the following sequences of sheaves over X:

, 9% (2 (ko +1)D) (P)
WD) 0 QLD)(P) — A (D)(P) Ty 22! F (S D) ) vy,

% (D)(P)
and
» Y O (S0 + 1D, ) (P)
v
. 0 — Ox(P) — Ox(D)(P) oL D))
2 o Trnm % (S0 +1D.) ()
— — 0,

N
S % (S0 +1)D,) (P)
where V' denotes the operator induced from V, and for [ = 1,2 the symbol ZZ &, — represents
the abbreviation for the symbol >, <o 1 S0k 4. pky=r As is well-known (Deligne [3], IL, §3,
Prop.3.13), since D has normal crossings, the sequences (4.1) and (4.2) are exact, i.e., they give
resolutions of the sheaves of logarithmic differential forms Q% (D)(P) and Ox (P)(= Q% (D)(P)).

In what follows, for a sheaf F over X let the symbol HP(F) represent the cohomology group
HP (X, F).

H (L5 o1 2 (201 6k + 1D, ) (P))
v HY(QL (D)(P)) + HO(@ (D)(P))

IR

Proposition 4.1. H'(Q4 (D)(P))

Proof. From the short exact sequence of sheaves (4.1), we have the following long exact sequence

of cohomology groups:

(s 9 (T +1)D,) (P)
001 0/01 v 0 >k X
L5 B O DIP) — H@(D)P) 5 H LDV

— H'(Qx(D)(P)) — H'(Qx (D)(P)) — -+
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Note that the sheaf of modules Q% (D)(P) is isomorphic to a direct sum of two copies of

Ox (D)(P). There exists a positive definite line bundle L on X of type (1, 1) such that H!(Ox (D)(P)) =
HY(Ox(LY)), where Ox (L") denotes the sheaf of local sections of the line bundle LY over X.

LY is a positive definite line bundle on X of type (N, NN), and has no negative eigenvalues.

Then Mumford’s vanishing theorem (Mumford [12], III, §16) implies that H'(Ox (L)) = 0, and
therefore H'(Q4 (D)(P)) = 0. Then (4.3) is turned to the following exact sequence:

(s % (T +1)D,) (P)
1 1 \% D ky X
0 — H(Q(D)(P) — H'(@(D)(P)) > H° ( ST D) )

— H'(Qx(D)(P)) — 0,

from which it follows that

1
0% (D)(P)
V! HO (2 (D)(P))

S ke1 % (S0 (b +1)D,) <P>)

HO (
(4.4) H'(Q (D)(P)) =

Since H(Q% (D)(P)) = 0, we have
(4.5)
o [ Zxno B (S - 0D) () HO (S0 9 (S0l + VD) ().
0% (D)(P) HOO3 (D)(P))

Moreover, by this isomorphism, we may identify the mapping

S ke % (S0 (b, +1)D, ) (P)
% (D)(P)

V' H(QY(D)(P)) — H° (

with the composition

HO(@(D)(P)) -S> H° ( > % (Zm + 1>DV> (P))
S k,=1 v=1
HO (Lg% (205 + 1D, (P)

- HO(QZ (D)(P))

Then we have
VH®(Q% (D)(P))
VHO(Q (D)(P)) N HO(Q% (D)(P))
o VH (Q (D)(P)) + H°(9% (D)(P))
a HO(Q% (D)(P))
Substitution of (4.5) and (4.6) into (4.4) gives us the desired formula of Proposition 4.1.

V'H?(Q (D)(P)) =

(4.6)

Proposition 4.2.

N
H° ( > ﬂ%( (ky + 1>Dy)<P))
S ky,=2 v=1
N N
vV H? ( > ook (Z(kv +1)D,,> (P)) + H° ( > 0% (Z(ku +1)D,,> (P))

Eky:l v=1 Ekyzl v=1

H?*(Ox(P)) =

)
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N N
VIIVH [ Y Qk(Z(ky—kl)D,j)(P) nHY | Y Q§(<Z(ku+1)pu>(1:)

v=1 Zku:l v=1

V H(Ox(D)(P)) + H(Q (D)(P))
To prove Proposition 4.2 we need the following

N
Lemma 4.3. H' | 3 Qg’((Z(kV + 1)DV)(P) =0,p=1,2.
S k,=1 v=1
Proof. Let us consider the following short exact sequence of sheaves over X:

N
(4.7) 0— Y o (Z(kl, + 1)Dl,)(P) — Q% (2D)(P) — S — 0,
S ky=1 v=1
% (2D)(P)
s ko B (S0 (b, +1)D, ) (P)
apoint x € X. Then we see that S = C3~? if x € D;ND; (i # j); otherwise SE = 0. In fact, for
x € D;NDj (i # j) the stalk S? is identified with the vector space {%dz + -2 qu | c1,¢0 € C’}
22w

where S? = . Let 8P denote the stalk of the sheaf SP at

22?2
c

if p = 1, and with the vector space {ﬁdz ANdw |ce€ C} if p = 2, where z,w denote local
22w

coordinates around z such that the local equations of D; and D; around x are given by z = 0

and w = 0 respectively. From (4.7) we have the long exact sequence

0—H"| > 9% (XN:(’f +1)D,)(P) | — HOQ% (2D)(P)) — H(S?)
S k=1 v=1
(4.8) N
PHU D 9% (Z(ky + 1)DV)(P) — HY Q% (2D)(P)) — -+~ .
Zk,,:l v=1

Since the sheaf Q% (2D)(P) is isomorphic to a direct sum of copies of Ox(2D)(P), Mumford’s
vanishing theorem implies that H'(Q% (2D)(P)) = 0. Therefore from (4.8) we have

N
0—H | 3 0% (Z(k’y n I)DV)(P) — HY(Q% (2D)(P)) — HO(SP)
(49) S k=1 V;l
—a Y o (Z(ku + l)DV)(P) 0.
S k=1 v=1

Note that H%(SP) is isomorphic to the direct sum of N(N — 1) copies of the abelian group C3~?.
Moreover we have Q% (2D)(P) = Ox (2D)(P)®0Ox (2D)(P) and Q% (2D)(P) = Ox (2D)(P). We
denote by [2D] the line bundle over X defined by the divisor 2D. Then we have Ox (2D)(P) &
Ox([2D] ® P), where the right hand side denotes the sheaf of local sections of the line bundle
[2D]® P. Since ¢;([2D]® P) = ¢1([2D]), we have dim H°(Ox (2D)(P)) = 4N?. Let wy, ..., wyn>
be a basis of the vector space H°(Ox (2D)(P)), and py, ... ,PN(N—1) be the points on X, each

of which is an intersection of two theta divisors D;,D; (i # j), i.e., for any k there exist ¢
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and j, @ # j, such that p, € D; N D;. For (cp,,.. ) € HO(S?) = CVWV=1 et us
consider the following system of N(N — 1) linear equations with 4N? unknowns Ay, ..., Ayy2:
fork=1,...,N(N —-1)

° CpN(N—l)

Cp

(4.10)  Ar(wi)p, + -+ Aavz(Wanz)p = 503 w? 0 2w

E o A duo mod (dz/\dw dz/\dw)

where (w;),, denotes the localization of w; at the point py, and z,w denote local coordinates
around py such that the local equations of D; and Dj around py are given by z =0 and w =0
respectively. Obviously the system (4.10) has a non-trivial solution (Ai,...,A4n2) € cY’,
which implies that the mapping H"(Q% (2D)(P)) — H(S?) is surjective. Also in the case where
p = 1, by the same argument as above, we see that the mapping H°(QL (2D)(P)) — H°(S!)

is surjective. Lemma 4.3 is thus proved.

DS k=1 Q% (Zﬁ;(ku + l)D,,) (P)
Q4 (D)(P)

Corollary 4.4. H' =0.

Proof. Let us consider the following short exact sequence:

0— Qx(D)(P) — > 0k (ZN:(k + 1)D,,> (P)
S k=1
Vs ke 2 (S0 (b +1)D, ) (P)
H QL (D)(P)

Then the corollary follows immediately from the long exact sequence of cohomology groups with
N

the vanishing of cohomology groups: H*' Z (9} (Z(kzu + 1)D,,> (P) | =0 by Lemma 4.3
S k=1 v=1
and H?(X,Q4(D)(P)) = 0 by Mumford’s vanishing theorem.

v=1

— 0.

Proof of Proposition 4.2. Note that the exact sequence (4.2) is decomposed into the following

two short exact sequences:
(4.11) 0 — Ox(P) — Ox(D)(P) L5 V'Ox(D)(P) — 0,

s ke 2 (S0 (b, +1)D, ) (P)
—>
QL (D)(P)

v Trno % (S0 + D)D) (P)
—
S tm1 B (X010 + 1)D,) (P)

From (4.11) we have the following long exact sequence

0 — V'Ox(D)(P)

(4.12)

Ly HOx(P) — HOx(D)(P)) = HY(V'Ox(D)(P) — H!(Ox(P)
— H'(Ox(D)(P)) — H'(V'Ox(D)(P)) — H*(Ox(P)) — H*(Ox(D)(P)) — -+

Mumford’s vanishing theorem implies that H'(Ox(D)(P)) = H*(Ox(D)(P)) = 0. So we have

from (4.13)

(4.14) 0 — V'H*(Ox(D)(P)) — H°(V'Ox(D)(P)) — H'(Ox(P)) — 0,

(4.15) H'(V'Ox(D)(P)) = H*(Ox(P)).
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From (4.14) it follows immediately that
HO(V'Ox(D)(P))
V'HO(Ox (D)(P))’

On the other hand, from (4.12) we have the following long exact sequence

s ket O (S04 (ke + 1D, ) <P>)

1%

(4.16) H'(Ox(P))

0 —H"(V'Ox(D)(P)) — H° ( QL (D)(P)

(4.17) s o (sz 0% (T
Yok —1 2% (X

T

(ks +1)D, )(P)
H'(V'Ox(D)(P))
(kb +1)D, ) (P)

(K, +1DV)P)

ﬁz T

(
)(P)
Since H! (ZZ g—1 0% (Z,]Ll(kl, + l)D,,) (P)) =0 by Lemma 4.3 and H*(Q% (D)(P)) =0 by
Mumford’s vanishing theorem, the mapping V'’ in (4.17) is identified with

B

x(

(4.18)

o (Sxrm & (EX, 0 +0D,) () B (S 0 (S2ah + 1D, (P))
. HO (Q (D)(P)) o (ZZ o 2% (Zf)’:l(ku 4 l)Dy) (P)) :

So we have

H°(V'Ox(D)(P)) = KerV’
(4.19) v

(g ) )]

a HO(Q (D)(P))

where V is regarded as the mapping of H° <ZZ j—1 S (Zivzl(ky + 1)Dl,> (P)) into

HC (sz 0% (Zivl(k +1)D, )(P)) From the sheaf mapping V' : Ox(D)(P) —

Es k= U (S0 (P)
x bl Sg}( D (P) ) in (4.2), we have the induced mapping V' : H°(Ox (D)(P)) —
s ket 2 (S04 (b +1)D, ) (P)
0 ince H' ! = 0, we have
H ( QL (D)(P) .S H' (X, Q% (D)(P)) =0, we h

o (Znna O (S - 0D,) () HO (S 9 (S0l + DD, (P)
L (D)(P) HO (% (D)(P)) |

and by this isomorphism we may identify the above induced mapping V' with the composition

N
H®(Ox(D)(P)) < H° ( > 9% (Z(ku + 1)Du> (P)>

Zkuzl v=1

Y (ZZ k=1 2k (le’v:l(k” N 1)D”) (P))

- HO (O (D)(P))
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Then we have

VH’(Ox(D)(P))

» V'H(Ox (D)(P)) = VHOY(Ox(D)(P)) N HO(QL(D)(P))
(4.20) gvm(o;a )(P)) + H' (0% (D)(P)
HO(QL(D)(P))

Substitution of (4.19) and (4.20) into (4.16) gives us the desired formula for H!(X, Ox(P)) of
Proposition 4.2.
Next, applying Corollary 4.4 to (4.17) we have

=1 Ql
0 —H°(V'Ox (D)(P)) — H° (ZZ’“

Qy(D)(P)
(4.21)

(it +1)D,) P))
)P

~, 1O (ZZkV_QQQ % (St + 1D,
U S RTRET I

Since the mapping V' in (4.21) is identified with (4.18), we have

)—>H (V'Ox(D)(P)) — 0.

ImV’ =

(2;19X<u1k +1)D )OHO(Z;fF (;k +1)D ) ))

N
HO(ZQ§<<Zk+1 )+H°(ZQQ< ) ))
> ky=1 v=1 S k=1 v=1

HO (L 4,21 9% (X
Combining (4.21) with (4.15), we have
S i—e B (X0 (ke + 1D, ) (P)
Sk % (S0 (b, +1)D, ) (P)
Applying (4.22) to (4.23), we have
" (sz,,—z 9% (X1 +1)D,) <P>)

S5k % (S0 b + 1D, ) (P)
ImV’

H“( > ﬂ%(i(kﬁlwy)w))

Ek}uz2 v=1

N b)
VH“( >0k (Z(kwl)Dy) )+H°( ook (Z )Du> (P))
> k=1 v=1 Y k=1 v=1

which is the desired formula for H?(Ox (P)), and Proposition 4.2 is proved completely.

(4.22)

1%

(4.23)0 —ImV’ — H° (

Il

H?*(X,0x(P))

o~

Our main theorems in this paper are as follows:
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Theorem 4.5. Assume that N < N’ and not all of the four quantities %ZkN:lNH A2k —1Ck,

1 N’ 1 N’ 1 N’ . 2
5 D heN41 B2kChs 5 D p—N1102k—1Ck, 5 2 _p—n41 b2xCr are integers. Then we have H*(M, L) =
E2 @ Ell where

B = HY(X, Q% (D)(P)),

N
H (X, ) Qi(Z(kyH)D,,)(P)

Bl o > k=1 v=1
> VHOX,Qx(D)(P)) + HO(X, Q% (D)(P))

Moreover, dim E2) = N? and dim E1! = N.
Proof. The theorem follows immediately from Propositions 3.5 and 4.1.

Theorem 4.6. Assume that either N = N’ or N < N’ and all of the four quantities

1 N’ 1 N’ 1 N’ 1 N’ .
5 D kN1 @2k—1Cks 5 D pe N1 O2kChy 5 D he N1 02k—1Cks 5 D p—n41 b2kCr are integers. Then
we have H?(M, L) 2 E2 & E!! & E%2, where

20 = X8 (D)
VHO(X, QL (D))’
Bl =

N
H (X, > Q}(Zk +1D,,>
Z v=1

k,=1

)

N
H | X, Z QX<Zk +1)D,,> nHY X, > Q}(Zk +1)D ) + H(X, 0% (D))

Zkyzl v=1

N
H (X, Y 0% <Z(kl,+1)Dl,>

ZkU:Q v=1

N N
x> Q&(Z(kﬁlwy) +H X, Y Qi(Z(kﬁl)DV)

S ky=1 v=1 Sk, =1 =1
Moreover, dim E2 = N2 — N, dim Ell = 2N — 1, and dim E9? = 1.

Proof. Tt suffices to prove the formula for E1l. The others are immediate consequences from
Propositions 3.6 and 4.2. Since E9! = 0 by Lemma 3.7, the mapping V : H(Ox) — H'(Q% (D))

is injective. Let us consider the composition

VIVHY [ Y Q&(Z(kﬁl)@) nH [ ) Q?,((Z(kl,Jrl)D,,)

Zkyzl v=1 Zk,j:l v=1

(4.24) . L (&
N H Y 0% (Z(k,, + 1)Dl,>
\Y v=1

) S k,=1
= H [ Qx<2(ku+1ﬂ?v> TV HE(QL(D)) + BO(X, 0% (D))

Zkyzl v=1

Here we need the following
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Lemma 4.7.

{VHO ( > 9% (i(ky + 1)DV>> NnH° ( > 0% (XN:(I@ + 1)Du>) }
S k=1 v=1 S k,=1 v=1

N{V H°(Qk (D)) + H(X, Q% (D))} = V H*(Qk (D))
Proof. The inclusion D is obvious. Let us show the converse. Let a be an element in V H°(Q4 (D)),

and b be an element in H°(Q% (D)). Then we have a+b € H° (ZZ j—1 0% (Zi\]_l (k, + 1)Dy>>
automatically. Assume that a + b € V H? (ZE k=1 U (Ziv_l(ky + 1)Dy>>. Since a €
V H°(QL4 (D)), we have b € V H° (ZZ j—1 U <Ziv_1(k,, + l)Dl,) ) . Then we can set b = V¢

for some ¢ € H° (ZZ k=1 93% <Zf/v_1(k,, + 1)Dy>>. By comparing the orders of poles of b

and Ve, we see that ¢ € H°(Q4 (D)), which proves Lemma 4.7.

Let us complete the proof of Theorem 4.6. By (4.24) and Lemma 4.7 we have
VH'(X,0x)

v H (Ez k=1 Uk (szj\fq(kv + 1)Du>> nH° (ZZ ko1 % (le/\[_l(kl’ + 1)D,,>>
VHO(X, Q% (D))

10 (S (52000 ) (s 0.

N N
v H° ( >0k <Z(k:y - 1)D,,>) nH° ( d 9% (Z(ku + 1)Dy>> N{V H°(Q% (D)) + H°(Q% (D))}

Zk,/:l v=1 Zk:V:l v=1

vV H° (Zz k=1 O (Z]uv_l(klf + 1)Du>) nH’ (Zz k=1 0% <Ziv_1(ku + 1)Du>> +HO(Q% (D))

V H(Q (D)) + HO(Q% (D))

Combining the preceding formula with Proposition 4.1, we have

i1 o (5 (D))
>~ T VH(Ox)
N
H° ( > Q§<< (ky + 1)Dy>)
~ S k=1 v=1
- N N '
VH® ( > ook <Z(ky+1)D,,>) nH° ( 0% <Z(k,,+ 1)Dy>> + H (0% (D))
S k=1 v=1 S k=1 v=1

Theorem 4.6 is proved completely.
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