キチン合成酵素遺伝子プロモーターを利用した新規シイタケ形質転換ベクターの構築

<table>
<thead>
<tr>
<th>他のタイトル</th>
<th>キチン合成酵素遺伝子プロモーターを利用した新規シイタケ形質転換ベクターの構築</th>
</tr>
</thead>
<tbody>
<tr>
<td>著者</td>
<td>八田敏嗣, 野川久美子, 平野貴也</td>
</tr>
<tr>
<td>それを読む</td>
<td>なるも ひさみ</td>
</tr>
<tr>
<td>学術分野</td>
<td>食品工学</td>
</tr>
<tr>
<td>学校</td>
<td>北見工業大学</td>
</tr>
<tr>
<td>年</td>
<td>2011-02</td>
</tr>
<tr>
<td>タイトル</td>
<td>117-120</td>
</tr>
<tr>
<td>巻</td>
<td>111</td>
</tr>
<tr>
<td>号</td>
<td>2</td>
</tr>
<tr>
<td>URL</td>
<td>http://id.nii.ac.jp/1450/00007605/</td>
</tr>
</tbody>
</table>
論文タイトル
Construction of Novel Vectors for Transformation of *Lentinula edodes* Using a Chitin Synthase Gene Promoter.

キチン合成酵素遺伝子プロモーターを利用した新規シイタケ形質転換ベクターの構築

要旨
シイタケ・キチン合成酵素遺伝子プロモーターによってハイグロマイシン耐性遺伝子*hph*を発現させる発現ユニットを有する、シイタケ用の新規ベクター（pLCHS-hph と pChG-bar）を構築した。ランダムに選択した形質転換体における*hph*の発現をRT-PCR法によって確認した。2種類のベクターはシイタケの形質転換に有用であることが明らかとなった。
Construction of Novel Vectors for Transformation of *Lentinula edodes* Using a Chitin Synthase Gene Promoter.

Toshitsugu Sato¹,²*, Kumiko Okawa¹, Tatsuya Hirano¹,³

Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan¹, Department of Biotechnology and Environmental Chemistry, National University Corporation Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido, 090-8507 Japan², and Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya 468-8502, Japan³

Key words

Lentinula edodes, novel vector, transformation, chitin synthase, gene expression

* Correspondence author. e-mail: tosisato@mail.kitami-it.ac.jp

phone: +81-(0)157-26-9411 fax: +81-(0)157-24-7719
Abstract

Novel vectors (pLCHS-hph and pChG-bar) containing expression unit driving hph as a selectable marker gene by chitin synthase gene promoter were constructed for *Lentinula edodes* transformation. Expression of the hph gene in random selected transformants was confirmed by RT-PCR method. Thus, both vectors are useful for *L. edodes* transformation.

Lentinula edodes is one of the most important edible basidiomycete in Japan. *L. edodes*’ gills turn brown during post-harvest preservation, which is commercially undesirable because it causes an unpleasant appearance. We reported previously that the causative browning factors were tyrosinase (1, 2) and laccase (3). We then cloned the genes from browned fruit-bodies of *L. edodes*, and confirmed the increased expression of both genes during post-harvest preservation (4, 5). And also, tyrosinases (6) and laccases (7) are recognized for their potential in biotechnological applications in food and nonfood industries. At this point, the establishment of genetic engineering techniques for *L. edodes* was essential for confirmation of the genes function by a reverse genetic strategy and for overproduction system of useful enzymes. However, there were few reports except our studies (8-10). Although we developed an effective transformation method for *L. edodes* by restriction enzymes-mediated integration (REMI) (8) and constructed useful vectors, pLG (9) and pL-Cbx (10), it was necessary to construct a vector that could express simultaneously two exogenous genes, such as dominant selectable marker genes and another gene, to analyze the functions of genes useful in *L. edodes* breeding.

The cell wall of filamentous fungi comprises a variety of macromolecules, such as chitin and β-glucan. Chitin, the β-1, 4-linked polymer of N-acetylglucosamine...
GlcNAc), provides strength to the fungal cell wall and is therefore essential for the
morphogenesis and survival of fungi (11, 12). Synthesis of chitin is mediated by chitin
synthases (CHSs, EC 2.4.1.16) (11, 13). Thus, it is likely that the chs gene is
constitutively expressed during all growth stages, and therefore, the chs promoter would
be useful for exogenous gene expression, such as dominant selectable marker genes, for
transformation of L. edodes. In previous study, we cloned a Lechs2 gene from L.
edodes and demonstrated the expression of the gene at various growth stages (14). In
present study, we constructed the novel vectors, pLCHS and pChG, using Lechs2 gene
promoter, and confirmed its utility in the transformation of L. edodes.

To confirm the usefulness of the Lechs2 promoter for heterologous gene
expression, we constructed the novel vector, pLCHS-hph in which the Lechs2 promoter
drives the hygromycin B phosphotransferase (hph) gene (Fig. 1). pLCHS-hph (5.95kb)
was constructed by ligation of the pLG vector 9) lacking the
glyceraldehydes-3-phosphate dehydrogenase (gpd) gene promoter region and the
Lechs2 gene promoter region. The former region was amplified by PCR using primers
pLC-rasU (5'-GGA TAT GAA AAA GCC TGA ACT CAC CGC G-3') and pLC-rasl
(5'-CCC GGG CAC CTT GCG CCT CCA TAC TTT CAT-3') (9) and the latter region
(1,154 bp) was amplified by PCR using primers CproU2 (5'-CTG ACT TAG CCG ACG
ACA CAC GTA ATG ACA-3') and gCLA-L (5'-CCT TAG TTG TAG ATG GAA ATG
GTG GGG TGG-3'), respectively (Fig. 1). pLG-bar was constructed by ligation of the
pLG vector region amplified by pLC/hU-X (5' - GCT CTA GAT TGT GGC TCT CCA
TCA TAT CGA CCC G-3’ containing an XbaI site at 5’ end) and pG-L (5' -ATT CAA
GCA GTC AAT GGA TTG GAG GG-3’) using pLG-hph as a template, and a 0.55 kb
fragment of bar gene, which encodes a phosphinothricin acetyltransferase confering
bialaphos resistance, derived from the pLC-bar (15) by digestion with BamHI (Fig. 1).
pLC-bar was kindly donated by Dr. Yanai, Meiji Seika Kaisha, Ltd. We then prepared a
pGPD-bar-tGPD fragment by PCR using pG-U/S (5’- GGA CTA GTC GAA GTT TGA
GGT GGT TGC GAA TAC G-3’ containing an SpeI site at 5’ end) and tG-L2/N (5’-
CTA GCT AGC TAT CAG GGA GAC GGC GGA CAC AGG TA
3’ containing an NheI
site at 5’ end) with pLG-bar as a template (Fig. 1). The resulting fragment was blunting
and ligated to the pLCHS-hph EheI site resulting in pChG-bar (8.12kb, Fig. 1).

Preparation of L. edodes protoplasts for the transformation was by the method of
Irie et al. (10) About 1×10⁸ protoplasts were obtained from 1 g of L. edodes strain SR-1
mycelia. Protoplasts of L. edodes were transformed with 2.5 μg of vectors according to
the restriction enzyme-mediated integration (REMI) method as described by Sato et al.
(8). In the case of pLG-hph and pLCHS-hph, L. edodes protoplasts were transformed
twice with 5 units of BglII and selected with MYPG agar medium containing 20μg/ml
hygromycin B by the method of Sato et al. (8). The transformation efficiencies of the
vectors, pLG-hph and pLCHS-hph, were both about 20 transformants per 2.5 μg vector
DNA (Table 1). These results suggested that LeChs2 gene promoter was useful for L.
edodes transformation, similarly to the L. edodes gpd gene promoter. In the case of
pChG-bar, protoplasts of L. edodes were transformed three times with the vector and 25
units of HindIII instead of BglII because of the existence of BglII site in the bar gene.
First selection was done with MYPG agar medium containing 20μg/ml hygromycin B,
and then hygromycin B resistant transformants were selected with MYPG agar medium
containing 20 μg/ml hygromycin B and 2 μg/ml bialaphos. The final transformation
efficiency achieved was three transformants per 2.5 μg vector DNA (Table 1). The result
indicates that the bar gene can be used as a selection marker gene in L. edodes
transformation besides hph (8, 9) and carboxin resistant gene (10). The transformation
efficiencies of pChG-bar was lower than that of pLG-hph and pLCHS-hph. One
possible reason for the low efficiency of pChG-bar transformation is that the restriction enzymes used for REMI transformation; *Hind*III was used to transform *L. edodes* for pChG-bar, and *Bgl*II for pCHS-hph and pLG-hph. Hirano *et al.* reported that transformation efficiency of *L. edodes* using *Bgl*II with pLG-hph by REMI method was higher than using *Hind*III (9). Another possible reason is the vector size; pCHS-hph and pLG-hph are 5.95 kb and 5.85 kb respectively, whereas pChG-bar is 8.12 kb. To confirm the integration of each vector in the transformants, Southern blot analysis was performed for five randomly selected clones of each transformants using *hph* gene as a probe, with or without restriction enzymes digestion. The vectors were shown to be integrated into the chromosome of all five *L. edodes* clones at single or multiple sites (data not shown).

Expressions of the *gpd* gene, *hph* gene, and *bar* gene in five randomly selected clones of *L. edodes* pChG-bar transformants were confirmed by RT-PCR (Fig. 2). Total RNAs were prepared from mycelia grown in MYPG liquid culture of the transformants for two weeks at 25°C and cDNA synthesis was by the method of Hirano *et al.* (16). The expression of the *gpd* gene, as a control gene, was detected as a 792 bp band by PCR using cG298U (5'-TCG TCG ACG GAA AGG AAA TCT C-3') and cG444L (5'-GGC AGC AAA CAC CAA GAG AT-3') as primers (Fig. 2A), and *hph* gene expression was detected as a 626 bp band by PCR using 122U (5'-TTC GAT GTA GGA GGG CGT GGA T-3') and 726U (5'-CGC GTC TGC TGC TCC ATA CAA G-3') as primers (Fig. 2B). These bands were clearly detectable in all five clones of pChG-bar transformants. However, *bar* gene expression was only detected in one clone as a 436 bp band by PCR using 117U (5'-TAC CGA GCC GCA GGA ACC-3') and 535L (5'-CTC GGT GAC GGG CAG GAC-3') as primers (first PCR, Fig. 2 C). We then performed nested PCR with the first PCR product as a template using 242U (5'-CAC GCA ACG CCT ACG
ACT-3') and 492L (5'-AAG TCC AGC TGC CAG AAA-3') as primers. As a result, a
268 bp band was detected in all five transformants (Fig. 2 D). This result indicate that
bar gene expression was weaker than hph gene expression, suggesting that bar gene
expression could be unstable at a transcriptional level and could be resulted in low
transformation efficiency. Although bar gene expression by the gpd gene promoter in
the pChG-bar transformants was weak than hph gene expression by the LeChs2 gene
promoter, it has been confirmed that hph gene expression by the gpd gene promoter was
effective in L. edodes (9) and Pleurotus oseteatus (17). Therefore, the low expression of
bar gene in this study is probably not due to the activity of gpd gene promoter.

Collectively, these data described here suggest that the LeChs2 gene promoter is
effective in L. edodes exogenous gene expression, and that the pChG is very useful
vector expressing two heterologous genes simultaneously in L. edodes for molecular
breeding. Future studies will include overproduction and repression of interesting
homologous genes or exogenous genes using this vector. In particular, overproduction
and repression by antisense method of the L. edodes tyrosinase gene are currently
underway.

Acknowledgements
We thank Meiji Seika Kaisha, Ltd., for providing the bialaphos resistance gene.

References
between tyrosinase activity and gill browning during preservation of Lentinus edodes

Figure Legends

Fig. 1. Construction of pLCHS and pChG-bar.

GPD and CHS are L. edodes glyceraldehyde-3-phosphate dehydrogenase gene and chitin synthase gene (LeChs2), respectively. pGPD, pCHS and pRAS are promoter sequences of the GPD, CHS and ras genes of L. edodes, and tGPD and tPriA are the terminator sequences of L. edodes GPD and priA gene. hph, amp, and bar are the hygromycin B phosphotransferase gene, ampicillin resistance gene, and bialaphos resistance gene, respectively. The thin arrows represent primers.

Fig. 2. Marker genes expressions in the pChG-bar transformants by RT-PCR.

RT-PCR products were separated on a 1% agarose gel. Expression of gpd gene was used as a control gene (A). The hph gene expression (B), and bar gene expressions (C) (first PCR) and D (nested PCR), respectively, are shown. The numbers indicate the clone number of the transformants, and S and N indicate host strain SR-1 and no template DNA, respectively. M and M' indicate 500 bp ladder and 100 bp ladder marker DNAs, respectively.
Table 1. Number of *Lentinula edodes* transformants generated with the vectors by REMI method.

Protoplasts of *L. edodes* were transformed with *Bgl*II or *Hind*III. REMI transformation was done with 2.5 μg of circular plasmid DNA. The values represent the average of two or three replications.
Fig. 1. Sato et al.
Table 1. Number of *Lentinula edodes* transformants generated with the vectors by REMI method.

<table>
<thead>
<tr>
<th>Vector</th>
<th>Restriction enzyme (units)</th>
<th>No. of replication</th>
<th>No. of transformants/2.5μg vector DNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>pLG-hph</td>
<td>BglII (5)</td>
<td>2</td>
<td>19.0</td>
</tr>
<tr>
<td>pLCHS-hph</td>
<td>BglII (5)</td>
<td>2</td>
<td>20.5</td>
</tr>
<tr>
<td>pChG-bar</td>
<td>HindIII (25)</td>
<td>3</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Protoplasts of *L. edodes* were transformed with *Bgl*II or *Hind*III. REMI transformation was done with 2.5 μg of circular plasmid DNA. The values represent the average of two or three replications.